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We investigate the effect of different types of non-unitary quantum channels on multi-qubit quan-
tum systems. For an n-qubit system and a particular channel, in order to draw unbiased conclusions
about the system as a whole as opposed to specific states, we evolve a large number of randomly
generated states under the given channel. We increase the number of qubits and study the effect
of system size on the decoherence processes. The entire scheme is repeated for various types of
environments which include dephasing channel, depolarising channel, collective dephasing channel
and zero temperature bath. Non-unitary channels representing the environments are modeled via
their Karus operator decomposition or master equation approach. Further, for a given n we restrict
ourselves to the study of particular subclasses of entangled states, namely the GHZ-type and W-type
states. We generate random states within these classes and study the class behaviors under different
quantum channels for various values of n.

PACS numbers: -03.65.Xp,03.65.Aa

I. INTRODUCTION

Inability to overcome the effects of decoherence is the
most crucial hurdle in quantum information process-
ing [1, 2]. Hence one of the fundamental requirements
to build a quantum computer is to understand and con-
trol the process of decoherence. Several platforms have
been proposed for scalable implementation of quantum
computers on the basis of superconductors [3], semicon-
ductors [4], ion traps [5], spins in solids [6, 7] and spins of
molecules using NMR techniques [8, 9]. In all the plat-
forms, decoherence time scales are typically estimated for
individual qubits whereas practical implementation of a
quantum computer requires the use of many qubits. For
multiqubit systems, correlations between qubits can arise
and Hilbert space dimension grows exponentially with
number of qubits. Estimating the decoherence costs and
effect of decohering environments on entanglement for
multiqubit systems has also been investigated by several
authors [10–13]. Since new ways in which decoherence
can effect the system can emerge for multiqubit systems,
investigation of the behavior of the system with increased
number of qubits is important.

The non-unitary environmental effects can be classi-
fied as dissipation and dephasing. While dissipation in-
volves energy exchange and is possible at the classical
level too, dephasing is a purely quantum mechanical phe-
nomena [14]. In any case both lead to information loss
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and state degradation. If we consider system and the
environment as a whole, their dynamics is unitary. The
environment by its very nature is inaccessible, and to
obtain the dynamics of the system alone we can trace
over the environment. This may lead to a non-unitary
evolution of the system. At a fundamental level, envi-
ronment induced non-unitary processes are completely
positive maps and such maps allows a representation via
Karus operators as follows [15]:

ρout = E(ρ) =

N∑
ν=1

K†νρKν with
∑
ν

K†νKν = 1, (1)

where Kν are the Kraus operators. This evolution is in
general non-unitary leading to decoherence, however, the
unitary quantum evolution is included and corresponds
to a situation when only one of the Kraus operators is
non-zero. Depending upon the kinds of Kraus operators
involved the channels are classified. In our analysis de-
polarising channel and collective dephasing channels will
be described through their Kraus operators.

Sometimes a channel is described in terms of an ex-
plicit environmental model, which when environment is
traced out gives us a non-unitary channel. This channel
is represented by Lindblad master equation whose solu-
tion provides us with time evolution of the system [16].
In this approach we start with the total Hamiltonian of
the system together with the environment which has a
general form:

H = HS +HE + V (2)

where HS is the system Hamiltonian, HE is the environ-
ment or the bath Hamiltonian and V is the interaction
Hamiltonian. For a particular kind of environment, be-
ginning with the total Hamiltonian of the system we ob-
tain the equation governing the dynamics of the system
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density operator alone called the master equation [17, 18].
We will employ this method while dealing with the chan-
nel termed “zero temperature bath” and dephasing chan-
nel.

Our aim in this work is to study the behavior or quan-
tum systems under different non-unitary processes with
a focus on its dependence on the system size. Under a
given non-unitary channel, different states of a system
behave differently. In order to draw conclusion about
the system as a whole we generate a large number of
random states and average our results over this sample
set. Assuming that we have a large enough sample set
and the sampling of the state space is uniform our con-
clusions pertain to the system as a whole and are state
independent. For an n-qubit system, we take a particular
channel and see its effect as we change the values of n.
Then we repeat the exercise for another channel. This
allows us to analyze the size dependences of the effect
of these non-unitary channels and make comparisons of
these effects across different channels in a state indepen-
dent manner. Channels that we consider include, zero
temperature bath, dephasing channel, collective dephas-
ing channel and depolarising channel

In a similar vain for the n-qubit Hilbert space(for
n > 1) we consider entangled states and study their de-
coherence properties under four decoherening channels
that we considered for the earlier study. Motivated by
the structure of different inequivalent maximally entan-
gled states for three qubits namely the GHZ and W states
we define “GHZ-type” and “W-type” states for systems
with n > 1. We study these families separately and make
comparisons about their decoherence under various chan-
nels. We find very interesting comparisons and contrasts
in the behavior. Throughout, while studying a particular
class of states we generate a large number of samples in
that particular class and average the behavior over these
samples to obtain state independent results as was done
for the full n-qubit state space.

The effect of decoherence can be estimated by com-
puting the change in the state that takes place due to
the environmental factors. For the case where we start
with an initial pure state, a good measure of deviation is
fidelity defined in terms of the overlap of the initial pure
state |ψ0〉 and the final mixed or pure state ρout.

F = 〈ψ|ρout|ψ〉. (3)

Fidelity can take values between 0 and 1 and the de-
viation from 1 indicates the amount of degradation or
change.

The computations involve a mix of analytical and nu-
merical tools. The general forms of output states are
computed analytically and then numerical simulations
are carried out on randomly generated states from the
family of states under consideration. The uniform distri-
bution is achieved by the appropriate use of pseudo ran-
dom function of Mathematica. We observe that, in the
case of zero temperature bath channel, degradation rate
with respect to number of qubits is maximum in case of
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FIG. 1. Variation of average fidelity for n = 1 to 6 qubits for
zero temperature bath model. Input states are general states,
GHZ-type states and W-type-states. The value of γ1t = 1.
As can be seen the W-type states degeneration much faster
than the GHZ-type states and general states.

W-type states and minimum in case of GHZ-type states.
The rate of degeneration in case of dephasing channel is
minimum for GHZ-type states and maximum for general
states. Depolarising channel destroys all the three sets of
states in a similar way. In the case of collective dephas-
ing channel, degeneration rate of the state with respect
to system size is negligible for GHZ-type states, whereas
it is very similar for general states and W-type states.
We have also computed and displayed the fidelity dis-
tributions for different classes of states, under different
channels and their variation with number qubits.

The paper is organized as follows: In Section II we de-
fine the three classes of states namely, the general states,
the GHZ-type states and the W-type states. We then de-
fine and discuss the four non-unitary channels, the zero
temperature bath, the dephasing channel, the collective
dephasing channel and the depolaring channel and the
evolution of the family of states under these channels.
The results are shown as average fidelities as a function
of number of qubits for different state classes for a given
channel. We also display the fidelity distributions. In
Section III we compare the effects of all four channels on
each set of state classes. Here the graphs of average fi-
delity as a function of the number of qubits are shown for
a given class of states for all four non-unitary channels.
Section IV offers some concluding ramarks.
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FIG. 2. Variation of average fidelity as a function of system
size for the dephasing channel. Fidelity is calculated for gen-
eral, GHZ-type and W-type states. The value of γ2t = 2.48

II. CLASSES OF STATES AND THEIR
EVOLUTION UNDER DIFFERENT CHANNELS

In this section we describe our main results where we
study certain families of states of an n-qubit system un-
der different non-unitary channels. For n = 1 we have
only one class of states which are the most general states
of the system. For an n > 1 we consider three types of
states, namely the general states, GHZ-type states and
W-type states. The latter two types are motivated by
the structure of superpositions involved in the two in-
equivalent classes of maximally entangled states for three
qubits. These families are defined as below:

(a) General states: For an n-qubit system, the most
general state can be expressed as a linear combina-
tion of all the computational basis states as follows:

| ψGeneral〉 = α0 | 000....0〉+ α1 | 000...1〉+
α2 | 000...10〉.........α2n−1 | 111......1〉

(4)

where α0, α1......α2n−1 complex numbers satisfying∑2n−1
j=0 |αj |2 = 1

(b) GHZ-type states: A GHZ-type state for an n-
qubit system is defined as follows:

| ψGHZ〉 = α | 000.....0〉+ β | 111.....1〉 (5)

where α and β can have any complex numbers with
|α|2 + |β|2 = 1.

(c) W-type states: A W-type state is defined as fol-
lows:

| ψW〉 = β1 | 000......001〉+ β2 | 000.....010〉+
β3 | 000...0100〉+ ......+ βn | 1000......000〉;

(6)
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FIG. 3. Variation of average fidelity as a function of sys-
tem size for collective dephasing channel for Γt = 5. The in-
put states are general states, general GHZ state and W-type
state.The degeneration of general states is maximum whereas
GHZ-type states do not show any decrease in fidelity with
increase in system size.

where β1,β2 .... βn again complex number with∑n
j=1 |βj |2 = 1 .

We are now ready to study the effect of different non-
unitary channels on the classes of states define above.
We will start with a single qubit and try to go up to 8
qubits.

A. Channel with zero temperature bath as
environment

For the non-unitary process were we have a zero tem-
perature bath of qubits in the environment, we assume
that each qubit interacts with the bath qubits indepen-
dently. We consider the Lindblad master equation for
the evolution of the system density operator ρ to model
the interaction the system with the bath, given as [17]:

dρ

dt
=

n∑
k=1

(I ⊗ ......⊗ Lk ⊗ ......⊗ I)ρ. (7)

Here Lk is a single qubit operator and is defined by its
action on the kth qubit in terms of Pauli operators σ± =
σ1 ± iσ2 as:

Lkρk =
γ1
2

(2σ−ρkσ+ − σ+σ−ρk − ρkσ+σ−) (8)

The parameter γ1 depends upon the strength of the sys-
tem bath interaction.
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FIG. 4. Average fidelity as a function of system size for de-
polarising channel for the value p = 0.8348. The input states
include general states, GHZ-type states and W-type states.

For the n = 1 case, let the initial state of the system
be ρ = |ψ0〉〈ψ0|. Then the final state obtained at time t
by solving Equation (7) is given as

ρout =

(
e−tγ1ρ11 e−tγ1/2ρ12
e−tγ1/2ρ21 (1− e−tγ1)ρ11 + ρ22

)
(9)

where ρij = 〈i|ρ|j〉 is the i, jth element of the initial state
ρ in the computational basis. Since, both diagonal as well
as off-diagonal terms are being affected by the channel, it
is clear that the interaction of the system with the bath
results in both dissipation and decoherence of the state.
Similarly final states for the systems upto 6 qubits can
be calculated analytically. The expressions are long and
therefore are not being displayed. As t → ∞, the deco-
hered state in Equation (9) approaches the lower energy
state with ρout22 = ρ11 + ρ22 = 1. This happens for higher
number of qubits too and is a reflection of the fact that
we are working with a zero temperature bath.

Once we have the final state the fidelity can be calcu-
lated using Equation (3). We generate 100,000 random
states numerically and compute the fidelity and the av-
erage fidelity. The process is repeated for upto 6 qubits.
Next for n > 1 we restrict ourselves to GHZ-type and W-
type states and again generate random states and com-
pute average fidelity. The average fidelities are shown in
Figure 1. All fidelities are computed for γ1t = 1. The
histograms of fidelities are shown in Figures 5, 6 & 7
where first column in each figure corresponds to the zero
temperature bath channel.

The difference in degeneration properties of the three
classes of states are clearly visible in Figure 1. While
the W-type states degeneration more rapidly compared
to general states GHZ-type states are more robust. An-

other interesting result obtained while calculating the fi-
delities for W-type states is that all states in W-type
family have same fidelity It implies that in case system is
interacting with a zero temperature bath, all the n-qubit
states in W-state space degeneration in exactly the same
way. This is clearly seen from the first column of Fig-
ure 7. The 1st columns of Figures 5,6 & 7 show how the
fidelities are distributed, for general, GHZ-type and W-
type states repectively. The fidelity distribution is most
broad for the GHZ-type states and for general states the
distribution tends to become narrow as the number of
qubits increases.

B. Dephasing channel

Dephasing channel destroys the off-diagonal elements
of a density matrix which correspond to coherences
among the computational basis states [19, 20]. In this
case like the zero temperature bath, the qubits interact
with the environment individually and we use the mas-
ter equation model described in Equation (7). Lindblad
operator in this case is again given through its action on
single qubit density operator in terms of Pauli matrices
as:

Lkρk =
γ2
2

(2σ−σ+ρkσ−σ+−σ−σ+σ−σ+ρk−ρkσ−σ+σ−σ+)

(10)
Here γ2 depends upon the interaction strength between
the system and the bath. Using the similar procedure
as used in the zero temperature bath case, we obtain the
final density matrix for the state under dephasing channel
for a single qubit

ρout =

(
ρ11 e−tγ2/2ρ12

e−tγ2/2ρ21 ρ22

)
(11)

It is clear from the RHS of the above equation that that
the channel affects only the off diagonal terms whereas
the diagonal terms remains unaffected. The final state
for n > 1 can be calculated and have similar structure,
however we are not displaying the long expression. The
analytical expressions for fidelity upto eight qubits can
be obtained using the final density matrices. Generat-
ing a large number of random states, as in case of zero
temperature bath, we obtain the fidelity distributions for
all three classes of states for n = 1 to n = 8. The
average fidelities are shown in Figure 2 while the his-
tograms of fidelities are shown in the second columns of
Figures 5,6 & 7. Comparison of the average Fidelities
of three set of states is shown in Figure 2 reveals how
classes are affected by the channel. Decoherence of GHZ-
type states is minimum and the decoherence of general
states is maximum. This quite different from the zero
temperature bath.

We can attribute the slow decoherence of GHZ-type
states and W-type states in comparison to general states
to the number of phases involved in both the GHZ and W



5

type states. Number of relative phases in case of GHZ-
type states is just one, therefore it has only one way to
degrade. In case of W-type states, more relative phases
are involved, therefore, W-type states degeneration rela-
tively more in comparison to GHZ-type states. Number
of relative phases goes up with number of qubits in case
of general states, therefore, degeneration is drastic. An
important observation about the GHZ-type states is that
their fidelity converges to 0.66 as the number of qubits
increases.

Looking at the second columns of Figures 5,6 & 7 we
can see how the fidelities are distributed. Again the Fi-
delity distributions are very different for the three classes
of states and very different from the zero temperature
bath.

C. Collective dephasing channel

The collective dephasing channel is similar to dephas-
ing channel. However For its action we need at least two
qubits which are collectively coupled to an environment.
This channel can be described using the Kraus operators
as follows [21]:

D1 =

γ3(t) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 γ3(t)

 , γ3(t) = e−
t

2T

D2 =

ω1(t) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ω2(t)

 ,
ω1(t) =

√
1− e−t

T

ω2(t) = −e−t/T
√

1− e−t
T

D3 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ω3(t)

 , ω3(t) =

√
(1− e− t

T )(1− e− 2t
T ).

(12)

The phase relaxation time T due to the collective inter-
action of the system with the bath which is the inverse of
the damping rate Γ of the system is the single parameter
characterizing the channel. The action of the channel on
a general two qubit quantum state ρ is given as:

ρout =

3∑
j=1

D†jρDj . (13)

Since collective dephasing channel acts on two qubits at
a time, we have considered even number of qubits namely
2,4,6 and 8 in our analysis. Once again, beginning with
a general pure state of two qubits we let it evolve under
the channel defined in Equation (13) and evaluate the

output state, which turns out to be:

ρout =

 (γ23 + ω1
2)ρ11 γ3ρ12 γ3ρ13 (γ23 + ω1ω2)ρ14

γ3ρ21 ρ22 ρ23 γ3ρ24
γ3ρ31 ρ32 ρ33 γ3ρ34

(γ23 + ω1ω2)ρ41 γ3ρ42 γ3ρ43 (γ23 + ω2
2 + ω2

3)ρ44


(14)

The expression of the final state shows that the 2-3 sub-
space corresponding the “zero quantum” is not effected
at all. This interesting feature is reflected in Figure 3,
where, for n = 2, the average fidelity in the case of W-
type state is 1 while it is much smaller values for GHZ-
type and general states. The final states corresponding
to 4, 6 and 8 qubits can be calculated in a similar way and
from the final state we can calculate the fidelity. Again
we generate a large number random states within the
same three classes and compute the distribution of fideli-
ties. The average fidelities are shown in Figure 3 while
the fidelity distributions are shown in the third columns
of Figures 5,6 & 7.

The average fidelity degeneration behaviors with
chanding n shown in Figure 3 is similar to that of de-
phasing channel. Decay of GHZ-type states in compar-
ison to general states and W-type states is minimum.
The change in the degeneration rate of GHZ-type states
is very small as we increase number of qubits. General
states are more fragile compared to the other two fami-
lies and increase in their degeneration rate is fastest with
respect to the number of qubits. As was explained in the
case of dephasing channel, states degeneration depend-
ing on the number of relative phases contained in them.
GHZ-type states contain minimum number of phases,
therefore degeneration is minimum. General states con-
tain maximum number of phases, therefore maximum
degeneration in their case. The general pattern of fi-
delity distributions shown in the third columns of Fig-
ures 5,6 & 7 shows that overall the behaviors is similar
to the dephasing channel.

D. Depolarising channel

Depolarising channel describe the system environment
interaction in the large temperature regime. There are
ways to obtain this channel from explicit models of such
interactions in the high temperature limit, however, we
directly use the model of this channel using the Kraus
operators. For a single qubit a general Pauli channel
has its Kraus operators represented by Pauli matrices
σj , j = 1, 2, 3 as follows:

ε(ρ) = p0ρ+

3∑
i=1

piσiρσi (15)

where pi ≥ 0, p0+p1+p2+p3 = 1. When p1 = p2 = p3 the
above channel corresponds to the depolarising channel.
The depolarising channel therefore, can be represented
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by a single parameter p as follows:

ρout = E(ρ) = (1−p)ρ+
p

3
(σ1ρσ1+σ2ρσ2+σ3ρσ3). (16)

For single qubit state the action of the depolarising chan-
nel can be computed using Equation (16) resulting in the

transformation of input ρ to the output state ρout with

ρout =

(
− 1

2 (−2 + p)ρ11 −(−1 + p)ρ12 + 1
2pρ21

−(−1 + p)ρ21 + 1
2pρ12 − 1

2 (−2 + p)ρ22

)
(17)

Since the depolarising channel effects both the diagonal
and off diagonal terms of the state, it results in both
decoherence and dissipation of the system. The effect
of a depolarising channel on states for n > 1 can be
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computed by using Equation (16). We generate random
states within the three families of states under consid-
eration and pass them trough the depolarising channel.
The fidelities are computed and the average fidelity and
fidelity distributions are plotted. The average fidelity for
different types of states as function of number of qubits
is shown in Figure 4 while the fidelity distributions are
shown in the 4th columns of Figures 5,6 & 7.

Depolarising channel is supposed to be most unbiased
way of carrying out state degradation. In agreement
with that view the average fidelity for the three classes of
states is same and shows the same behaviors with num-
ber of qubit as is evident from Figure 4. The fidelity
distribution of each set of states with increasing number
of qubits also show the same pattern as can be seen from
the 4th columns of Figures 5,6,&7. Furthermore there
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is no variation in fidelity as is expected from from the
depolarising channel.

III. COMPARISON OF FIDELITY FOR
DIFFERENT CHANNELS

In the previous section, a comparison was drawn be-
tween the degeneration rates of three set of states with re-
spect to number of qubits for all the four channels. Here,
we compare the degeneration behavior of each family of
states under the effect of all four channels. We have used
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FIG. 8. Variation of average fidelity of general states as a
function of system size for different channels. As we can see,
the degeneration dependence on n is same for zero tempera-
ture bath, dephasing channel and collective dephasing chan-
nel. It is only the depolarising channel that effects the states
in a differently.

the same data that was used in the previous section to
draw conclusion in this section. As was mentioned on
each graph in the previous section that we used specific
parameter values, we used γ1t = 1 for zero temperature
bath, 1γ2t = 2.48 and for dephasing channel, Γt = 5 for
the collective dephasing channel and p = 0.8348 for the
depolarising channel. These value appear arbitrary and
similar behaviors will be seen for other values. The rea-
son behind this choice is that the starting fidelities for all
the channels should be same for general states. Which for
zero temperature bath, dephasing channel and depolaris-
ing channel is n = 1 and for collective dephasing channel
is n = 2.

A. Variation of average fidelity for general states

We consider general states and plot the average fidelity
as function of no of qubits corresponding the different
channels. The results are shown in Figure 8. It is clear
that the dependence of degeneration on number of qubits
is same for zero temperature bath, dephasing and collec-
tive dephasing channels. The states degeneration differ-
ently under the depolarisation channel where the degen-
eration grows slower with number qubits compared to the
other cases.
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FIG. 9. Variation of average fidelity of GHZ-type states as a
function of system size. While the degeneration of states is
maximum in case of zero temperature bath, it is almost inde-
pendent of the system size for collective dephasing channel.

B. Variation of average fidelity for GHZ-type states

Next we take GHZ states and plot their average fidelity
as a function of number of qubits for different channels.
The results are shown in Figure 9. The relative behavior
of GHZ-type states under the effect of four channels is
quite different. Figure 9 shows that degeneration of the
states is least in the case of collective dephasing channel
followed by dephasing channel. The graph obtained in
this case is quite different from that for general states.
The reason can be attributed to very small number of
relative phases involved in the state. The action of zero
temperature bath and depolarising channel is similar to
that of general states.

C. Variation of average fidelity for W-type states

In this case we consider the average fidelity as a func-
tion of number of qubits for W-type states for different
channels. The results are shown in Figure 10. It is clear
from the figure that the dependence of decoherence of
W-type on the number qubits is similar in the case of
zero temperature bath and depolarising channel and for
dephasing and collective dephasing it is similar. The de-
coherence effects increase more rapidly for the first two
cases compared to the last two cases. This behaviors is
quite different from the GHZ-type states as well as from
the general states.
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FIG. 10. Average fidelity of W-type states as a function of
system size for different channels. Decay of state due to zero
temperature bath is very fast, fidelity goes to almost zero for
6 qubits. The variation of the effect of dephasing channel
and collective dephasing channel on the states is similar with
increase in number of qubits. Depolarising channel is showing
similar behavior as that for GHZ and general states.

IV. CONCLUSIONS

We studied one to eight qubit quantum systems under
different zero temperature bath, dephasing channel, col-
lective dephasing channel and depolarising channel. The
main aim was to study the dependence of degradation
rates on the system size which in this case was quantified
by the number qubits. For each case (n > 1) we con-
sidered three family of states namely, the general states,

GHZ-type states and W-type states and studied them
for their behaviors under different environments listed
above. For n = 1 we studied only general states. In or-
der to draw state independent conclusions we averaged
the fidelities over the family of states that we considered.
We also studied the fidelity distributions.

While the average fidelity was observed to drop with
increasing number qubits the three classes of states be-
haved differently. In case of zero temperature bath chan-
nel, degeneration rate with respect to number of qubits
is maximum in the case of W-type-states and minimum
in the case of GHZ-type states. On the other hand the
degeneration rate for dephasing channel is minimum for
GHZ-type states and maximum for general states. Depo-
larising channel degrades all the three sets of states in a
similar way. In case of collective dephasing channel, de-
generation rate of the state with respect to system size is
negligible for GHZ-type state, whereas it is very similar
for general states and W-type states.

We would like to clarify that we have defined GHZ-
type and W-type states in a certain way. This defini-
tion is not same as GHZ-class and W-class states which
are the two inequivalent classes of maximally entangled
states for three qubits. Our definition is motivated by
the structure of superpositions involved in the original
definition of GHZ and W states. For example for two
qubits for us the states 1√

2
(|00〉± |11〉) will be GHZ-type

while 1√
2
(|01〉 ± |10〉) will be W-type, although they are

all equivalent to each other under local transformations.

We would like to stress that we have obtained state
indepdent conclusions by generating a large number of
unbiased random state for each class of states that we
studied. We hope that this study will help in the direc-
tion of understanding effect of non-unitary channels on
different classes of states and their relative fragility for
different number of qubits.
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