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1. Introduction

In quantum information science, quantum states are used to store, process, and transmit informa-

tion. Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite

matrices of trace 1; for example see [Kr83, NC00]. Thus, many problems in quantum information

science are connected to the study of density matrices and transformations on density matrices

with special properties.

Let Mn be the set of n×n complex matrices, Hn be the set of all n×n Hermitian matrices and

let Dn be the set of all n×n density matrices. Consider k quantum systems X1, . . . ,Xk with states

ρ1 ∈ Dn1
, ρ2 ∈ Dn2

, . . . , ρk ∈ Dnk
, respectively. Their product state is given by

(1) ρ1 ⊗ · · · ⊗ ρk ∈ Dn1···nk
,
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which is the state of the k-partite system X = (X1, . . . ,Xk) if the k systems are independent. In

general, however, the state of X is a density matrix ρ ∈ Dn1···nk
, which may not be expressible in

the form (1). From the state ρ of X , one may extract information about the state of any of its

subsystems using a family of linear maps called the partial trace maps. To define these maps, note

that tensor products like that of equation (1) form a spanning set for Hn1···nk
over the real field

and for Mn1···nk
over the complex field. For a given positive integer k, set k = {1, . . . , k} and for

any subset ∅ 6= J = {j1, . . . , jr} ⊂ k, let Jc = k \ J . The partial trace map with respect to J is the

unique linear map tr Jc : Mn1···nk
−→Mnj1

···njr
such that

(2) tr Jc(ρ1 ⊗ · · · ⊗ ρk) = ρj1 ⊗ · · · ⊗ ρjr ∀ ρ1 ⊗ · · · ⊗ ρk ∈ Dn1,...,nk

If ρ is the state of the k−partite system X = (X1, . . . ,Xk), then tr Jc(ρ) := ρJ is called the reduced

state of the subsystem indexed by J , i.e. (Xj1 , . . . ,Xjr). For completeness, note that if J = ∅, then
we can take trJ to be the identity map and if J = k, we have trJ is just the usual trace map.

For example, if k = 2, we have a bipartite system. There are two partial traces of the form

ρ1 ⊗ ρ2
tr 27−−→ ρ1 and ρ1 ⊗ ρ2

tr 17−−→ ρ2

for any product states ρ1⊗ ρ2. Here we use the notations tr 2 and tr 1 instead of tr {2} and tr {1} for

notation simplicity. It is useful to note that if we partition a density matrix ρ = [ρij ]i,j∈n1
∈ Dn1·n2

such that ρij ∈Mn2
, we have

tr 1(ρ) =

n1
∑

j=1

ρjj ∈Mn2
and tr 2(ρ) = [tr ρij ]i,j∈n1

∈Mn1
.

If k = 3, we have a tripartite system, and there are six partial traces such that

tr 1(ρ1 ⊗ ρ2 ⊗ ρ3) = ρ2 ⊗ ρ3, tr 2(ρ1 ⊗ ρ2 ⊗ ρ3) = ρ1 ⊗ ρ3, tr 3(ρ1 ⊗ ρ2 ⊗ ρ3) = ρ1 ⊗ ρ2,

tr 12(ρ1 ⊗ ρ2 ⊗ ρ3) = ρ3, tr 23(ρ1 ⊗ ρ2 ⊗ ρ3) = ρ1, tr 13(ρ1 ⊗ ρ2 ⊗ ρ3) = ρ2.

In this paper, we study the following:

Problem 1.1 Construct a global state ρ ∈ Dn1···nk
with certain prescribed reduced (marginal)

states ρJ1 , . . . , ρJm and with special properties such as having prescribed eigenvalues, prescribed

rank, extreme von Neumann entropy, or extreme Rényi entropy.

Note that if the mathematical theory shows that the desired global state exists, then one may

design experiments to realize the construction. Otherwise, one has to modify the requirements

so that the construction is realizable. (Of course, establishing a physical realization of quantum

states is a different challenge altogether.) Also, one may use the mathematical results to predict

the properties of the global state if some properties of the reduced states are given or observed. In

the extreme case, one may conclude that there are errors in the measurements of reduced states if

the mathematical theory suggests that the desired global state cannot exist.

Let us now go back to the mathematical aspect. For a bipartite system, if ρ1 ∈ Dn1
and ρ2 ∈ Dn2

,

then ρ = ρ1⊗ρ2 ∈Mn1n2
is a global state having reduced states ρ1 and ρ2. However, it is not easy to

construct a global state with prescribed eigenvalues. Researchers have used advanced techniques in

representation theory (see [DH05, Kl06] and their references) to study the eigenvalues of the global

state and the reduced states. The results are described in terms of numerous linear inequalities

even for a moderate size problem (see [Kl06]). Moreover, even if one knows that a global state

with prescribed eigenvalues exists, it is not possible to construct the density matrix based on the
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proof. It is not easy to use these results to answer basic problems, test conjectures, or find general

patterns of global states with prescribed properties. For a multipartite system with more than two

subsystems, the problem is more challenging. Not much results are available. For example, for

a tripartite system, determining whether there is a state ρ ∈ Dn1n2n3
with given reduced states

ρ12 ∈ Dn1n2
and ρ23 ∈ Dn2n3

is an open problem.

In this paper, we will use convex analysis, optimization techniques on matrix manifolds, etc.

to obtain algorithms to solve the problem by projection methods. Matlab programs are written

based on these algorithms and numerical examples are illustrated. The numerical results reveal

new patterns leading to new insights and research problems on the topic. Our paper is organized

as follows:

In Sections 3-5, we will focus on the bipartite systems and obtain algorithms based on projection

methods to solve Problem 1.1. In Section 6, we extended the results to multipartite systems with

more than two subsystems. Proofs can be found in Appendices A-F and numerical examples are

given in Section 7, to illustrate the algorithms used.

2. Preliminaries

Let ρ1 ∈ Dn1
and ρ2 ∈ Dn2

. For bipartite states, we consider the set

(3) S(ρ1, ρ2) = {ρ ∈ Dn1·n2
: tr 1(ρ) = ρ2, tr 2(ρ) = ρ1}.

Evidently, the set S(ρ1, ρ2) is compact, convex, and non-empty containing ρ1 ⊗ ρ2. Note that if

T : Mn1n2
−→ Mn1n2

is the linear map satisfying T (X1 ⊗X2) = X2 ⊗X1 for any X1 ∈ Mn1
and

X2 ∈Mn2
, then

S(ρ2, ρ1) = {T (ρ) : ρ ∈ S(ρ1, ρ2)} .
When proving properties of S(ρ1, ρ2), we will often use this fact to assume without loss of generality

that n1 ≤ n2. Additionally, we can also focus on the case when ρ1 and ρ2 are diagonal density

matrices since for any unitary U ∈Mn1
and V ∈Mn2

,

S(Uρ1U
∗, V ρ2V

∗) = {(U ⊗ V )ρ(U ⊗ V )∗ : ρ ∈ S(ρ1, ρ2)} = (U ⊗ V )S(ρ1, ρ2)(U ⊗ V )∗.

Lastly, if ρ1 and ρ2 are nonsingular, then we can translate properties of S(ρ1, ρ2) to the general

case using the fact that

S(ρ1 ⊕ 0s, ρ2 ⊕ 0t) =
{

[ρij ⊕ 0t]i,j∈n1
⊕ 0s(n2+t) : ρij ∈Mn2

∀i, j and [ρij ]i,j∈n1
∈ S(ρ1, ρ2)

}

.

Similarly, for a tripartite system, one may assume that tr12(ρ), tr23(ρ), tr13(ρ) are diagonal

matrices, but tr1(ρ), tr2(ρ), tr3(ρ) may be full matrices. So, the study is more intricate.

We will use the alternating projection methods to do our constructions. The basic set up of the

method (See [BD86]) is to define two closed sets Ω1,Ω2 of Hermitian matrices such as the set of

positive semidefinite matrices and the set of Hermitian matrices having the desired partial traces.

Then start with an element A0, say, in Ω1. For m ≥ 0 determine the element Bm ∈ Ω2 nearest

to Am and then determine the element Am+1 ∈ Ω1 nearest to Bm. It is known that if Ω1, Ω2 are

convex (or having other nice properties), then lim
m→∞

Am = A∗ ∈ Ω1 and lim
m→∞

Bm = B∗ ∈ Ω2 so that

A∗ and B∗ attains the minimum distance between the two sets. In particular, A∗ = B∗ ∈ Ω1 ∩ Ω2

if the two sets have a non-empty intersection.
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3. Bipartite States: Global State with Prescribed Eigenvalues

In this section, we will consider the problem of finding ρ ∈ S(ρ1, ρ2) having a prescribed set

of eigenvalues (c1, . . . , cn1n2
). The problem has been studied by other researchers motivated by

problems in quantum chemistry; see for example [Kl06, Fu00, Kl04], but it is difficult to get a

nice theoretical answer. As mentioned in the introduction, by the existing results, even if we know

that such a ρ exists, it is difficult to construct the desired density matrix. We will use projection

methods to solve the problem as follows. Let ρ1 ∈ Dn1
and ρ2 ∈ Dn2

be density matrices and

c1 ≥ · · · ≥ cn1n2
. Define the sets Ω1 and Ω2 as follows

(4) Ω1 =

{

ρ = [ρij ] ∈Mn1
(Mn2

) :

n1
∑

i=1

ρii = ρ2, [tr ρij]i,j∈n1
= ρ1

}

(5) Ω2 = {Wdiag (c1, . . . , cn1n2
)W ∗ : W ∈Mn1n2

is unitary}.

We consider the two projection operators ΦΩ1
: Hn1n2

−→ Ω1 and ΦΩ2
: Hn1n2

−→ Ω2. That is,

||P − ΦΩ1
(P )|| = min

Z∈Ω1

||P − Z|| and ||P − ΦΩ2
(P )|| = min

Z∈Ω2

||P − Z||

We can determine ΦΩ2
using the following result; for example, see [AMO11, Theorem 10.B.10].

Theorem 3.1. Let ‖ · ‖ be a unitary similarity invariant norm, i.e., ‖X‖ = ‖W ∗XW‖ for any

X ∈ HN and unitary W ∈MN . Suppose P = UDU∗ ∈ HN , where U ∈MN is unitary and D is a

diagonal matrix with diagonal entries arranged in descending order. Then,

‖P − Udiag (c1, . . . , cn1n2
)U∗‖ ≤ ‖P − Z‖ for all Z ∈ Ω2.

In our study, we always use the Frobenius norm ‖X‖ = [tr (X∗X)]1/2, which is unitary similarity

invariant. By the above theorem, we have

(6) ΦΩ2
(P ) = Udiag (c1, . . . , cn1n2

)U∗ if P = Udiag (µ1, . . . , µn1n2
)U∗ with µ1 ≥ · · · ≥ µn1n2

.

Here U may not be unique if P has repeated eigenvalues, in which case, we just choose any one of

them.

The next proposition, whose proof can be seen in Appendix A, provides an explicit formula

for ΦΩ1
(P ) using the Karush−Kuhn−Tucker (KKT) conditions. It connects our problem to other

optimization problems. The result will also follow from Proposition 6.2, which covers the more

general multipartite systems.

Proposition 3.2. Given a block matrix P = [Pij ] ∈Mn1
(Mn2

), the projection operator of P onto

Ω1 is given by

(7) ΦΩ1
(P ) = P − In1

n1
⊗
(

tr1(P )− ρ2

)

−
(

tr2(P )− ρ1

)

⊗ In2

n2
+

tr(P )− 1

n1n2
In1n2

Using equations (6) and (7), we can implement the following alternating projection algorithm to

find ρ ∈ S(ρ1, ρ2) with prescribed eigenvalues (c1, . . . , cn1n2
), if it exists.
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Algorithm 3.3. Alternating projection scheme to find ρ = ΦΩ1∩Ω2
(X0)

Step 1. Generate a random unitary U and a random probability vector (d1, . . . , dn1...nk
)

and set the initial point to be X0 = Udiag (d1, . . . , dn1...nk
)U∗.

Choose an integer N (iteration limit) and a small positive number δ (tolerance).

Step 2. For k = 1, . . . , N , define X2k−1 = ΦΩ1
(X2k−2) and X2k = ΦΩ2

(X2k−1)

If ||tr 1(X2k)− ρ2||+ ||tr 2(X2k)− ρ1|| < δ, then declare X2k to be a solution.

If Ω1∩Ω2 6= ∅, Theorem 4.3 of [LM08] guarantees local convergence of this algorithm. That is, if

we choose a suitable starting point X0, then the algorithm produces a sequence {Xk} that converges
to a ρ ∈ Ω1 ∩ Ω2 as k −→ ∞. If Ω1 ∩ Ω2 = ∅, then {X2k} converges to a global state nearest to

a matrix with the desired eigenvalues c1 ≥ · · · ≥ cn1n2
. In case one needs the desired global state

to perform some quantum task, then one needs to adjust specifications of the eigenvalues of the

global state or the reduced states.

4. Bipartite States: Global States with Prescribed Ranks

In this section, we discuss methods to find a low rank solution ρ ∈ S(ρ1, ρ2). Such low rank

solutions are of great interest as they are often entangled [RW08, Theorem 8]. In fact, if rank (ρ)

is strictly less than max{rank (ρ1), rank (ρ2)}, it was shown in [HSTT01, Theorem 1] that ρ must

be distillable. It is also known (for example, see [Wa11]) that if ρ ∈ S(ρ1, ρ2), then

max

{⌈

rank (ρ2)

rank (ρ1)

⌉

,

⌈

rank (ρ1)

rank (ρ2)

⌉}

≤ rank (ρ) ≤ rank (ρ1)rank (ρ2)

The upper bound is always attained by ρ = ρ1 ⊗ ρ2 but the lower bound is not always attained.

For example, in [Kl04, Subsection 3.3.1], it was shown that there exists a rank one ρ ∈ S(ρ1, ρ2) if
and only if ρ1 and ρ2 are isospectral, that is, ρ1 and ρ2 have the same set of nonzero eigenvalues,

counting multiplicities.

The following algorithm is an implementation of an alternating projection method to find a

low rank solution ρ ∈ S(ρ1, ρ2), if it exists. Convergence of this algorithm is not guaranteed but

numerical results shown in Section 4 illustrate that this algorithm is effective in finding a low rank

solution.

Algorithm 4.1. Alternating projection scheme to find ρ ∈ S(ρ1, ρ2) with rank(ρ) ≤ r.

Step 1: Set k = 0 and choose X0 ∈ Dn1n2
and a positive integer N (iteration limit) and

a small positive integer δ (tolerance). Do the next step for k = 1, . . . , N .

Step 2: Define ρ(2k−1) = ΦΩ1
(ρ(2k−2)). If ρ(2k−1) = Udiag (d1, . . . , dn1n2

)U∗ for some

unitary U and d1 ≥ d2 ≥ · · · ≥ dn1n2
≥ 0, define ρ(2k) = U(s1, . . . , sr, 0, . . . , 0)U

∗,

where si = max{di, 0}.
If ||tr 1(X2k)− ρ2||+ |tr 2(X2k)− ρ1|| < δ, then declare ρ(2k) as a solution.
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In view of the fact that the above algorithm may not converge and multiple low rank solutions

may exist, we derive other methods to find low rank solutions. Additionally, as we will see in

Section 7, two of the algorithms produce a solution with low von Neumann entropy.

First, we present the following theorem found in [Kl04] to construct a rank one solution ρ ∈
S(A,B) for isospectral A and B. Based on this, we present three methods to find a low rank

solution ρ ∈ S(ρ1, ρ2).

Theorem 4.2. Let ρ1 ∈ Dn1
and ρ2 ∈ Dn2

have spectral decomposition ρ1 = γ1x1x
∗
1+ · · ·+γkxkx

∗
k

and ρ2 = γ1y1y
∗
1 + · · ·+ γkyky

∗
k, and

w =

k
∑

i=1

√
γi(xi ⊗ yi)

Then P = ww∗ ∈ S(ρ1, ρ2).

In the first algorithm that we will present, we can choose an integer k with

max{rank (ρ1), rank (ρ2)} ≤ k ≤ rank (ρ1) + rank (ρ2)− 1

and construct a ρ ∈ S(ρ1, ρ2) with rank (ρ) = k. We do this by expressing both ρ1 and ρ2 as an

average of k pure states (see proof of Proposition 4.4 in Appendix B).

Algorithm 4.3. Construction of a rank k state ρ ∈ S(ρ1, ρ2) for any k such that
max{rank (ρ1), rank (ρ2)} ≤ k ≤ rank (ρ1) + rank (ρ2)− 1

Step 1: Find unitaries U and V such that ρ1 = Udiag (a1, . . . , an1
)U∗ and

ρ2 = V diag (b1, . . . , bn2
)V ∗.

Step 2: Choose an integer k with max{rank (ρ1), rank (ρ2)} ≤ k ≤ rank (ρ1) + rank (ρ2)− 1
and let ωk be a principal kth root of unity. For any i = 1, . . . , k, define xi ∈ C

m

and yi ∈ C
n such that xi = [ω

(j−1)i
k

√
aj ] and yi = [ω

(j−1)i
k

√

bj ].

Step 3: Define ρ = z1z1 ∗+ · · · + zkz
∗
k where zi =

1√
k
(Uxi ⊗ V yi).

Proposition 4.4. For any integer k with max{rank (ρ1), rank (ρ2)} ≤ k ≤ rank (ρ1)+rank (ρ2)−1,
Algorithm 4.3 produces a ρ ∈ S(ρ1, ρ2) with rank (ρ) = k.

In [LPW14], it was proven that if there is a ρ ∈ S(ρ1, ρ2) with rank k, then there is ρ ∈ S(ρ1, ρ2)
with k ≤ rank (ρ) ≤ rank (ρ1)rank (ρ2). The following theorem is a consequence of this but we will

give a constructive proof (see Appendix C) by induction and using Proposition 4.4.

Theorem 4.5. For any integer k such that max{rank (ρ1), rank (ρ2)} ≤ k ≤ rank (ρ1)rank (ρ2),

there exists ρ ∈ S(ρ1, ρ2) with rank (ρ) = k.

Note that if min{rank (ρ1), rank (ρ2)} = 1, then S(ρ1, ρ2) = {ρ1⊗ ρ2}. Now, what remains to be

seen is the case when rank (ρ1), rank (ρ2) ≥ 2 and

max

{⌈

rank (ρ2)

rank (ρ1)

⌉

,

⌈

rank (ρ1)

rank (ρ2)

⌉}

≤ k ≤ max{rank (ρ1), rank (ρ2)} − 1.

Can we find ρ ∈ S(ρ1, ρ2) with rank k? In the next algorithm, we present one more scheme to find

a low rank solution ρ ∈ S(ρ1, ρ2) using the following known result in [Go73].
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Theorem 4.6. Suppose a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ an ≥ bn ≥ 0. Define d = [di] ∈ R
n such that

di =























0 if ai = 0 or aj = ai for some j 6= i
√

√

√

√

√

√

n
∏

j=1

(bj−ai)

−
n
∏

j=1
j 6=i

(aj−ai)
otherwise

Then diag (a1, . . . , an)− dd∗ has eigenvalues b1, . . . , bn.

In the following two algorithms, we denote the vector in C
n having its jth entry equal to one and

all other entries equal to zero by e
(n)
j .

Algorithm 4.7. Construction of ρ ∈ S(ρ1, ρ2) with rank (ρ) ≤ max{rank (ρ1), rank (ρ2)}.

Step 1: Set A0 = ρ1 and B0 = ρ2. Do the next step with the initial value of r set to 0.

Step 2: If Ar = 0, then proceed to step 3, setting k to be equal to the terminal value of r.
Otherwise do the following steps.

Step 2.1: Find unitary U, V such that Ar = U(S1 ⊕ · · · ⊕ Sp ⊕ T1 ⊕ Tq ⊕ La)U
∗ and

Br = V (S̃1 ⊕ · · · ⊕ S̃p ⊕ T̃1 ⊕ T̃q ⊕ Lb)V
∗, where

(1) Tj = diag (cj1, . . . , cjtj ) and T̃j = diag (dj1, . . . , djtj )
satisfy dj1 ≥ cj1 ≥ · · · ≥ djtj ≥ cjtj ,

(2) Si = diag (ai1, . . . , aisi) and S̃i = diag (bi1, . . . , bisi)
satisfy ai1 ≥ bi1 ≥ · · · ≥ aisi ≥ bisi,

and either La is empty or is a zero block or Lb is empty or is a zero block.

Step 2.2: For i = 1, . . . , p, use Theorem 4.6 to find xi ∈ Rsi such that the eigenvalues of

Si − xix
∗
i are the eigenvalues of S̃i.

Similarly, for j = 1, . . . , q, find yj ∈ R
tj such that the eigenvalues of T̃j − yiy

∗
i

are the same as that of Tj .

Step 2.3: Let Cr+1 = U
(

(S1 − x1x
∗
1)⊕ · · · ⊕ (Sp − xpx

∗
p)⊕ T1 ⊕ · · · ⊕ Tq ⊕ 0

)

U∗

and C̃r+1 = V
(

S̃1 ⊕ · · · ⊕ S̃p ⊕ (T̃1 − y1y
∗
1)⊕ · · · ⊕ (T̃q − yqy

∗
q)⊕ 0

)

V ∗

and set Ar+1 = Ar − Cr+1 and Br+1 = Br − C̃r+1.
Increment the value of r ← r + 1 and repeat step 2.

Step 3: For i = 1, . . . , k, find Ui and Vi such that Ci = Uidiag (αi1, . . . , αiri , 0, . . .)U
∗
i

and C̃i = Vidiag (αi1, . . . , αiri , 0, . . .)V
∗
i . Define wi =

ri
∑

j=1

√
αij(Uie

(n1)
j ⊗ Vie

(n2)
j ).

Step 4: Define ρ = w1w
∗
1 + · · ·+ wkw

∗
k.

The proof of the following proposition can be found in Appendix D.

Proposition 4.8. Let ρ1 = Udiag (a1, . . . , an1
)U∗ and ρ2 = V diag (b1, . . . , bn1

)V ∗. Algorithm 4.7

produces positive semidefinite matrices C1, . . . , Ck ∈Mn1
and C̃1, . . . , C̃k ∈Mn2

such that

(1) k ≤ max{rank (ρ1), rank (ρ2)},
(2) For i = 1, . . . , k, the matrices Ci and C̃i are isospectral,

(3) ρ1 = C1 + · · ·+ Ck and ρ2 = C̃1 + · · ·+ C̃k,

(4) tr 1(wiw
∗
i ) = C̃i and tr 2(wiw

∗
i ) = Ci for i = 1, . . . k so that ρ ∈ S(ρ1, ρ2) and;
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(5) If ai1 ≥ bj1 ≥ · · · ≥ ail ≥ bjl (or bj1 ≥ ai1 ≥ · · · ≥ bjl ≥ ail) for some distinct indices

i1, . . . , il+1 and distinct j1, . . . , jl+1, then the solution ρ produced by Algorithm 4.7 has rank

at most max{rank (ρ1)− l + 1, rank (ρ2)− l + 1}.

Finally, we present one more scheme to find a low rank solution ρ ∈ S(ρ1, ρ2). Similar to

Algorithm 4.7, we find ρ by first writing

ρ1 = C1 + · · ·+ Ck and ρ2 = C̃1 + . . .+ C̃k

for k pairs (C1, C̃1), . . . , (Ck, C̃k) ∈ Mn1
×Mn2

, of isospectral positive semidefinite matrices with

k ≤ max{rank (ρ1), rank (ρ2)}. In fact, these pairs can be chosen so that we can construct a

ρ ∈ S(ρ1, ρ2) whose nonzero eigenvalues are given by λi = tr(Ci) = tr(C̃i) for i = 1, . . . , k.

Furthermore, this solution ρ satisfies

||ρ||2 = max
σ∈S(ρ1,ρ2)

||σ||2,

where || · ||2 denotes the operator/spectral norm.

Algorithm 4.9. Construction of ρ ∈ S(ρ1, ρ2) with rank (ρ) ≤ max{rank (ρ1), rank (ρ2)}.

Step 1: Suppose ρ1 = Udiag (a1, . . . , an1
)U∗ and ρ2 = V diag (b1, . . . , bn2

)V ∗.

Set a
(0)
i = ai ∀i ∈ n1 and b

(0)
j = bj ∀j ∈ n2.

Do the next step with the initial value of r set to 0.

Step 2: If
n1
∑

i=1
a
(r)
i = 0, then proceed to step 3, setting k to be equal to the terminal value of r.

Otherwise, find permutation maps σr : n1 → n1 and σ̃r : n2 → n2 such that

a
(r)
σr(1)

≥ · · · ≥ a
(r)
σr(n1)

and b
(r)
σ̃r(1)

≥ · · · ≥ b
(r)
σ̃r(n2)

.

Denote by Pr and P̃r the permutation matrices satisfying

Prdiag (a
(r)
1 , . . . , a

(r)
n1

)P T
r = diag (a

(r)
σr(1)

, . . . , a
(r)
σr(n1)

) and

P̃rdiag (b
(r)
1 , . . . , b

(r)
n2

)P̃ T
r = diag (b

(r)
σ̃r(1)

, . . . , b
(k)
σ̃r(n2)

).

Define c
(r)
j = min{a(r)σr(j)

, b
(r)
σ̃r(j)
} if j ∈ {1, . . . ,min{n1, n2}} and c

(r)
j = 0 otherwise.

Let Cr = UP T
r diag (c

(r)
1 , . . . , c

(r)
n1

)PrU
∗ and C̃r = V P̃ T

r diag (c
(r)
1 , . . . , c

(r)
n2

)P̃rV
∗.

Then set a
(r+1)
i = a

(r)
i − c

(r)

σ−1
r (i)

and b
(r+1)
i = b

(r)
i − c

(r)

σ̃−1
r (i)

.

Increment the value of r ← r + 1 and repeat step 2.

Step 3: For r = 1, . . . , k, define wr =
min{n1,n2}
∑

j=1

√

c
(r)
j (Ue

(n1)
σi(j)
⊗ V e

(n2)
σ̃i(j)

)

and ρ = w1w
∗
1 + · · · + wkw

∗
k.

The proof of the following proposition can be found in Appendix E.

Proposition 4.10. Let ρ1 ∈ Dn1
and ρ2 ∈ Dn2

. Algorithm 4.9 produces positive semidefinite

matrices C1, . . . , Ck ∈Mn1
and C̃1, . . . , C̃k ∈Mn2

such that

(1) k ≤ max{rank (ρ1), rank (ρ2)}.
(2) For i = 1, . . . , k, the matrices Ci and C̃i are isospectral.
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(3) ρ1 = C1 + · · ·+ Ck and ρ2 = C̃1 + · · ·+ C̃k.

(4) If w1, . . . , wk ∈ C
n1n2 are the vectors defined in Step 3, then tr 1(ww

∗
i ) = C̃i and tr 2(ww

∗
i ) =

Ci so that ρ ∈ S(ρ1, ρ2). Moreover, w∗
iwj = δijtr (Ci) so that the nonzero eigenvalues of ρ

are precisely tr(C1), . . . , tr(Ck).

(5) ||ρ||2 = tr (C1) = max
σ∈S(ρ1,ρ2)

||σ||2.

Algorithm 4.9 can produce a solution ρ that has rank less than min{rank (ρ1), rank (ρ2)}, but
usually does not give the minimum rank. Take for example the case

ρ1 = diag

(

7

10
,
3

10

)

and ρ2 = diag

(

3

5
,
1

5
,
1

5

)

.

There is no ρ ∈ S(ρ1, ρ2) with rank 1, but there is a rank 2 solution given by ρ = w1w
∗
1 + w2w

∗
2,

where

w1 =

√

3

5
(e1 ⊗ e1) +

√

1

10
(e2 ⊗ e2) and w2 =

√

1

10
(e1 ⊗ e2) +

√

1

5
(e2 ⊗ e3)

However, Algorithm 4.9 will produce a rank 3 solution.

The fact that Algorithm 4.9 will produce a C1 satisfying Proposition 4.10.(5) follows from [Kl04]

using algebraic combinatorics. We will give a simple matrix theoretic proof in Appendix A.

Note that the solutions obtained from Algorithms 4.3, 4.7, 4.9 can be utilized as the starting

point when implementing Algorithm 4.1 to find a solution with lower rank. As mentioned in the

beginning of Subsection 4, finding low rank ρ ∈ S(ρ1, ρ2) is of interest in the study of distillation.

Here, we note that the solution obtained in Algorithm 4.9 has relatively low von Neumann entropy

since it has maximal spectral norm, that is, its largest eigenvalue is as close to 1 as possible making

it a good pure state approximation. However, as will be seen in the numerical results in Section 3,

it is not guaranteed to have minimal von Neumann entropy.

5. Bipartite States: Global State with Extremal Entropies

In this section, we are interested in finding ρ ∈ S(ρ1, ρ2) attaining certain extreme functional

values for a given scalar function f on quantum states. Our result will cover the case when f(ρ) is

the von-Neumann entropy of ρ defined by

(8) S(ρ) = −tr (ρ log ρ) = −
∑

λj log(λj),

where λj are the eigenvalues of ρ, and x log x = 0 if x = 0; and the Rényi entropy defined by

(9) Sα(ρ) =
1

1− α
log tr (ρα) =

1

1− α
log
(

∑

λα
j

)

for α ≥ 0.

Note that ρ1⊗ρ2 ∈ S(ρ1, ρ2) has maximum von Neumann entropy by the subadditivity property

of von Neumann entropy. So, we focus on searching for ρ ∈ S(ρ1, ρ2) with minimum entropy, that

is, we are interested in the following minimization problem

(10) min
ρ∈Ω1∩Ω3

−tr (ρ log ρ),

where

(11) Ω3 = {ρ ∈Mn1
(Mn2

) : ρ ≥ 0}.
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Here ρ ≥ 0 means that the matrix ρ is positive semidefinite. Since Ω1 and Ω3 are closed convex sets,

then the set Ω1 ∩ Ω3 is also a closed convex set. Now we use the nonmonotone spectral projected

gradient (NSPG) method to solve the minimization problem (10), which was proposed in Birgin et

al [BMR03], on minimizing a continuously differentiable function f : Rn → R on a nonempty closed

convex set M. As it is quite simple to implement and very effective for large-scale problems, it has

been extensively studied in the past years (see [Le96, LM08] and their references for details). The

NSPG method has the form xk+1 = xk+αkdk, where dk is chosen to be PM (xk−tk∇f(xk))−xk with
tk > 0 a precomputed scalar. The direction dk is guaranteed to be a descent direction ([BMR00,

Lemma 2.1]) and the step length αk is selected by a nonmonotone linear search strategy. The

key problems when using NSPG method to solve (10) are (i) how to compute the gradient of the

objective function f(ρ) = −tr ρ log ρ and (ii) how to determine the projection operator ΦΩ1∩Ω3
(Z)

of Z onto the set Ω1 ∩ Ω3. Such problems is addressed in the following.

For any function f : R → R, one can extend it to f : Hn → Hn such that f(A) =
∑

f(aj)Pj if

A has spectral decomposition A =
∑

ajPj . where Pj is the orthogonal projection of Cn onto the

kernel of A− ajI. Furthermore, we can consider the scalar function A 7→ tr f(A). By Theorem 1.1

in [Le96], we have the following.

Theorem 5.1. Suppose f : [0, 1] → R is a continuously differentiable concave function with derived

function f ′(x). Then the gradient function of the scalar function A 7→ tr f(A) is given by f ′(A) =
∑

f ′(aj)Pj if A has spectral decomposition A =
∑

ajPj .

Applying the result to the von Neumann entropy and Rényi entropy, we have

Corollary 5.2. The gradient of the objective function S(ρ) = −tr (ρ log ρ) is

(12) ∇S(ρ) = − log ρ− In1n2
.

The gradient of the objective function Sα(ρ) = Sα(ρ) =
1

1−α log tr (ρα) = 1
1−α log

(

∑

λα
j

)

is

(13) ∇Sα(ρ) = (tr ρα)−1αρα−1.

In the following, we compute the projection operator ΦΩ1∩Ω3
(Z). There is no analytic expression

of ΦΩ1∩Ω3
(Z). Fortunately, we can use the Dykstra’s algorithm to derive it, which can be stated in

Algorithm 5.4. The following lemma is useful; see for example, [Hi88, Theorem 2.1].

Lemma 5.3. Let Z ∈ Hn1n2
with spectral decomposition Udiag (λ1(Z), · · · , λn1n2

(Z))U∗, where U

is unitary. The projection of Z onto Ω3 is

(14) ΦΩ3
(Z) = Udiag (t1, t2, · · · , tn1n2

)U∗,

where

ti =

{

λi(Z), λi(Z) ≥ 0;
0, λi(Z) < 0.

In the following Dykstra’s algorithm, the projection operator ΦΩ1
(Z) is defined by Theorem 3.1

and the projection operator ΦΩ3
(Z) is defined by Lemma 5.3.
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Algorithm 5.4. Alternating Projection Scheme to find ρ = ΦΩ1∩Ω3
(Z)

Step 1. Choose a positive integer N (iteration limit) and a small positive δ (tolerance).

Set X
(0)
2 = Z and do the following steps for k = 1, 2, . . . , N .

Step 2. Let X
(k)
1 = ΦΩ1

(X
(k−1)
2 ) and X

(k)
2 = ΦΩ3

(X
(k)
1 ).

Step 3. If ||X(k)
1 −X

(k)
2 || < δ, then stop and declare X

(k)
2 a solution.

Otherwise repeat step 2 until a solution is found or until k = N .

By [BD86], one can show that the matrix sequences {X(k)
1 } and {X

(k)
2 } generated by Algorithm

5.4 converge to the projection ΦΩ1∩Ω3
(Z), that is

X
(k)
1 → ΦΩ1∩Ω3

(Z), X
(k)
2 → ΦΩ1∩Ω3

(Z), k → +∞.

Thus, Algorithm 5.4 will determine the projection operator ΦΩ1∩Ω3
(Z).

Next, we use the nonmonotone spectral projected gradient method (see [BMR00, BMR03] for

more details) to solve the minimization problem (10). The algorithm starts with ρ0 ∈ Ω1 ∩ Ω3

and use an integer M ≥ 1; a small parameter αmin > 0; a large parameter αmax > αmin; a

sufficient decrease parameter r ∈ (0, 1) and safeguarding parameters 0 < σ1 < σ2 < 1. Initially,

α0 ∈ [αmin, αmax] is arbitrary. Given ρt ∈ Ω and αt ∈ [αmin, αmax], Algorithm 5.5 describes how to

obtain ρt+1 and αt+1, and when to terminate the process. In the following algorithm, the gradient

∇f(ρ) is defined in Lemma 5.3 and the projection operator ΦΩ1∩Ω3
(·) is computed by Algorithm

5.4.

Algorithm 5.5. Scheme to solve Problem (10)

Step 1. Let δ be a small positive number. Detect whether the current point is stationary.
If ‖ΦΩ1∩Ω3

(ρt −∇f(ρt))− ρt‖F ≤ δ, then stop and declare ρt a stationary point.

Step 2. Backtracking

Step 2.1. Compute dt = ΦΩ1∩Ω3
(ρt − αt∇f(ρt))− ρt. Set λ← 1.

Step 2.2. Set ρ+ = ρt + λdt.

Step 2.3. If f(ρ+) ≤ max
0≤j≤min{t,M−1}

f(ρt−j) + γλ〈dt,∇f(ρt)〉, then define

λt = λ, ρt+1 = ρ+, st = ρt+1 − ρt, yt = ∇f(ρt+1)−∇f(ρt), and go to Step 3.

Otherwise, define λnew = σ1λ+σ2λ
2 ∈ [σ1λ, σ2λ], set λ← λnew, and go to Step 2.2.

Step 3. Compute bt = 〈st, yt〉. If bt ≤ 0, set αt+1 = αmax, else, compute αt = 〈st, st〉
and αt+1 = min{αmax,max{αmin,

at
bt
}}.

By Theorem 2.2 in [Le96], the sequence {ρt} generated by Algorithm 5.5 converges to the solution

of the minimization problem (10).

A computational comment can be made on Algorithm 5.5. In order to guarantee the iterative

sequence ρt ∈ Ω1∩Ω3, t = 0, 1, 2, · · · , the initial value ρ0 must be in Ω1∩Ω3. Taking ρ1 for example,

if ρ0 ∈ Ω1∩Ω3, then ρ1 = ρ0+α1d1 ∈ Ω1∩Ω3, because d1 = ΦΩ1∩Ω3
(ρ0− t0∇f(ρ0))−x0 ∈ Ω1∩Ω3

and α1 is a scalar.
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6. Multipartite States

In this section, we will use projection methods to find a global state in a multipartite system

with prescribed reduced states. That is, letting ∅ 6= J1, . . . , Jm ⊂ k denote the indices of a given

family of subsystems of a k-partite system on Hn1
⊗ . . .⊗Hnk

, can we find a global quantum state

ρ ∈ Dn1···nk
with prescribed reduced states

tr Jc
1
(ρ) = ρJ1 , tr Jc

2
(ρ) = ρJ2 , . . . , tr Jc

m
(ρ) = ρJm?

For example, if k = 3, one may need to find a global state ρ ∈ Dn1n2n3
with prescribed reduced

states: tr 1(ρ) = ρ23 ∈ Dn2n3
and tr 3(ρ) = ρ12 ∈ Dn1n2

. We will further require the global state ρ

to have prescribed eigenvalues.

We will extend the results in the previous section to multipartite systems. Note that the study is

more challenging. For example, to find a global sate ρ ∈ Dn1·n2
with prescribed states tr 2(ρ) = ρ1

and tr 1(ρ) = ρ2, one can replace (ρ, ρ1, ρ2) by ((U ⊗V )∗ρ(U ⊗V ), U∗ρ1U, V ∗ρ2V ) for some suitable

unitary U ∈ Mn1
and V ∈ Mn2

and assume that ρ1, ρ2 are in diagonal form. However, to find

ρ ∈ Dn1n2n3
with prescribed reduced states tr 1(ρ) = ρ23 and tr 3(ρ) = ρ12, there is no easy

transform to reduce the problem to the case when ρ12 and ρ23 are in diagonal form.

To use the projection methods, we need to find the least square projection of a hermitian matrix

Z ∈ Hn1···nk
to the linear manifold

(15) L = {X ∈ Hn1···nk
: tr Jc

i
(X) = ρJi , i = 1, . . . ,m}.

In the following proposition, we answer this problem for m = 1. (See Appendix F for the proof.)

Proposition 6.1. Let J ⊆ k. Given Z ∈ Hn1···nk
, the least square approximation of Z in the linear

manifold L = {ρ ∈ Hn1···nk
: tr Jc(ρ) = σ} is given by

(16) ΦL(Z) = Z −MJ(Z, σ),

where

(17) MJ(Z, σ) = P T
J

(

InJc

nJc

⊗ (tr Jc(Z)− σ)

)

PJ ,

nJc =
k
∏

i∈Jc

ni and PJ is the permutation matrix such that

(18) PJ (α1 ⊗ α2 ⊗ · · · ⊗ αk)P
T
J =

⊗

i∈Jc

αi ⊗
⊗

i∈J
αi.

We now extend the formula given in equation (17) to the general case. To familiarize the

reader with the notation in the next proposition, let us start with an example. Let k = 3 = m and

J1 = {1, 2}, J2 = {23} and J3 = {3}. Given ρJ1 ∈ Dn1n2
, ρJ2 ∈ Dn2n3

and ρJ3 ∈ Dn3
, then the set L

defined in equation (15) is L = {X ∈ Hn1n2n3
: trJc

1
(X) = ρJ1 , trJc

2
(X) = ρJ2 , and trJc

3
(X) = ρJ3}.

Note that J1 ∩ J2 = {2} so that if L contains an element X, then it must hold that

tr13(X) = tr(J1∩J2)c(X) = tr1(ρJ1) = tr3(ρJ2) := ρJ1∩J2 = ρ2.

Similarly, since J2 ∩ J3 = {3}, we must have

tr12(X) = tr(J2∩J3)c(X) = tr3(ρJ2) = ρJ3 .
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Note that since ρJ1 , ρJ2 and ρJ3 are density matrices, then it also follows that

tr123(X) = tr(X) = trJ1(ρJ1) = trJ2(ρJ2) = trJ3(ρJ3) = 1

In fact, the first two conditions above, namely tr1(ρJ1) = tr3(ρJ2) and tr3(ρJ2) = ρJ3 are enough

to guarantee that L is non-empty. This is stated in the following proposition, whose proof can be

found in Appendix F.

Proposition 6.2. Let J1, . . . , Jm ⊆ k and L be defined as in (15). Then L 6= ∅ if and only if for

any S ⊆ {J1, . . . , Jm} and any T1, T2 ∈ S,

tr T̃1
(ρT1

) = tr T̃2
(ρT2

) := ρSint
, where Sint =

⋂

T∈S
T and T̃j = Tj \ Sint for j = 1, 2

Furthermore, the least square approximation of a given Z ∈ Hn1···nk
is

(19) ΦL(Z) = Z +
∑

∅6=S⊆{J1,...,Jm}
(−1)|S|MSint

(Z, ρSint
) ,

where MSint
(Z, ρSint

) is as defined in equation (17).

Suppose we are interested in looking for a tripartite state ρ ∈ Dn1n2n3
with given partial traces

tr1(ρ) = ρ23 and tr3(ρ) = ρ12. Then we can use Proposition 6.2 to obtain the following projection

formula.

Corollary 6.3. Suppose ρ12 ∈ Dn1n2
and ρ23 ∈ Dn2n3

. The set

(20) L = {X ∈ Hn1n2n3
: tr 1(ρ) = ρ23 and tr 3(ρ) = ρ12}

is nonempty if and only if tr 1(ρ12) = γ = tr 3(ρ23). In this case, the least square approximation of

a given Z ∈ Hn1n2n3
onto the set L in (20) is given by

ΦL(Z) = Z −
[

In1

n1
⊗ (tr 1(Z)− ρ23)

]

−
[

(tr 3(Z)− ρ12)⊗ In3

n3

]

+
[

In1

n1
⊗ (tr 13(Z)− γ)⊗ In3

n3

]

We employ the following alternating projection method to determine if there exists ρ ∈ Ω3 ∩ L,
where

Ω3 = {ρ ∈MN : ρ ≥ 0} and L = {ρ : tr Jc
1
= σJ1 , . . . , tr Jc

m
= σJm}.

The following algorithm is a generalization of Algorithm 3.3 and 5.4 to multipartite systems. One

must first check that L 6= ∅ using Proposition 6.2. We will use ΦL and ΦΩ3
as defined by Proposition

6.2 and Lemma 5.3.

Algorithm 6.4. Construction of a state ρ ∈ Ωi ∩ L, where i = 2 or i = 3.

Step 1. Choose a positive integer N (say N = 1000) as iteration limit and a small positive
number δ (say δ = 10−15) as a error/tolerance value and set k = 0.

Step 2. Generate a random unitary U and a random probability vector (d1, . . . , dn1...nk
) and

set the initial point to be ρ0 = Udiag (d1, . . . , dn1...nk
)U∗. Do the next step for k ≤ N .

Step 3. For k ≥ 1, let ρ2k−1 = ΦL(ρ2k−2) and ρ2k = ΦΩi
(ρ2k−1) as defined by Proposition 6.2

and Lemma 5.3 or Theorem 3.1. If ||tr 1(ρ)2k − ρ2||+ ||tr 2(ρ)2k − ρ1|| < δ, then stop
and declare ρ2k as a solution.
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7. Numerical Experiments

In this section, some examples are tested to illustrate that Algorithms 3.3, 4.1, 4.3, 4.7, 4.9

and 6.4 are feasible and effective to solve Problem 1.1. All experiments are performed in MATLAB

R2015a on a PC with an Intel Core i7 processor at 2.40GHz with machine precision ε = 2.22×10−16.

The programs can be downloaded from http://cklixx.people.wm.edu/mathlib/projection/.

7.1. Algorithm 3.3 for solving Problem 1.1 with the prescribed eigenvalues. In this

subsection, we present a simple numerical example to illustrate that Algorithm 3.3 is feasible to

solve Problem 1.1 with the prescribed eigenvalues. In Algorithm 3.3, note that X2k ∈ Ω2, that is,

X2k has the prescribed eigenvalues c1, . . . , cn1n2
. Now, define

Err(X2k) = ‖tr1(X2k)− ρ2‖+ ‖tr2(X2k)− ρ1‖,
Hence, X2k ∈ Ω1 ∩ Ω2 if and only if Err(Xk) = 0. When implementing Algorithm 3.3, we declare

X2k a solution if Err(X2k) < δ for some small positive number δ. If this criteria is not met after a

set number of iterations, then the algorithm terminates.

Example 7.1. Set (c1, c2, c3, c4, c5, c6) = (0.8329, 0.0781, 0.0529, 0.0238, 0.0109, 0.0015) and

ρ2 =





0.4922 0.2729 0.3138
0.2729 0.1980 0.1846
0.3138 0.1846 0.3098



 , ρ1 =

(

0.52 0.3923
0.3923 0.48

)

.

Using Algorithm 3.3, we obtain the following solution after 214 iterations and Err(X214) ≈ 3.38×
10−16.

X ≈ X214 =

(

X
(214)
11 X

(214)
12

X
(214)
21 X

(214)
22

)

=

















0.2826 0.1614 0.1582 0.1990 0.0908 0.1861
0.1614 0.1234 0.0945 0.1258 0.0601 0.1234
0.1582 0.0945 0.1140 0.1088 0.0470 0.1333
0.1990 0.1258 0.1088 0.2096 0.1115 0.1556
0.0908 0.0601 0.0470 0.1115 0.0746 0.0901
0.1861 0.1234 0.1333 0.1556 0.0901 0.1958

















,

Example 7.1 illustrates the effectiveness of Algorithm 3.3 in solving Problem 1.1 with prescribed

eigenvalues.

7.2. Algorithms 4.1, 4.3 , 4.7 and 4.9 to find solutions with prescribed rank. In Subsection

2.2, we discussed four different algorithms to find a low rank solution ρ ∈ S(ρ1, ρ2).
Let r1 = rank (ρ1) and r2 = rank (ρ2) and r = rank (ρ). Also, let

err = max{||ρ1 − tr2(ρ)||, ||ρ2 − tr1(ρ)||}.
Denote by λM and λµ the maximum and minimum eigenvalues of ρ, respectively; and ent the Von

Neumman entropy of ρ. The following table illustrates the performance of each algorithm.

Example 7.2. Consider ρ1 ∈ D3 and ρ2 ∈ D4 with eigenvalues

λ(ρ1) = (0.5951, 0.2341, 0.1708) λ(ρ2) = (0.6124, 0.1926, 0.1654, 0.0296)

(m,n) (r1, r2) r CPU-time err λM λµ ent
Alg4.3 (3,4) (3,4) 4 0.002s 3.54294e-17 0.399619 -6.00329e-17 1.27929
Alg4.7 (3,4) (3,4) 3 0.006s 1.11022e-16 0.9313 -1.48157e-16 0.297223
Alg4.9 (3,4) (3,4) 3 0.004s 1.11022e-16 0.9531 -4.1612e-17 0.215848
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Using Algorithm 4.1, we determine if we can find a solution of rank 2, . . . , rank (X0)− 1, where X0

is a solution obtained from one of the algorithms above. Here are the solutions we obtained.

(m,n) (r1, r2) X0 r # iter CPU-time err λM λµ ent
(3,4) (3,4) alg. 4.7 2 1336 0.54s 9.34747e-16 0.9017 -4.16498e-17 0.321332
(3,4) (3,4) alg. 4.9 2 3103 1.266s 9.85657e-16 0.9531 -5.19103e-17 0.189284

Note that in this case, the solution obtained by Algorithm 4.1 using the solution from Algorithm

4.9 as initial point, has minimum entropy in S(ρ1, ρ2). This is because ρ is rank 2 and the largest

eigenvalue of ρ is the maximum possible eigenvalue of any element of S(ρ1, ρ2).

Example 7.3. Consider ρ1 ∈ D3, ρ2 ∈ D6 such that

λ(ρ1) = (0.8213, 0.1234, 0.0553) and λ(ρ2) = (0.5720, 0.3068, 0.1000, 0.0189, 0.0020, 0.0003)

Algorithm (m,n) (r1, r2) r CPU-time err λM λµ ent
4.3 (3,6) (3,6) 6 0.003s 8.9182e-16 0.469983 -4.93499e-17 1.19924
4.7 (3,6) (3,6) 4 0.005s 3.31468e-16 0.690947 -6.27654e-17 0.632879
4.9 (3,6) (3,6) 6 0.004s 2.78333e-16 0.750675 -5.4791e-17 0.755308

Algorithm 4.1

(m,n) (r1, r2) X0 r # iter CPU-time err1 λM λµ ent
(3,6) (3,6) alg. 4.9 3 76933 44.25s 9.90465e-16 0.729479 -5.79165e-17 0.736448
(3,6) (3,6) alg. 4.7 2 100000 63.5203s 2.26889e-08 0.690947 -1.44764e-16 0.618341
(3,6) (3,6) alg. 4.7 3 6707 4.39s 9.83117e-16 0.690947 -6.84736e-17 0.631907

Example 7.4. In this example, we consider ρ1 ∈ D6, ρ2 ∈ D8 such that

λ(ρ1) = (0.2272, 0.2136, 0.1946, 0.1474, 0.1341, 0.0831)

and λ(ρ2) = (0.2399, 0.1699, 0.1638, 0.1463, 0.1246, 0.0851, 0.0407, 0.0297)

Algorithm (m,n) (r1, r2) r CPU-time err λM λµ ent
4.3 (6,8) (6,8) 8 0.005s 2.56989e-16 0.151124 -3.91005e-17 2.0642
4.7 (6,8) (6,8) 3 0.014s 4.38087e-16 0.840737 -1.36117e-16 0.515135
4.9 (6,8) (6,8) 4 0.017s 3.08212e-16 0.914875 -1.05048e-16 0.308127

Algorithm 4.1

(m,n) (r1, r2) X0 r # iter CPU-time err1 λM λµ ent
(6,8) (6,8) alg. 4.9 3 26770 45.955s 8.97652e-16 0.914681 -8.7338e-17 0.308847

7.3. Algorithm 6.4 for solving Problem 1.1 with multipartite states. In this section, we

give two examples using Algorithm 6.4 to find a global state in a multipartite system with prescribed

reduced states and prescribed eigenvalues.

Example 7.5. We implement Algorithm 6.4, for i = 3, to find a tripartite state ρ ∈ D(2 · 2 · 2)
such that tr 1(ρ) = ρ1 and tr 3(ρ) = ρ2, where

ρ1 =









0.181375 0.161 0.1678 0.1417
0.161 0.314875 0.2653 0.1937
0.1678 0.2653 0.307275 0.1863
0.1417 0.1937 0.1863 0.196475









∈ D(22),
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ρ2 =









0.214875 0.1653 0.1926 0.1934
0.1653 0.264475 0.2166 0.1888
0.1926 0.2166 0.281375 0.1962
0.1934 0.1888 0.1962 0.239275









∈ D(22).

Using a random 8×8 Hermitian matrix as the initial point for the projection scheme, the algorithm
produced the solution

ρ =

























0.0811 0.0809 0.0747 0.0654 0.0850 0.0901 0.0923 0.07
0.0809 0.1338 0.1189 0.0906 0.0898 0.1076 0.1003 0.1011
0.0747 0.1189 0.1637 0.0893 0.1053 0.0658 0.0944 0.0947
0.0654 0.0906 0.0893 0.1008 0.0728 0.1113 0.1013 0.0944
0.085 0.0898 0.1053 0.0728 0.1003 0.0801 0.0931 0.0763
0.0901 0.1076 0.0658 0.1113 0.0801 0.1811 0.1464 0.1031
0.0923 0.1003 0.0944 0.1013 0.0931 0.1464 0.1436 0.097
0.07 0.1011 0.0947 0.0944 0.0763 0.1031 0.097 0.0957

























with an error of order not more than 10−16. This rank 6 solution is found after approximately 400
iterations, where one iteration consists of a projection on Φ3 and a projection on ΦL. The result
was obtained in approximately 0.3 seconds. Note that if n1 = n3 = 2 and n2 is increased to n = 8,
this program still obtains a solution relatively fast and accurately.

Example 7.6. We implement Algorithm 6.4, for i = 2, to find ρ ∈ D8 with tr 1(ρ) = ρ1, tr 3(ρ) = ρ2
(as in the previous example) with the additional condition that the eigenvalues of ρ are

λ(ρ) = (0.8034, 0.0889, 0.05204, 0.0284, 0.0188, 0.0051, 0.0032, 0.0001).

The algorithm ran in under 0.2 seconds and approximately 300 iterations to produce the solution

ρ =

























0.1507 0.1056 0.0999 0.0769 0.1047 0.0966 0.1264 0.1293
0.1056 0.1209 0.0977 0.0716 0.0813 0.0792 0.1248 0.1018
0.0999 0.0977 0.1144 0.0680 0.0879 0.0685 0.1241 0.1100
0.0769 0.0716 0.0680 0.1274 0.1053 0.0559 0.0836 0.0821
0.1047 0.0813 0.0879 0.1053 0.1160 0.0818 0.0990 0.1055
0.0966 0.0792 0.0685 0.0559 0.0818 0.0832 0.0795 0.0870
0.1264 0.1248 0.1241 0.0836 0.0990 0.0795 0.1549 0.1297
0.1293 0.1018 0.1100 0.0821 0.1055 0.0870 0.1297 0.1324

























with with an error of order not more than 10−16. Note here that we used a random 8×8 Hermitian

matrix as the initial point for the projection scheme. Using a different initial point may change the

solution obtained from the algorithm.

Example 7.7. We illustrate Algorithm 6.4 for the case that ρ ∈ D(8) and tr 3(ρ) = ρ12 = ρ13 =

tr 2(ρ). Let

ρ12 = ρ13 =









0.2471 0.1842 0.1738 0.2546
0.1842 0.2277 0.1386 0.2144
0.1738 0.1386 0.182 0.2303
0.2546 0.2144 0.2303 0.3432









.

This type of problem is an example of a 2−symmetric extension problem. In [CJYZ15], the existence

of a solution to such a problem was characterized using the concept of separability of quantum states.
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Using Algorithm 6.4, we find a solution

ρ =

























0.1302 0.1096 0.1111 0.1071 0.0615 0.1156 0.1151 0.1470
0.1096 0.1169 0.1147 0.0731 0.0554 0.1123 0.1139 0.1395
0.1111 0.1147 0.1169 0.0746 0.0547 0.1152 0.1123 0.1390
0.1071 0.0731 0.0746 0.1108 0.0483 0.0839 0.0832 0.1021
0.0615 0.0554 0.0547 0.0483 0.0322 0.0649 0.0650 0.0789
0.1156 0.1123 0.1152 0.0839 0.0649 0.1498 0.1427 0.1653
0.1151 0.1139 0.1123 0.0832 0.0650 0.1427 0.1408 0.1641
0.1470 0.1395 0.1390 0.1021 0.0789 0.1653 0.1641 0.2024

























with an error of order 10−17 after 2353 iterations in 1.9 seconds.

8. Concluding remarks and further research

In this paper, we use projection methods to construct (global) quantum states with prescribed

reduced (marginal) states, and specific ranks and possibly extreme Von Neumann or Renyi en-

tropy. Using convex analysis, optimization techniques on matrix manifolds, we obtained convergent

algorithms to solve the problem. Matlab programs were written based on these algorithms, and

numerical examples of low dimension cases were demonstrated. There are many problems deserving

further investigations. We mention a few of them in the following.

(1) We have only demonstrated our algorithms with low dimension examples. It is interesting

to improve the algorithm so that it can deal with practical problems (of large sizes).

(2) Besides the alternating projection methods, it is interesting to study other schemes such as

the Douglas-Rachford reflection method (for example, see [DR56, Sv11, Ph14]) to solve our

problem.

(3) If it is impossible to find a pure state with the prescribed reduced sates, one might try

to construct a global state with minimum rank. The set of matrices in Dn1···nk
with a

fixed rank, or bounded ranks, has complicated geometry. A test to determine if a solution

produced has minimum rank is lacking.
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Appendix A. Proof of Proposition 3.2

Let ΦΩ1
(P ) = [Xij ]i,j∈n1

, where Xij ∈Mn2
and let ρ1 = [aij ]i,j∈n1

. We wish to show that

(21) Xij = Pij + δij
1

n1

(

ρ2 −
n1
∑

i=1

Pii

)

+
1

n2

(

aij − tr (Pij) + δij
tr (P )− 1

n1

)

In2

Since Ω1 is a closed and convex set, by the definition of projection operator we obtain that ΦΩ1
(P )

is the unique solution of the minimization problem

min
X∈Ω1

‖P −X‖2 = min
X∈Ω1

∑

1≤i≤n1

‖Pii −Xii‖2 +
∑

1≤i 6=j≤n1

‖Pij −Xij‖2, (21.1)

which is equivalent to

min
{

X11 +X22 + · · · +Xn1,n1
= ρ2

tr (Xii) = aii, 1 ≤ i ≤ n1

∑

1≤i≤n1

‖Pii −Xii‖2 + min
tr (Xij)=aij ,1≤i 6=j≤n1

∑

1≤i 6=j≤n1

‖Pij −Xij‖2.

(21.2)
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Now we begin to solve the minimization problems

min
{

X11 +X22 + · · ·+Xn1,n1
= ρ2

tr (Xii) = aii, 1 ≤ i ≤ n1

∑

1≤i≤n1

‖Pii −Xii‖2 (21.3)

and

min
tr (Xij)=aij ,1≤i 6=j≤n1

∑

1≤i 6=j≤n1

‖Pij −Xij‖2, (21.4)

respectively.

One can verify that the minimization problem (21.3) is equivalent to

min
tr (Xii)=aii,i=2,··· ,n1

‖P11 − (ρ2 −X22 − · · · −Xn1,n1
)‖2 +

∑

2≤i≤n1

‖Pii −Xii‖2. (21.5)

In fact, the equality a11 = tr (X11) = tr (ρ2 −X22 − · · · −Xn1,n1
) always holds if tr (Xii) = aii, i =

2, 3, · · · , n1 because ρ1 and ρ2 are density matrices, i.e., tr (A) = tr (B) = 1. Now we begin to solve

(21.5) instead of (21.3). Since the objective function of (21.5) is a convex function and its feasible

set is a convex set, then the KKT point is the solution of (21.5). Set the Lagrangian function of

(21.5) is

L(X, ζ) = ‖P11 − (ρ2 −X22 − · · · −Xn1,n1
)‖2 +

∑

2≤i≤n1

‖Pii −Xii‖2 −
∑

2≤i≤n1

ζi(tr (Xii)− aii),

where ζ = (ζ2, ζ3, · · · , ζn1
) ∈ C

n1−1. Hence we can derive that the optimality conditions of (21.5)

are


























∇X22
L(X, ζ) = (P11 − ρ2 +X22 + · · ·+Xn1,n1

) + (X22 − P22) +
1
2ζ2In2

= 0,
∇X33

L(X, ζ) = (P11 − ρ2 +X22 + · · ·+Xn1,n1
) + (X33 − P33) +

1
2ζ3In2

= 0,
...

∇Xn1,n1
L(X, ζ) = (P11 − ρ2 +X22 + · · ·+Xn1,n1

) + (Xn1,n1
− Pn1,n1

) + 1
2ζn1

In2
= 0

∇ζiL(X, ζ) = tr (Xii)− aii = 0, 2 ≤ i ≤ n1,

which imply that the KKT points of (21.5) are

Xii = T + Pii +
1

n2
(aii − tr (Pii)) In2

, 1 ≤ i ≤ n1. (21.6)

where

T =
1

n1

(

ρ2 −
n1
∑

i=1

Pii

)

− 1

n1n2
tr

(

ρ2 −
n1
∑

i=1

Pii

)

In2
=

1

n1

(

ρ2 −
n1
∑

i=1

Pii

)

+
1− tr (P )

n1n2
In2

These KKT points are also the unique solution of the minimization problem (21.5). Noting that

(21.3) and (21.5) are equivalent, then (21.6) are also the unique solution of (21.3).

Next we will solve the minimization problem (21.4). Since the objective function of (21.4) is a

convex function and its feasible set is a convex set, then the KKT point is the solution of problem

(21.4). Set the Lagrangian function of (21.4) is

L(X,µ) =
∑

1≤i 6=j≤n2

‖Pij −Xij‖2 −
∑

1≤i 6=j≤n2

µij(tr (Xij)− aij),

where µ = (µ12, µ13, · · · , µ(n1,n1−1)) ∈ C
1

2
n1(n1−1).
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By the optimality conditions

{

∇Xij
L(X,µ) = −2Pij + 2Xij − µijIn2

= 0, 1 ≤ i 6= j ≤ n1,
∇µij

L(X,µ) = tr (Xij)− aij = 0, 1 ≤ i 6= j ≤ n1,

we obtain the KKT point of the minimization problem (6.4) are

Xij = Pij +
1

n2
(aij − tr (Pij))In2

, 1 ≤ i 6= j ≤ n, (21.7)

which are also the unique solution of (21.4).

Combining (21.6), (21.7) and (21.2) we see that the projection operator of P onto the set Ω1 is

indeed given by equation (21). �

Appendix B. Proof of Proposition 4.4

As discussed in section 2, we can assume without loss of generality that n1 ≤ n2 and that

ρ1 = (a1, . . . , an1
) and ρ2 = diag (b1, . . . , bn2

) are positive definite. Let n2 ≤ k ≤ n1 + n2 − 1. One

can verify that ρ1 =
1
k

k
∑

i=1
xix

∗
i and ρ2 =

1
k

k
∑

i=1
yiy

∗
i , where ωk is a principal kth root of unity and

xi = [ω
(j−1)(i−1)
k

√
aj]j∈n1

and yi = [ω
(l−1)(i−1)
k

√

bl]l∈n2

are unit vectors for i = 1, . . . , k. Define ρ =
k
∑

i=1

1
k (xix

∗
i ⊗ yiy

∗
i ). It follows that tr 1(ρ) = ρ2 and

tr 2(ρ) = ρ1.

To show that rank(ρ) = k, note that ρ = 1
kPP ∗, where P be the n1n2 × k matrix

P =
[

x1 ⊗ y1 x2 ⊗ y2 · · · xk ⊗ yk
]

.

Let

F =











1 1 · · · 1

1 ωk · · · ωk−1
k

...
. . .

...

1 ωn−1
k · · · ω

(k−1)(n2−1)
k











and D = diag (1, ωk, ω
2
k, . . . , ω

k−1
k )

Then

P = diag
(√

a1, . . . ,
√
an1

)⊗ diag (
√

b1, . . . ,
√

bn2

)











F
FD
...

FDk−1











Note that FDi consists of the (1 + i)th up to the (n2 + i)th row of the discrete k × k Fourier

matrix, which is a unitary matrix. Hence, P has k linearly independent rows consisting of rows

1, . . . , n2, 2n2, 3n2, . . . , (k−n2+1)n2. Counting all the linearly independent rows of P , we get that

rank (P ) = rank (ρ) = k. �
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Appendix C. Proof of Theorem 4.5

Assume without loss of generality that n1 ≤ n2, rank (ρ1) = n1, rank (ρ2) = n2 and that

ρ1 = diag (a1, . . . , an1
) and ρ2 = diag (b1, . . . , bn2

).

If n1 = 1 (or n2 = 1), then S(ρ1, ρ2) = {ρ1⊗ρ2} and rank (ρ1⊗ρ2) = n2 (or rank (ρ1⊗ρ2) = n1).

We will prove the general statement using induction on n1 + n2. By the preceding remark, the

statement holds for n1+n2 = 2. Now, suppose that the statement holds (i.e. for any n2 ≤ k ≤ n1n2,

there exists a rank k solution ρ ∈ S(ρ1, ρ2)) when n1 + n2 satisfies 2 ≤ n1 + n2 < r.

Consider the case n1 + n2 = r. By Proposition 4.4, for any n1 ≤ k ≤ n1 + n2 − 1 there is a rank

k solution ρ ∈ Dn1n2
such that tr 1(ρ) = ρ2 and tr 2(ρ) = ρ1.

(1) If n1 = 1, then we are done.

(2) If 1 < n1 < n2, then using the induction hypothesis, we know that for any n2 − 1 ≤ k ≤
n1(n2 − 1) there is a rank k density matrix ρ such that

tr 1(ρ) =
1

1− bn2

diag (b1, . . . , bn2−1, 0) and tr 2(ρ) = diag (a1, . . . , an1
).

Now, let ρ̂ = (1 − bn2
)ρ+ diag (a1, . . . , an1

)⊗ diag (0, . . . , 0, bn2
) ∈ S(ρ1, ρ2). The fact that

rank (ρ̂) = rank (ρ) + n1 is evident from its block structure. Thus, ρ can be chosen so that

ρ̂ has rank ranging from n1 + n2 − 1 to n1n2. Together with Proposition 4.4, this shows

that there is a solution of rank k for any n2 ≤ k ≤ n1n2.

(3) If 1 < n1 = n2, then using the induction hypothesis, we know that for any n2 ≤ k ≤
(n1 − 1)n2 there is a rank k density matrix ρ such that

tr 1(ρ) = diag (b1, . . . , bn2
) and tr 2(ρ) =

1

1− an1

diag (a1, . . . , an1−1, 0).

One can verify that ρ̂ = (1− an1
)ρ+ diag (b1, . . . , bn2

)⊗ diag (0, . . . , 0, an1
) ∈ S(ρ1, ρ2) and

rank (ρ̂) = rank (ρ) + n2. Thus, ρ̂ can have rank ranging from 2n2 to n1n2. Together with

Proposition 4.4, this shows that there is a solution of rank k for any n2 ≤ k ≤ n1n2.

By the principle of mathematical induction, we see that the theorem holds for all 1 ≤ n1 ≤ n2. �

Appendix D. Proof of Proposition 4.8

Note that in Algorithm 4.7, Ak and Bk are positive semidefinite for every iteration k. The

recursive process terminates at iteration k when rank (Ak) = 0. From the construction, we get

rank (Ak+1) = rank (Ak)−
(

p
∑

i=1

rank (Si)

)

−





q
∑

j=1

rank (Tj)



+ p

rank (Bk+1) = rank (Bk)−
(

p
∑

i=1

rank (S̃i)

)

−





q
∑

j=1

rank (T̃j)



+ q

Since tr(Ak) = tr(Bk) and Ak, Bk are both positive semidefinite, then there exists ai1 , ai2 , bj1 , bj2
such that ai1 ≥ bj1 and bj2 ≥ aj2 . Thus, p, q ≥ 1. Hence, rank (Ak+1) < rank (Ak) and

rank (Bk+1) < rank (Bk) so that the process terminates after at most max{rank (ρ1), rank (ρ2)}
steps. Clearly Ci and C̃i are positive semidefinite and are isospectral and ρ1 = C1 + · · · + Ck and
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ρ2 = C̃1 + · · · + C̃k. It follows from Theorem 4.2 that tr 1(wiw
∗
i ) = C̃i and tr 2(wiw

∗
i ) = Ci for

i = 1, . . . k. Thus, ρ ∈ S(ρ1, ρ2).
If ai1 ≥ bj1 ≥ · · · ≥ ail ≥ bjl (or bj1 ≥ ai1 ≥ · · · ≥ bjl ≥ ail) for some distinct indices i1, . . . , il+1

and distinct j1, . . . , jl+1, then ρ1 = C1 +A1 and ρ2 = C̃1 +B1 where rank (A1) ≤ rank (ρ1)− l and

rank (B1) ≤ rank (ρ2)− l. �

Appendix E. Proof of Proposition 4.10

As discussed in section 2, we can assume without loss of generality that n1 ≤ n2 and

ρ1 = diag (a1, . . . , an1
) and ρ2 = diag (b1, . . . , bn2

),

where a1 ≥ a2 ≥ · · · ≥ an1
and b1 ≥ b2 ≥ · · · ≥ bn2

. For any i = 1, . . . , n1, define ci = min{ai, bi}
and cn1+1 = · · · = cn2

= 0 and define C1 = diag (c1, . . . , cn1
) and C̃1 = diag (c1, . . . , cn2

). Then

ρ1 − C1 is positive semidefinite and has rank at least one less than rank (ρ1). Similarly, ρ2 − C̃1 is

positive semidefinite and has rank at least one less than rank (ρ2). We can replace ρ1 and ρ2 by

ρ1 − C1 and ρ2 − C̃1 and repeat the above process until both matrices become zero. This process

will take at most k = max{rank (ρ1), rank (ρ2)} steps because the rank of ρ1 and ρ2 are reduced

by at least one in each step. At the end of this process, we will be able to write ρ1 and ρ2 as

ρ1 = C1 + · · ·+ Ck and ρ2 = C̃1 + · · ·+ C̃k such that for each i,

Ci = diag (c
(i)
1 , . . . , c(i)n1

) and C̃i = diag (c
(i)
σi(1)

, . . . , c
(i)
σi(n2)

)

for some permutation map σi : n2 −→ n2. Equivalently, we have partitioned the eigenvalues of ρ1
and ρ2 such that

ai =

k
∑

r=1

c
(r)
i ∀i ∈ n1 and bj =

k
∑

r=1

c
(r)
σr(j)

∀j ∈ n2

Observe that in this scheme, it is true that if c
(t)
i 6= 0, either c

(r)
i = 0 for all r ≥ t or c

(r)

σr(σ
−1
t (i))

= 0

for all s ≥ t. That is, c
(t)
i is either the last nonzero summand of ai or the last nonzero summand

for bσ−1
t (i).

Let ρ = w1w
∗
1 + · · · +wkw

∗
k, where wr =

∑n1

j=1

√

c
(r)
j (e

(n1)
j ⊗ e

(n2)
σ−1(j)

). Note that for p 6= q,

w∗
pwq =

n1
∑

j,ℓ=1

√

c
(p)
j c

(q)
ℓ

(

e
(n1)∗
j e

(n1)
ℓ ⊗ e

(n2)∗
σ−1
p (j)

e
(n2)

σ−1
q (ℓ)

)

=
n1
∑

j=1

√

c
(p)
j c

(q)
j

(

e
(n2)∗
σ−1
p (j)

e
(n2)

σ−1
q (j)

)

=
n1
∑

j=1

σ−1
p (j)=σ−1

q (j)

√

c
(p)
j c

(q)
j

Suppose q > p and σ−1
p (j) = σ−1

q (j). By construction, if c
(p)
j 6= 0, then c

(q)
j = c

(q)

σqσ
−1
p (j)

= 0.

Similarly, if p > q and σ−1
p (j) = σ−1

q (j), then either c
(q)
j = 0 or c

(p)
j = c

(p)

σpσ
−1
q (j)

= 0. Thus w1, . . . , wk

form an orthogonal basis. This means that for r = 1, . . . k, λr = ||wr||2 = c
(r)
1 + · · ·+ c

(r)
n1 , (together

with n1n2 − k more zeros) are the eigevalues of ρ.

Now, suppose σ ∈ S(ρ1, ρ2) with spectral decomposition s1x1x
∗
1 + · · ·+ sNxNx∗N . Then

ρ1 = s1tr 2(x1x
∗
1) + · · ·+ sN tr 2(xNx∗N ) and ρ2 = s1tr 1(x1x

∗
1) + · · · + sN tr 1(xNx∗N )
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Hence ρ1 − s1tr 2(x1x
∗
1) and ρ2 − s1tr 1(x1x

∗
1) are positive semidefinite. Let c1 ≥ · · · ≥ ck be the

nonzero eigenvalues of s1tr 2(x1x
∗
1), which are also the nonzero eigenvalues of s1tr 1(x1x

∗
1). Then

using Lidskii’s inequalities, we get ci ≤ min{ai, bi} for i = 1, . . . , k. Thus,

||σ||2 = s1 =
k
∑

i=1

ci ≤
k
∑

i=1

min{ai, bi} ≤
min{n1,n2}
∑

i=1

min{ai, bi} = ||ρ||2

�

Appendix F. Proof of Proposition 6.1 and 6.2

Note that the condition tr Jc
i
(ρ) = ρJi can be written as a set of linear constraints of the form

Ajx = bj by vectorizing ρ into x ∈ R
n and ρJi into bi ∈ R

m. First, we look at the projection of

a given x̂ ∈ R
n onto the set of solutions of a linear constraint of the form Ax = b, where A is an

m×n real matrix. For this, we need the Moore-Penrose inverse of A, denoted by A+, which is the

unique n×m matrix satisfying the following four conditions:

(a) AA+A = A, (b) A+AA+ = A+, (c) AA+ is symmetric, (d) A+A is symmetric.

It is known that

x̃ = x−A+(Ax− b) satisfies ‖x− x̃‖ ≤ ‖x− z‖ for all z ∈ L = {x ∈ R
n : Ax = b} 6= ∅.

Applying this to a linear operator T : HN → Hn and the set L = {ρ ∈ HN : T (ρ) = σ}, we get

ρ̃ = ρ− T+(T (ρ)− σ) satisfies ||ρ− ρ̃|| ≤ ||ρ−X|| for all X ∈ L.

Here T+ is the unique map T+ : Hn → HN satisfying the conditions:

(a) TT+T = T ,

(b) T+TT+ = T+,

(c) tr(TT+(X)∗Y ) = tr(X∗(TT+(Y ))) for all X,Y ∈ Hn,

(d) tr(T+T (X)∗Y ) = tr(X∗(T+T (Y ))) for all X,Y ∈ HN .

Let T : Hmn −→ Hn such that T (ρ) = tr 1(ρ) and S : Hn −→ Hmn such that S(σ) = Im
m ⊗B for

all σ ∈ Hn. It is clear that TST (ρ) = T (ρ) for all ρ ∈ Hmn and STS(σ) = S(σ) for any σ ∈ Hn.

Note that, TS is the identity map, and hence a hermitian operator on Hn. Finally, we show that

ST is a hermitian operator as follows: let ρ, ν ∈ Hmn with block structure ρ = [ρij ] and ν = [νij],

where ρij, νij ∈Mn.

〈ST (ρ), ν〉 = tr

((

Im
m
⊗ tr 1(ρ)

)

ν

)

= tr

(

[

tr 1(ρ)νij
m

]

ij

)

= tr

(

tr 1(ρ)tr 1(ν)

m

)

Similarly,

〈ρ, ST (ν)〉 = tr

(

ρ

(

Im
m
⊗ tr 1(ν)

))

= tr

(

[

ρijtr 1(ν)

m

]

ij

)

= tr

(

tr 1(ρ)tr 1(ν)

m

)

Thus S = T+.
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Now, to prove Proposition 6.1, let J ⊆ k, nJ =
∏

i∈J
ni and nJc =

∏

i∈Jc

ni and PJ be as defined

in equation (18). Then for the partial trace operator TJ : Hn1···nk
−→ HnJ

such that TJ(ρ) =

tr Jc(ρ) = ρJ , we have,

T+
J (σ) = P

(

InJc

nJc

⊗ σ

)

P T

for all σ ∈ HnJ
. Therefore, the least square approximation of Z ∈ Hn1···nk

in L = {ρ ∈ Hn1···nk
:

tr Jc(ρ) = σ} is given by

ΦJ(Z) = Z − T+
J (TJ(Z)− σ),= Z − P T

J

(

InJc

nJc

⊗ (tr Jc(Z)− σ)

)

PJ

�

Given Z ∈Mn1···nk
, denote the column vector obtained by stacking the columns of Z by vec(Z).

Then there are matrices A1, . . . , Am such that

L = {ρ |Aivec(ρ) = vec(ρJi) for i = 1, . . . ,m}
Proposition 6.2 will follow directly from Proposition 6.1 and the following theorem.

Theorem F.1. Let Ai ∈Mni,N and bi ∈Mni
for i = 1, . . . ,m. For any {i1, . . . , ir} ⊆ {1, . . . ,m},

denote by A[i1,...,ir] the matrix whose row space is
r
⋂

j=1
Row(Aij ). The set

L = {x | Aix = bi for i = 1, . . . ,m}
is nonempty if and only if for any subset {i1, . . . , ir} of {1, . . . ,m}, the projection of bis onto
r
⋂

j=1
Row(Aij ) is constant for all s = 1, . . . r. In this case, denote this projection by b[i1,...,ir]. Then

the least square projection of z ∈ C
N onto L is given by

z̃ = z +

m
∑

r=1

(−1)r
∑

{i1,...,ir}⊆{1,...,m}
A+

[i1,...,ir ]

(

A[i1,...,ir]x− b[i1,...,ir ]

)

Proof: We will prove this theorem by induction.

First, we consider the case when m = 2. Let V =
(

V T
1 V T

2 V T
3

)T
such that the rows of V1

form an orthonormal basis for Row(A1)∩Row(A2)
⊥, the rows of V2 form an orthonormal basis for

Row(A1)∩Row(A2) and the rows of V3 form an orthonormal basis for Row(A2)∩Row(A1)
⊥. Then

for some unitary U1 =

(

U11

U21

)

∈Mn1
and U2 =

(

U12

U22

)

∈Mn2
, we have

(

A1

A2

)

= (U∗
1 ⊕ U∗

2 )









C1 0 0
0 C2 0
0 C2 0
0 0 C3









V

Thus,
(

A1

A2

)+

= V ∗





C+
1 0 0 0
0 C+

2 /2 C+

2 /2 0

0 0 0 C+1
3



 (U1 ⊕ U2)

=
(

A+
1 A+

2

)

− 1
2

(

A+
1 P

∗
1 A+

2 P
∗
2

)
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where P1 = U∗
1

(

0 0
0 I

)

U1 is the projection from Row(A1) to Row(A1) ∩ Row(A2) and P2 =

U∗
2

(

I 0
0 0

)

U2 is the projection from Row(A2) to Row(A1) ∩ Row(A2). Note that

A+
1 P

∗
1A1 = V





0 0
0 C+

2
0 0





(

C1 0 0
0 C2 0

)

V ∗ = V





0 0
C+
2 0
0 0





(

0 C2 0
0 0 C3

)

V ∗ = A+
2 P

∗
2A2 := A[1,2].

If L 6= ∅, then there must be x̃ such that A1x̃ = b1 and A2x̃ = b2. Thus A+
1 P

∗
1 b1 = A+

2 P
∗
1A1x̃ =

A+
2 P

∗
2A2x̃ = A+

2 P
∗
2 b2 : b[1,2]. Hence, the least square approximation of a given x ∈ R

n on the set L

is given by

x̃ = x−
(

A1

A2

)+((
A1

A2

)

x−
(

b1
b2

))

= x−A+
1 (A1x− b1)−A+

2 (A2x− b2) +
1
2A

+
1 P

∗
1 (A1x− b1) +

1
2A

+
2 P

∗
2 (A2x− b2)

= x−A+
1 (A1x− b1)−A+

2 (A2x− b2) +A+
[1,2](A[1,2]x− b[1,2])

This proves the theorem for the case m = 2.

Now, suppose it is true for m = 2, . . . , s− 1. The least square approximation of a given x ∈ R
N

on L is given by

x̂ = x−











A1

A2
...
As











+



















A1

A2
...
As











x−











b1
b2
...
bs





















.

From the m = 2 case, we have

x̂ = x−







A1
...

As−1







+











A1
...

As−1






x−







b1
...

bs−1












−A+

s (Asx−bs)+







A[1,s]
...

A[s−1,s]







+











A[1,s]
...

A[s−1,s]






x−







b[1,s]
...

b[s−1,s]












,

Apply the induction hypothesis to get

y1 = x−







A1
...

As−1







+











A1
...

As−1






x−







b1
...

bs−1













= x+
s−1
∑

r=1
(−1)r ∑

{i1,...,ir}⊆{1,...,s−1}
A+

[i1,...,ir ]

(

A[i1,...,ir]x− b[i1,...,ir ]

)

y2 = x−







A[1,s]
...

A[s−1,s]







+











A[1,s]
...

A[s−1,s]






x−







b[1,s]
...

b[s−1,s]













= x+
s−1
∑

r=1
(−1)r ∑

{i1,...,ir}⊆{1,...,s−1}
A+

[i1,...,ir,s]

(

A[i1,...,ir,s]x− b[i1,...,ir ,s]

)

Then x̂ = y1 − y2 + x−A+
s (Asx− bs), which gives the desired equation. �
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