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We study the impact of finite-size effect on continuous variable source-independent quantum
random number generation. The central-limit theorem and maximum likelihood estimation theorem
are used to derive the formula which could output the statistical fluctuations and determine upper
bound of parameters of practical quantum random number generation. With these results, we can
see the check data length and confidence probability has intense relevance to the final randomness,
which can be adjusted according to the demand in implementation. Besides, other key parameters,
such as sampling range size and sampling resolution, have also been considered in detail. It is
found that the distribution of quantified output related with sampling range size has significant
effects on the loss of final randomness due to finite-size effect. The overall results indicate that
the finite-size effect should be taken into consideration for implementing the continuous variable
source-independent quantum random number generation in practical.

I. INTRODUCTION

Random numbers are traditionally generated using de-
terministic processes. However, these predictable ran-
dom numbers will lead to security loopholes or errors
in some fields, such as cryptography, scientific simu-
lation and lottery. As an ideal alternative, quantum
random number generators (QRNGs) have attracted
much attention in the past few years [1, 2] because
they exploit the fundamental indeterminacy of quan-
tum mechanics and can generate unpredictable ran-
dom numbers. Based on the randomness reliability lev-
els, three types can be categorized in QRNGs: prac-
tical QRNGs, device-independent QRNGs and semi-
device-independent QRNGs. Practical QRNGs [3–12]
completely trust their well characterized devices and
generate random numbers with high speed. Device-
independent(SI) QRNGs [13, 14] have the most para-
noid assumption that the devices are all untursted and
have highest security levels, which results to low gener-
ation speed that can hardly meet actual demands. As
a trade off, semi-device-independent QRNGs generate
high-speed random numbers by just trusting parts of the
devices. One mainly considers QRNGs with untrusted
measurement devices [15, 16] or untrusted sources in this
filed. Therein, source-independent (SI) QRNGs get peo-
ple’s favour due to the difficulty of pure source state
preparation [17–21].

Imparity with low-speed discrete variable SI-
QRNGs [22], continuous variable (CV) SI-QRNGs
achieve higher speed. CV-SI-QRNGs eliminate the
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effects of malicious eavesdropper through randomly
switching the measurement bases generally with phase
modulator. The application of phase-randomized local
oscillator with gain-switched laser makes it easier to
implement [18]. The heterodyne measurement remark-
ably increases the generating speed to 17 Gbps and
operates without an initial source of randomness [21].
Several practical imperfections have been considered
in [20] and achieve 15.07 Gbps high generation speed. In
most CV-SI-QRNG protocols, the mutual information
between Alice and Eve is the most crucial parameter,
which should be estimated with generated raw sequences
in practise. To guarantee the security, CV-SI-QRNGs
always discard untrusted parts of information by post-
processing algorithms, such as Toeplitz hashing matrix,
after parameter estimation.

The estimation of precise parameters requires infinite-
size of check data. However, the size of check data in
practise is finite, because any practical system can only
run in finite time. This will lead to the statistical fluctu-
ations of estimated parameters, i. e. we always overesti-
mate or underestimate the parameters compared with
their ideal values. This may result in miscalculating
the available randomness and lead to security loopholes.
Thus, the finite-size effect is necessary to be considered
in practical systems.

In this paper, we study finite-size effect on the CV-SI-
QRNG protocol [20] by calculating the statistical fluctua-
tions of estimated parameters. The central limit theorem
and maximum likelihood estimation theorem are utilized
to find the distribution of estimated parameters. The sta-
tistical fluctuation of final randomness can be computed
out with a given confidence probability. Then, we give
numerical simulations on extractable randomness with
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different variable parameters including check data length
m, confidence probability ε, sampling range size N and
sampling resolution n for studying the impacts of finite-
size effect under various scenarios. Finally, we analyze
the relationship between sampling range size and finite-
size effect in detail.

In this paper, we introduce our work as follows: In
Sec. II we review the CV-SI-QRNG protocol proposed in
[20]. In Sec. III we briefly describe the security analysis
of our protocol, then consider the effect of finite size on
the security of the protocol in detail and derive the for-
mulas for the analysis of finite-size. In Sec. IV we show
and discuss the results of simulation with several variable
parameters which could impact the finite-size effect. At
last, we give conclusions in Sec. V.

II. CONTINUOUS VARIABLE
SOURCE-INDEPENDENT QRNG PROTOCOL

The more detailed introduction about the CV-SI-
QRNG protocol is in [20], we just make a brief intro-
duction here. Fig. 1 illustrates the schematic of our CV-
SI-QRNG protocol. There is an untrusted and uncharac-
terized source prepared by Eve with quantum state ρA,
which is allowed in infinite dimensions. Eve keeps a quan-
tum system E related to system A, and then sends ρA
to Alice for homodyne measurement. To extract security
randomness, Alice switches the measurement bases ran-
domly between X and P quadratures for measuring ρA
with an initial random seed.

Obviously, the switch should be in an independently
and identically distribution (i. i. d.) way to extract i. i. d.
random numbers. Now we define ntot as the number
of total measurement result, nc as the number of check
samples out of total measurements and t as the length
of random seed. It should be noted that we make an
assumption that the measurement can be trusted and
calibrated well, meanwhile a quantum correlated Eve can
introduce all the excess noise.

After Alice measures the X and P quadratures and
gets check sequence, the covariance matrix (CM) of the
state ρA can be estimated with this formula:

γA =

[
Vx c
c Vp

]
, (1)

where Vx and Vp are the variance of X and P quadra-
tures, and c is the co-variance between X and P quadra-
tures for ρA.

At last, the final randomness that Alice could extract
from total ntot measurement is asymptotically calculated
by (ntot − nc) (H (ai)− S (ai : E))−t, where H(ai) is the
discrete Shannon entropy of Alice’s measurement results
and S(ai : E) is the quantum mutual information be-
tween the quantum state ρE kept by Eve and Alice’s
measurement results. Then putting the remaining mea-
surement results into randomness extractor. There is
several mature and verifiable randomness extractors that

FIG. 1. (Color online) Schematic of CV-SI-QRNG protocol.
Eve completely controls the untrusted source and keeps quan-
tum state ρE related with quantum state ρA which is sent to
Alice. Then Alice does balanced homodyne measurement on
ρA with bases which switched randomly between X and P
quadratures. The results of measurement ai must be elimi-
nated the insecurity parts by post-processing to output avail-
able security random numbers.

can eliminate the untrusted part of randomness and re-
main secure true randomness based on the parameters
set by Alice.

In the whole protocol we introduced above, no assump-
tions have been made on the source of QRNG. That
means, the random numbers extracted are secure enough
regardless of the purity and dimensions of Alice’s input
state. The measurement devices have our fully trust since
it’s inaccessible for Eve.

III. SECURITY ANALYSIS AND FINITE-SIZE
EFFECT

In this section , we will make a brief analysis about the
security of our CV-SI-QRNG protocol firstly (the more
detailed analysis is in [20]) and the formulas that are
used in finite-size analysis and numerical simulations are
derived.

A. Security analysis

Our protocol is very similar with continuous-variable
quantum key distribution [23–25], the key rate of our
CV-SI-QRNG is calculated with the Devetak-Winter
formula [26], in the case of i. i. d, which is used in
continuous-variable quantum key distribution, is given
by:

K = β (I (a : b)− S (a : E)) , (2)

where β is the reconciliation efficiency, I(a : b) is the
classical mutual information between Alice and Bob and
S(a : E) is the Holevo bound between the quantum state
ρE kept by Eve and the result a measured by Alice. Dif-
ferent from continuous variable quantum key distribution
scenario, in QRNG, Alice and Bob are at the same sta-
tion. Thus, we don’t perform information reconciliation.
Therefore the mutual information I(a : b) is described by
Shannon entropy H(a) which is just defined by Alice’s
actually obtained data and the reconciliation efficiency β
equals to 1.
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In the Eq. 2, it should be noted that Alice’s measure-
ment result a is a continuous variable, that means the
homodyne detection is perfect with infinite range and
resolution. But, in practical, the measurement of Al-
ice must be imperfect with finite range and finite resolu-
tion, i. e. it should be coarse-gained and discrete [27]. It
mainly depends on the precision of analog-to-digital con-
vertor, which digitizes the unreadable continuous data
a into n bit ai. We define the sampling range of
the analog-to-digital convertor is [−N+∆/2,N−∆3/2],
where ∆=N/2n−1. The sampling range has been divided
evenly into 2n bins and ∆ is the interval between every
adjacent ai.

Then, the available secure randomness that uncorre-
lated with state ρE kept by Eve can be calculated out in
our condition by formula:

Rdis (ai |E ) = H (ai)− S (ai : E) , (3)

where H (ai) is the discrete Shannon entropy of ai,
S (ai : E) is the Holevo bound between the quantum state
ρE kept by Eve and the discrete result ai measured by
Alice. H (ai) can be calculated easily with Alice’s mea-
surement result ai. So, we focus on S (ai : E) to find its
upper bound due to the difficulty of calculating it out
directly.

First, there is an inequality proved in [20] that
S (ai : E) ≤ S (a : E). It means the digitization oper-
ation won’t increase the mutual information between the
quantum state ρE kept by Eve and the discrete result
ai measured by Alice. Then, we consider the worst case
that the state ρE kept by Eve is a purification of ρA. This
leads to S (ρE |a ) = 0 and S(a : E) = S(ρE) = S (ρA).
The von Neumann entropy of Gaussian state ρG is the
upper bound in that of arbitrary state ρ if they have the
same CM [28]. So, there is S (ρA) ≤ S

(
ρGA
)
.

Now, the lower bound of final extractable random-
ness [29] goes to

Rdis (ai |E ) ≥ H (ai)− S
(
ρGA
)
. (4)

Focusing on S
(
ρGA
)
, its von Neumann entropy is

S
(
ρGA
)

=
λ+ 1

2
log2

λ+ 1

2
− λ− 1

2
log2

λ− 1

2
, (5)

where λ is the symplectic eigenvalue of matrix in Eq.1
and λ=

√
det(γA) =

√
VxVp − c2. But we cannot obtain

the exact value of λ due to the loss information inside
the digitized interval. Therefor, we have to estimate its
upper bound to obtain secure randomness. We set c = 0
and defined λ < λ̄ =

√
V̄xV̄p, where V̄x is the upper

bound of Vx, given by:

V̄x = pdis (aimin
) (amin − ā)

2
+ pdis (aimax

) (amax − ā)
2

+
0∑

i=imin+1

pdis (ai)
(
ai − ā− 1

2∆
)2

+
imax−1∑
i=1

pdis (ai)
(
ai − ā+ 1

2∆
)2
,

(6)

where pdis (ai) is the probability of ai, ā is the mean of
Alice’s measurement result, amin and amax are the min-
imal and maximum values of a large bound [−alim, alim].
This bound is set to make the probability that measure-
ment result a is outside the bound is negligible for more
rigorous proof. As shown in Eq. 6, we use the boundary
of the discrete interval which is farther from 0 point to
estimate the upper bound of Vx, i. e. we use ai + 1

2∆ if

ai > 0 and use ai − 1
2∆ if ai < 0. We give the same

definitions and assumptions for V̄p.
Our protocol uses vacuum state as randomness source

which is not be disturbed by Eve. And we define the
variance of vacuum fluctuation as σ2

vac= 1 for normal-
ized calculation. In practice, we must consider the excess
noise ε which is mixed in quantum state ρA due to the
side information. Thus, the expected variance of Alice’s
measurement result becomes σ2 = Vx = Vp = ε+σ2

vac.
Alice’s homodyne measurement result a is a continuous
variable which satisfies Gaussian distribution with vari-
ance σ2 and zero mean. The expected discrete proba-
bility pdis (ai) of ai can be calculated out based on the
Gaussian distribution.

No assumptions about the source have been made in
the security analysis. Therefore the final extracted ran-
domness is source-device-independent and does not relate
to Eve.

B. Finite-size effect

In fact, our CV-SI-QRNG and data sampling can’t run
forever. Thus, we could only extract finite-size sequences
for random numbers. Some parameters of the extracted
data will have fluctuations and deviations compared with
their ideal values. In our protocol, the number of total
measurement results ntot and the number of check sam-
ples nc are finite absolutely. Therefore the extractable
randomness in Eq. 4 should be bounded with finite-size
effect.

Our analysis of finite-size effect focuses on V̄x which
is defined in Eq. 6 in infinite-size scenario. The for-
mula we used for obtaining Vx with discrete sequence
a = {a1, a2 · · · am} which is the output of convertor is

V̂x =
1

m

m∑
i=1

(
ai ±

1

2
∆− ā

)2

, (7)

where m is the check data length and V̂x is the true value
of Vx. For the plus or minus sign in front of 1

2∆, we take
plus sign if ai > 0, and take minus sign if ai < 0. Now,
we expand Eq. 7 to

V̂x = 1
m

m∑
i=1

(
a2i ±∆ · ai

)
+ 1

m

m∑
i=1

(∓∆ · ā)

+ 1
m

m∑
i=1

(
ā2 − 2aiā

)
+ 1

4∆2.
(8)

An approximation could be done that ±∆·ai = |∆ · ai|
based on the selection of plus or minus sign. For a large
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m, the numbers of plus sign and minus sign we take in
Eq. 7 are unlikely to differ by orders of magnitude, and ā
is almost close to 0. Therefore, we can make an approx-
imation that 1

m

∑m
i=1 (∓∆ · ā) ≈ 0. Take these results

into Eq. 8, we get

V̂x =
1

m

m∑
i=1

(
a2i + |∆ · ai|

)
− ā2 +

1

4
∆2. (9)

It should be taken note that ā has correlation with ai,
but for a large m the correlation is very small, and ā is
close to 0 compared with a2i . So we use ideal value µa
instead of ā. We define a2i + |∆ · ai| = bi and get

V̂x =
1

m

m∑
i=1

bi − µ2
a +

1

4
∆2. (10)

Let’s focus on
∑m
i=1 bi. In Sec II, we have assumed

that the experiments are repeated in i. i. d. way, thus the
extracted numbers ai are i. i. d. too. For this reason, bi
is i. i. d. absolutely based on its definition. According to
central limit theorem [30]: for an i. i. d. random number
sequence b = {b1, b2 · · · bm}, if m is large enough (more
than 104), it has following approximation∑m

i=1 bi −mµb√
mσb

∼ N (0, 1) , (11)

where µb and σb are the ideal mean value and standard
variance of b respectively and N(0, 1) is standard Gaus-
sian distribution. Thus the value of 1

m

∑m
i=1 bi satisfies

Gaussian distribution approximately:

1

m

m∑
i=1

bi ∼ N
(
µb,

σ2
b

m

)
, (12)

FIG. 2. (Color online) The impact of check data length m for
finite-size effect on extractable randomness Rdis(ai : E). We
set the excess noise ε = 0.1, ideal variance σ2 = 1 + ε = 1.1,
confidence probability ε = 10−10, sampling resolution n = 16,
and sampling range size N = 3σ here.

and V̂x satisfies

V̂x ∼ N
(
µb − µ2

a +
1

4
∆2,

σ2
b

m

)
. (13)

In Eq. 6, an assumption has been made that the mini-
mal and maximum values of a are determined by a large
bound [−alim, alim]. So, we make the same assump-
tion here for calibrating µb, σb and µa. Then we find
µb − µ2

a + 1
4∆2≈V̄ . It means our method estimates V̂x

quite well.
Now we can estimate the confidence interval of V̂x with

confidence probability ε:

V̂x ∈
[
V̄x −∆V, V̄x + ∆V

]
, (14)

where

∆V = Zε/2

√
σ2
b

m
, (15)

and Zε/2 satisfies 1− erf
(
Zε/2/

√
2
)

= ε. ε is the proba-

bility of the V̂x estimation outside the confidence interval.
And erf is the error function defined as

erf (x) =
2√
π

∫ x

0

e−t
2

dt. (16)

To get the upper bound of λ in Eq. 5, we use V̂x to
estimate Vx. So there is

Vxmax ≈ V̄x + Zε/2

√
σ2
b

m
. (17)

Similarly, we consider finite-size effect on Vp with the
same method, and get Vpmax. Putting these parameters

FIG. 3. (Color online) The impact of confidence probability
ε for finite-size effect on extractable randomness Rdis(ai : E).
We set the excess noise ε = 0.1, ideal variance σ2 = 1 + ε =
1.1, check data length m = 106, sampling resolution n = 16,
and sampling range size N = 3σ here.
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FIG. 4. (Color online) The impact of sampling range size N
for finite-size effect on extractable randomness Rdis(ai : E)
with different check data length m, which from bottom to top
curve correspond to m = 104, 105, 106, 107, 108. We set the
excess noise ε = 0.1, ideal variance σ2 = 1+ε = 1.1, sampling
resolution n = 16, and confidence probability ε = 10−10 here.

into Eq. 1 and we will get the upper bound of λ:

λmax =
√
VxmaxVpmax. (18)

In fact, finding the confidence interval of λ with con-
fidence probability ε is a more precise method to esti-
mate the upper bound of λ. But the calculation is too
complex for the distribution of product of two Gaussian
distributions which don’t satisfy standard Gaussian dis-
tribution [31]. Fortunately, the value of λ calculated by
the upper bounds of Vx and Vp is very close to the more
precise one [23]. So, we can use λmax to estimate the
extractable randomness.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we’ll have some numerical simulations
and discuss the results for considering finite-size on
CV-SI-QRNG with the ideal measurement assumption.
We assume that the input state is vacuum state here,
i. e. the X and P quadratures satisfy the same probability
distribution. It leads to Vxmax=Vpmax. The large bound
[−alim, alim], which is defined to determine the amax and
amin in Eq. 6, is set as [−10σ, 10σ]. The probability
that ai falls out of the large bound is less than 1.5×10−23.

Fig. 2 shows the relationship between extractable ran-
domness and check data length. The red solid line is the
ideal extractable randomness in infinite-size case, and the
blue dot-dashed line is the extractable randomness with
the effect of finite size. We can see that, the blue line
changes sharply since check data length reduces under

FIG. 5. (Color online) The impact of sampling range size N
for finite-size effect on extractable randomness Rdis(ai : E)
with different sampling resolution n, which we choose n =
8, 12, 16. We set the excess noise ε = 0.1, ideal variance
σ2 = 1 + ε = 1.1, check data length m = 104, and confi-
dence probability ε = 10−10 here.

104 (some assumptions we made above have large devia-
tion here), i. e. finite-size effect has remarkable influence
on finial randomness. When check data length is larger
than 107, the finite-size line is very close to ideal line.
In practical, we should choose an appropriate check data
length to obtain enough final randomness meanwhile use
less computing resources.

The another important parameter of finite-size effect
is confidence probability ε. The relationship between
extractable randomness and confidence probability is
shown in Fig. 3. The curve of finite-size is more smoothly
as ε decreases. At the point ε = 1, the finite-size effect on
extractable randomness disappears due to the estimation
for confidence interval of variance converges towards its
ideal value. The confidence probability can be used as se-
curity parameter to adjust final randomness for different
demands on security.

The function of sampling range size and extractable
randomness under finite-size effect with different check
data lengths has been displayed in Fig. 4. The curve is
closer to the ideal curve (black solid line) with longer
check data length. Finite-size effect is relatively smooth
after the increase of sampling range size over the value
that achieves max extractable randomness. In fact, as
the increase of sampling range size, deviation between
ideal and finite-size reduces very slowly. The gap be-
tween them is 0.1943 bit when N = 10σ, and reduces
to 0.1924 bit when N = 100σ with check data length
m = 104, sampling resolution n = 16, and confidence
probability ε = 10−10. We would like to point out that
the most serious impact of finite-size appears in the peak
value of extractable randomness, the same in Fig. 5, due
to the comparatively uniform distribution of ai. We dis-
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FIG. 6. (Color online) Simulation results for upper bound
of Eve’s information S(ai : E) and extractable randomness
Rdis(ai : E) as a function of sampling resolution n under
ideal infinite-size and finite-size condition. We set the excess
noise ε = 0.1, ideal variance σ2 = 1 + ε = 1.1, sampling range
size N = 3σ, check data length m = 104, and confidence
probability ε = 10−10 here.

cuss it in details in appendix A.
In Fig. 5, we show the function of sampling range size

and extractable randomness under finite-size effect with
different sampling resolution. We choose n = 8, 12, 16
three common sampling resolutions to show the influence.
And we can see that, the finite-size effect has similar
impact with different sampling resolutions. Fig. 6 shows
this impact in detail. We fix sampling range to N = 3σ
and display the extractable randomness Rdis(ai : E) and
the upper bound of Eve’s information S(ai : E) as a
function with sampling resolution n under ideal infinite-
size and finite-size conditions. The gap between the ideal
curve and finite-size one is almost fixed with different
sampling resolutions for both Rdis(ai : E) and S(ai : E).

V. CONCLUSION

In this paper, we propose a method considering im-
pact of finite-size effect on continuous variable source-
independent quantum random number generation and
improve the security of our protocol in practical appli-
cations. The method provides some formulas through
central limit theorem for calculating the statistical fluc-
tuations of parameters under finite-size scenario. Some
numerical simulations are provided to show the influence
on extractable randomness with several key variable pa-
rameters. We discuss these results in detail and summa-
rize some conclusions, which could be useful in practical
realization.

The outcomes we found in numerical simulations show
the rizations of finite-size effect. The final randomness

FIG. 7. (Color online) The probability distribution Pdis(ai)
of Alice’s quantified output with different sampling range size
N = 2σ, 4σ, 8σ, 100σ. We set the excess noise ε = 0.1, ideal
variance σ2 = 1+ε = 1.1 and fixed sampling resolution n = 8
here.

is closer to the ideal value, with the increase of check
data length and confidence probability, i. e. the effect
of finite-size is monotonically related with these two pa-
rameters mightily. One could choose appropriate values
according to the need for security and available comput-
ing resources in practical. An apposite sampling range
size will reach the maximum of extractable randomness,
which makes a relatively uniform distribution of input
and the largest loss of randomness due to finite-size ef-
fect. Moreover, the loss is smoothly decreasing after sam-
pling range size rises over the peak. While the impact of
sampling resolution is more steady.

Our method still needs some improvements which can
get further study, such as the treatment of the most bor-
der sampling value and the approximate on λmax. In ad-
diction,this work can promote the applications of contin-
uous variable source-independent quantum random num-
ber generation and ensure the security in its processing.

Note added. Finite-size effect of the continuous vari-
able source-independent quantum random number gen-
eration protocols has also been taken into consideration
in [19], where the entropic uncertainty principle used for
finite-size analysis through estimating the smooth min-
conditional entropy. However, the central limit theorem
and the impact of some key parameters haven’t been con-
sidered for the finite-size analysis in detail.
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Appendix A: Effect of sampling range size

In this appendix, we focus on the impact of sampling
range size on finite-size effect by analyzing the loss of
extractable randomness, because of the remarkable influ-
ence of it for extractable randomness in both ideal and
finite-size conditions.

This parameter mainly influences the probability dis-
tribution of Alice’s discrete results as shown in Fig. 7.
The probability will concentrate in the middle bins with
the increase of the sampling range size. And if the sam-
pling range size N is too small, most of the probability
will lie in boundary bins.

Fig. 8 shows the extractable randomness Rdis(ai : E)
with a larger sampling range size bound compared with
Fig. 4 and the difference value between ideal and finite-
size conditions is shown in the inner mini figure. We
can see that the curve of difference values has a peak
when N = 2.7σ, and extractable randomness rises and
falls sharply near the peak. But after the sampling range
size increases over 5σ, the reduction of difference values
suddenly becomes very smooth.

The sampling range size value N near peak is exactly
the value that makes the most uniform probability dis-
tribution of ai. When the sampling range size is small,
compared to that with large sampling range size, the
change of probability distribution is more conspicuous as
the sampling range size changes. This corresponds the
sharp and smooth changes in the mini figure of Fig. 8
respectively.

It should be noted that the peak of extractable ran-
domness on ideal infinite case appears in N = 3.4σ and
doesn’t coincide with the peak of difference. It leads to
the max extractable randomness under finite-size condi-
tion appears in N = 3.7σ, slightly larger than the value
in ideal case. It should be paid attention in practical for
obtaining maximal final randomness.
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