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Abstract

Quantum walk search may exhibit phenomena beyond the intuition
from a conventional random walk theory. One of such examples is
exceptional configuration phenomenon – it appears that it may be
much harder to find any of two or more marked vertices, that if only
one of them is marked. In this paper, we analyze the probability
of finding any of marked vertices in such scenarios and prove upper
bounds for various sets of marked vertices. We apply the upper bounds
to large collection of graphs and show that the quantum search may
be slow even when taking real-world networks.

1 Introduction

Quantum walks are quantum counterparts of classical random walks [1].
Similarly to classical random walks, there are two types of quantum walks:
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discrete-time quantum walks (DTQW), introduced by Aharonov et al. [2],
and continuous-time quantum walks (CTQW), introduced by Farhi et al. [3].
For the discrete-time version, the step of the quantum walk is usually given
by two operators – coin and shift – which are applied repeatedly. The coin
operator acts on the internal state of the walker and rearranges the ampli-
tudes of going to adjacent vertices. The shift operator moves the walker
between the adjacent vertices.

Quantum walks have been useful for designing algorithms for a variety
of search problems [4]. To solve a search problem using quantum walks, we
introduce the notion of marked elements (vertices), corresponding to elements
of the search space that we want to find. We perform a quantum walk on the
search space with one transition rule at the unmarked vertices, and another
transition rule at the marked vertices. If this process is set up properly, it
leads to a quantum state in which the marked vertices have higher probability
to be found than the unmarked ones. This method of search using quantum
walks was first introduced in [5] and has been used many times since then.

In contrary to classical random walks, the behavior of the quantum walk
can drastically change if the search space contains more than one marked
element. In 2008 Ambainis and Rivosh [6] have studied DTQW on two-
dimensional grid and showed that if the diagonal of the grid is fully marked
then the probability of finding a marked element does not grow over time.
Later, in 2015 Wong and Ambainis [7] have analysed DTQW on the simplex
of complete graphs and showed that if one of the complete graphs is fully
marked then there is no speed-up over classical exhaustive search. In both
cases the configuration consists of Θ(

√
N) marked vertices. The same year

Nahimovs and Rivosh [8, 9] have studied DTQW on two-dimensional grid
for various placements of multiple marked vertices and demonstrated config-
urations of a constant number of marked vertices (naming them exceptional
configurations) for which the walk have no speed-up over classical exhaus-
tive search. Later, Nahimovs and Santos [10] have extended the results to
general graphs. Note, that the existence of exceptional configurations is not
a universal phenomenon, but a feature of a DTQW model with specific coin
operator [11].

Recently Ambainis et al. [12] proposed a quantum walk search algorithm,
that is known to be quadratically faster than regular random walks in finding
any set of marked vertices. Despite this it is still possible to utilize exceptional
configurations. The phenomenon was used to show that quantum algorithms
are not secure against malicious input modification [13], and to detect perfect
matching in a bipartite graph [14].

The reason why some configurations are exceptional is that for such con-
figurations the initial state of the algorithm is close to a 1-eigenvector of a step
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of the walk algorithm. Therefore, the probability of finding a marked vertex
stays close to the initial probability and does not grow over time. Nahimovs,
Khadiev and Santos [15] analysed the search for a set of connected marked
vertices forming an exceptional configuration and proved the upper bound
on the probability of finding a marked vertex. The proved bound, however,
depends on a parameter – a sum of squares of amplitudes of edges between
the marked vertices inside the stationary state – which was left unestimated.

In this paper we continue the analysis and prove the upper bound in
explicit form, which depends on properties of the graph and the configuration
of marked vertices. In particular we show that useful bounds can be derived
based only on the order and size of the graph and its marked component,
and how strongly marked component is connected with rest of the graph.
Additionally, we analyse several examples of sets of marked vertices and
show tightness of our bounds in the worst case scenario. Finally, we apply the
bounds to random graphs and networks representing real-world dependencies.

2 Preliminaries

2.1 Graph theory preliminaries

Let G = (V,E) be a simple graph, by which mean that the graph is undi-
rected, unweighted, contains no loops or multiple edges. In this paper we
will consider only simple graphs. We say that the graph is bipartite if there
exists a non-empty U ⊂ V such that E ⊆ U × (V \U). We call U a bipartite
set. We define I(v) to be the set of edges incident to v, and N(v) to be
the set of adjacent vertices (neighbourhood of v). Furthermore, we define a
degree of the vertex deg(v) = |I(v)| = |N(v)|. We call a sequence

Pwv = (v1 = w, e1, v2, e2, . . . , vk−1, ek−1, vk = v), (1)

where ei = {vi, vi+1} a path, if each vertex appears exactly once, allowing
v1 = vk. If v1 = vk we call the path a cycle. We call |P | := k − 1 the length
of the path P . Let d̄ be the diameter in a graph, i.e. the maximum distance
between any pair of vertices in G. We call vertex v a leaf iff deg(v) = 1.

We call a graph H = (VH , EH) a subgraph of G iff VH ⊆ V and EH ⊆ E.
Furthermore, a subgraph is a spanning subgraph iff VH = V . Note that G
is a (spanning) subgraph of G as well. We call subgraph H = (VH , EH) an
induced subgraph of G iff for each v, w ∈ VH we have {v, w} ∈ EH ⇐⇒
{v, w} ∈ EG.

We call graph a forest if it does not contain any cycles. A tree is a
connected forest. We say graph is unicyclic if it contains exactly one cycle.

3



Every connected unicyclic graph has precisely |V | edges. One can prove the
following theorem.

Lemma 1. Let G = (V,E) be a connected undirected graph with a subgraph
C being a cycle. Then there exists a connected, unicyclic, spanning subgraph
H ⊆ G such that C ⊂ H.

Proof. The proof is constructive. Let us start with H0 = G. If H0 contains
precisely |V | edges, then it matches the requirements of the theorem. If not,
it means it has another cycle C1. Let e be an edge that is in C1 but not in C,
Then we construct new graph H1 = (V,EH0 \ {e}). Removing the edge from
a cycle does not break connectivity, and still we have C ⊆ H1 ⊆ G, but with
H1 having one edge less. By repeating the procedure for k = 2, . . . , |E|−|V |,
we construct connected spanning subgraphs Hk of G having |E| − k edges
and satisfying C ⊆ Hk. By construction H ⊆ H|E|−|V | has |V | edges, hence
is a unicyclic graph and satisfies requirement from the lemma.

2.2 Quantum walks

Let G = (V,E) be a simple, undirected graph. We define a location register
with basis states |v〉 for v ∈ V and a direction or a coin register, which for a
vertex v has deg(v) = |N(v)| basis states |w〉 for w ∈ N(v). The state of the
quantum walk is given by

|ψ(t)〉 =
∑
v∈V

∑
w∈N(v)

αv,w |v, w〉 . (2)

One can consider the state of the quantum walk as a state spanned by a
directed graph. Indeed, a single basic state |v, w〉 has a natural interpretation
as arc (v, w) [16]. Note that in general αv,w 6= αw,v.

A step of the quantum walk is performed by first applying C = I ⊗ C ′,
where C ′ is a unitary transformation on the coin register. The usual choice
of transformation on the coin register is Grover’s diffusion transformation D.
Then, the shift transformation S is applied,

S =
∑
v∈V

∑
w∈N(v)

|w, v〉 〈v, w| , (3)

which for each pair of connected vertices v, w swaps an amplitude of arc
(v, w) with an amplitude of arc (w, v).

The quantum walk starts in the equal superposition over all vertex-
direction pairs

|ψ0〉 =
1√
2|E|

∑
v∈V

∑
w∈N(v)

|v, w〉 . (4)
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It can be verified that the state stays unchanged, regardless of the number
of steps.

To use the quantum walk as a tool for search, we introduce the notion
of marked vertices. We perform the quantum walk with one set of transfor-
mations at unmarked vertices, and another set of transformations at marked
vertices. Usually the separation between marked and unmarked vertices is
given by the query transformation Q, which flips the sign at a marked vertex,
irrespective of the coin state, i.e. Q |v, w〉 = − |v, w〉 iff v is marked. In this
case a step of the quantum search is given by the transformation U = SCQ.

The running time of the walk and the probability of finding a marked
vertex in general case depends on both the structure of the graph and the
configuration, i.e. the number and the placement of marked vertices.

2.3 Stationary states

We call a state of the quantum walk |ψss〉 a stationary state if it is not
changed by the step of the walk U , namely |ψss〉 = U |ψss〉 1. The step of
the walk depends on a set of marked vertices VM . In order to identify sets
of marked vertices which result in inefficient quantum search, we need to
consider stationary states with overlap | 〈ψss|ψ0〉 | being as large as possible.

It turns out that we may limit ourselves to a special class of stationary
states (given by Theorem 2) as there exists a state of this form which has
maximal overlap with the initial state among all stationary states (for the
given set of marked vertices).

Theorem 2 ([10, 11]). Let G = (V,E) be undirected graph. Consider a state
|ψ〉 =

∑
v∈V

∑
w∈N(v) αv,w |v, w〉 with the following properties:

1. for all v ∈ V and w ∈ N(v) αv,w = αw,v,

2. if v ∈ V is marked, then
∑

w∈N(v) αv,w = 0,

3. if v ∈ V is unmarked, then for any w, u ∈ N(v) we have αv,w = αv,u.

Then |ψ〉 is a stationary state of the quantum search operator U .

Fig. 1 shows two different stationary states for the same set of marked vertices
for a two-dimensional grid.

1 The existence of stationary states is not a universal phenomenon, but a feature of a
quantum walk model. For DTQW model it depends on a coin transformation used by the
walk [11].
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Figure 1: Stationary states for the two-dimensional grid. Marked vertices
are colored in blue.

Theorem 3 ([11]). There exists a stationary state of the form as in The-
orem 2 that maximizes the overlap between it and the initial state over all
possible stationary states.

The following theorem gives the conditions for a configuration (set) of
marked vertices to have a stationary state:

Theorem 4 ([11]). Let G = (V,E) be an undirected graph with a set of
marked vertices VM and let GM = (VM , EM) be its subgraph induced by VM .
Then the step of the quantum walk has a stationary state if:

1. GM is non-bipartite;

2. GM is bipartite with bipartite set UM , and∑
u∈UM

degG(u) =
∑

v∈VM\UM

degG(v), (5)

where degG(v) is the degree of vertex v in the graph G.

Note that this class of configurations of marked vertices does not exhaust all
possible configurations with small success probability [17]. To simplify the
further discussion we give the following definition.

Definition. Let G = (V,E) be an undirected graph, let VM be a set of marked
vertices with 1 < |VM | < |V |. Let GM = (VM , EM) be a connected induced
graph of G that satisfies the items 1 or 2 from Theorem 4. In this case we
call GM a Single-Amplitude Marked Component (SAMC) of G.
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Consider a SAMC GM = (VM , EM) of graph G = (V,E). If the subgraph
induced by V \ VM is connected, then from Theorem 2 (properties 1 and
3) it follows that all amplitudes of a stationary state outside the GM must
be equal. If the subgraph is not connected, we can still find a stationary
state for which “outside” amplitudes are equal [17], however, the state is not
guaranteed to have maximal overlap with the initial state.

A stationary state of SAMC2 with large (maximal in case of subgraph
induced by V \ VM is connected) overlap can be written as

|ψss〉 = a
∑

v∈V \VM

∑
w∈N(v)

|v, w〉+ a
∑

{v,w}∈EM

c({v, w})(|v, w〉+ |w, v〉) (6)

where a < 1/
√

2|E| − 2|EM | −DM̄ [17]. DM̄ denotes the number of edges
from VM to V \ VM . We need to find a mapping c : EM → R (assignment of
amplitudes c({v, w})) such that the overlap between the initial state and the
stationary state above is maximized. Note, that c must satisfy the property
2 of Theorem 2.

The paper [15] proves the bound on the success probability of the walk:

Theorem 5 ([15, 17]). Consider a graph G = (V,E) with a SAMC GM =
(VM , EM). Let

|ψss〉 = a
∑

v∈V \VM

∑
w∈N(v)

|v, w〉+ a
∑

{v,w}∈EM

c({w, v})(|v, w〉+ |w, v〉) (7)

be a stationary state of SAMC. Then the probability pM(t) of finding a marked
vertex at time t satisfies

max
t≥0

pM(t) ≤ 4

2|E| − 2|EM | −DM̄

(∑
e∈EM

c2(e) + 2DM̄ + 2|EM |
)
. (8)

While |E|, |EM | andDM̄ depend onG and VM only, there might exist multiple
assignments of c(e) and, therefore,

∑
c2(e) is not uniquely defined. In the

next section, which is the main result of the paper, we will focus on estimating
the sum.

3 The upperbounds on success probability for

general SAMC

In this section we present a results concerning upperbounds for general
graphs, and examples showing their tightness. Our results are organized

2More precisely, of the step of the quantum walk with a set of marked vertices VM .
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as follows. In the Sec. 3.1 we formulate notation and present the optimiza-
tion problem which will play a central role in rest of our paper. The main
results of our paper concerning general graphs are splitted into three parts.
In Sec. 3.2 we present general results concerning trees. In Sec. 3.3 we present
results for nonbipartite graphs. In Sec. 3.4 we present results concerning
bipartite graphs. Finally, in Sec. 3.5 we conclude our results.

Our proofs are constructive, in the sense that they allow constructing the
stationary state.

3.1 The optimization problem

In Theorem 5 we have shown a general upperbound, which is true for any
mapping c : EM → R satisfying some special requirement. Thus our goal
is to find such c, that the bound is as small as possible. This gives us an
optimization problem, which we define below.

Let GM = (VM , EM) be a SAMC of some graph G. Let

|ψss〉 = a
∑

v∈V \VM

∑
w∈N(v)

|v, w〉+ a
∑

{v,w}∈EM

c({w, v})(|v, w〉+ |w, v〉). (9)

be a stationary state of the quantum search. Conditions 1. and 3. from
Theorem 2 are satisfied by the form of the stationary state. For Condition
2., we have to satisfy for all v ∈ VM

a|N(v) \ VM |+ a
∑

w∈N(v)∩VM

c({v, w}) = 0

∑
w∈N(v)∩VM

c({v, w}) = −|N(v) \ VM |.
(10)

For simplicity let us define conditioning function K : VM → R of the form
K(v) = −|N(v) \ VM |. We can turn the original problem of minimizing the
RHS from the upperbound presented in Theorem 5 into equivalent, purely
classical optimization problem

minimize
c|c:EM→R

‖c‖2
2

subject to
∑

e∈I(v)∩EM

c(e) = −K(v) for v ∈ VM . (11)

Instead of solving the minimization problem we will construct a c, and thus
stationary state, with sufficiently small ‖c‖2

2. By presenting suitable examples
we will show that at least in complexity our derivation is tight in the sense
of choice of c.
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Let us now introduce notation used in the paper. We denote ‖K‖ =
maxv∈VM

|K(v)| and ‖K‖1 =
∑

v∈VM
|K(v)|. Let V1 ⊆ VM , then we will

use notation ‖K‖V1
1 =

∑
v∈V1
|K(v)|. In particular for disjoint A,B we have

‖K‖A1 +‖K‖B1 = ‖K‖A∪B1 . In the paper we will use convention
∑

i∈∅ f(i) = 0,

thus ‖K‖∅1 = 0 as well. Furthermore ‖K‖VM
1 = ‖K‖1.

Note that GM is SAMC of a connected graph, we have ‖K‖ = Ω(1) and
‖K‖1 = Ω(1). Furthermore for bipartite SAMC with bipartite set UM we
have based on item 2. from Theorem 2∑

u∈UM

K(u) =
∑

v∈VM\UM

K(v). (12)

3.2 Success probability for trees SAMC

Let us start with the preliminaries concerning rooted trees. We call T =
(V,E, v) a rooted tree iff (V,E) is a tree and v ∈ V . For such graph, for
each vertex w ∈ V there exists a unique path Pwv. The length of the path is
denoted by d(w, v). We call the height of the tree h(T ) the length of maximal
path to its root, i.e.

h(T ) := max
w∈V
|Pwv|. (13)

For each w ∈ V \ {v} there exists an edge ep(w) which is the first edge of
the path Pwv, that is the edge which connects the vertex w to its parent
p(w). Let NC(w) be a collection of vertices w is a parent of. Let IC(w) =
I(w) \ {ep(w)} be a collection of edges incident to w. Note that for the root
we have NC(v) = N(v) and IC(v) = I(v).

For any rooted tree we can define a natural partial order (V,5) called
tree-order. We have w′ 5 w iff the path Pw′v passes through w. We denote
D(w) := {u ∈ V : u 5 w} a set of all descendants of w. Note, that we assume
u is its own descendant. We call (V,5∗) a linear extension of the partial order
iff the 5∗ is linear and for each w 5 w′ we have w 5∗ w′. We can create
linear extension as follows. First, we list all leaves. Then, we inductively
list all neighbors of already listed elements, unless they are already included
or unless they are root. At the very end we add the root. Note that the
root v is the unique maximum for both tree-order and its linear extension.
Furthermore, the minimal elements of the tree-order are leafs. Please find an
example on Fig. 2.

Let us start with simple graph-theoretic bound. While the lemma does
not provide immediate application in quantum walk theory, we leave the
proof here so that the reader get used to concept of linear extension of tree
order, and the induction made on it.

9



1 2 3

4 5

6 7 8

9

10
root

leaves

the direction of 5 and 5∗ orders

(a) rooted tree

1 4 6 2 3 5 7 8 9 10

(b) Exemplary 5∗ order

Figure 2: An example of (a) rooted tree, (b) and its exemplary linear order
5∗ . Leaves are marked blue, and root is marked red.

Lemma 6. Let T (V,E, v) be a rooted tree with height h. Then∑
u∈V \{v}

|D(u)|2 ≤ |V |2h. (14)

Proof. Note that for V = {v} tree has height 0, thus the statement is true.
We will show the statement by proving inductively∑

w∈D(u)\{u}

|D(w)|2 ≤ hu|D(u)|2, (15)

for all u ∈ V in linear extension of tree order 5∗. Here hw is the longest
path from w to its descendant. Note that for u = v we have the original
statement. The equation above is true for u being a leaf. For other nodes we
have ∑

w∈D(u)\{u}

|D(w)|2 =
∑

w∈NC(u)

∑
t∈D(w)\{w}

|D(t)|2 +
∑

w∈NC(u)

|D(w)|2

≤
∑

w∈NC(u)

hw|D(w)|2 +
∑

w∈NC(u)

|D(w)|2

≤ (hu − 1)
∑

w∈NC(u)

|D(w)|2 +
∑

w∈NC(u)

|D(w)|2

≤ hu
∑

w∈NC(u)

|D(w)|2 ≤ hu

 ∑
w∈NC(u)

|D(w)|

2

≤ hu|D(u)|2.

(16)
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We start with a lemma which will be used in most of proofs, including
those related to graphs not being trees.

Lemma 7. Let T = (V,E, v) be a rooted undirected tree and K : V → R.
Then there is a unique function c : E → R satisfying condition in Eq. (11)
for all vertices except the root. Furthermore it satisfies

∀u ∈ V
∣∣∣ ∑
e∈IC(u)

c(e)
∣∣∣ ≤ ‖K‖D(u)\{u}

1 , (17)

∀u ∈ V \ {v} |c(ep(u))| ≤ ‖K‖D(u)
1 . (18)

Proof. For |V | = 1 Eqs. (17) (18) are straightforward. Suppose |V | > 1.
Let v1, . . . , vn = v be vertices enumerated according to some linear ex-

tension 5∗ of the tree-order of T . We will assign the values of c(ep(vi)) and
prove Eqs. (17) and (18) inductively with the given order of vertices. Note
that uniqueness comes directly from the construction.

Suppose vi is a leaf. According to condition from Eq. (11), we have∑
e∈I(vi)

c(e) = c(ep(vi)) = −K(vi). (19)

Note that in this case Eq. (17) and (18) are trivially fulfilled as D(vi) = {vi}.
Suppose vi is not a leaf. Then, according to the order 5∗, for all edges

e ∈ IC(vi) value of c(e) is specified. According to condition from Eq. (11) we
have ∑

e∈I(vi)

c(e) =
∑

e∈IC(vi)

c(e) + c(ep(vi)) = −K(vi). (20)

From this we have

c(ep(vi)) = −
∑

e∈IC(vi)

c(e)−K(vi). (21)

Let us start with proving Eq. (17) for vi:∣∣∣ ∑
e∈IC(vi)

c(e)
∣∣∣ ≤ ∑

e∈IC(vi)

|c(e)| =
∑

u∈NC(vi)

|c(ep(u))| ≤
∑

u∈NC(vi)

‖K‖D(u)
1

= ‖K‖D(vi)\{vi}
1 ,

(22)

where the second inequality comes from the induction assumption on Eq. (18),
and the last equality results from the fact that we enumerated all descendants
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of vi except vi. Suppose vi is not the root. We have

|c(ep(vi))| =
∣∣∣− ∑

e∈IC(vi)

c(e)−K(vi)
∣∣∣ ≤ ∣∣∣ ∑

e∈IC(vi)

c(e)
∣∣∣+ |K(vi)|

≤ ‖K‖D(vi)\vi
1 + |K(vi)| = ‖K‖D(vi)

1 .

(23)

We would like to emphasize that the condition given in Eq. (11) is not
satisfied for the root. However, since any tree is a bipartite graph, the K
function should satisfy Eq. (12), which has not been assumed here. Let us
present the explicit upper-bound on the ‖c‖2 for general tree graph.

Proposition 8. Let G = (V,E) be a tree and a SAMC of some connected
graph, and let K be an appropriate conditioning function. Then there exists
a unique solution c of optimization problem given in Eq. (11). Furthermore,
for arbitrary rooted tree T = (V,E, v) we have

‖c‖2
2 ≤

∑
u∈V \{v}

(
‖K‖D(u)

1

)2

(24)

Proof. Let v ∈ V , and let T = (V,E, v) be a rooted tree with height h.
Based on Lemma 7 there is unique c satisfying condition of Eq. (11) for
every u ∈ V \ {v}. Hence, we need to show that the constraint holds for v
as well.

Let Vk be a set of vertices located at distance k from root. Note that

0 = K(v) +
∑
e∈I(v)

c(e) = K(v) +
∑

w1∈NC(v)

c(ep(w1))

= K(v) +
∑

w1∈NC(v)

(
−

∑
w2∈NC(w1)

c(ep(w2))−K(w1)
)

= K(v)−
∑
w1∈V1

K(w1)−
∑
w2∈V2

c(ep(w2)) = . . .

= K(v)−
∑
w1∈V1

K(w1) +
∑
w2∈V2

K(w2) · · ·+ (−1)h
∑

wh∈Vh

K(wh),

(25)

where second line comes from Eq. (21). We have obtained an equivalent
form of condition on K given by Eq. (12). Thus, c is a proper solution. The
Eq. (24) comes directly from applying Lemma 7.

Finally let us formulate a final result concerning the success probability
of trees.
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Theorem 9. Let GM = (VM , EM) be a tree SAMC of connected graph G =
(V,E), and let K be an appropriate conditioning function. Then there exists
a unique solution c of the optimization problem Eq. (11). Then the probability
pM(t) of finding any element from VM at time t satisfies

max
t≥0

pM(t) = O
(

d̄|VM |2‖K‖2

2|E| − 2|EM | −DM̄

)
, (26)

where d̄ is the diameter of the graph.

Proof. Based on the Theorem 5 we have only to upperbound the part ‖c‖2
2 +

2DM̄ . Note that DM̄ ≤ |VM |‖K‖ based on the definition of DM̄ . Using
Proposition 8 we have

‖c‖2
2 ≤

∑
u∈V \{v}

(
‖K‖D(u)

1

)2

≤
∑

u∈V \{v}

(‖K‖|D(u)|)2

≤ ‖K‖2
∑

u∈V \{v}

|D(u)|2 ≤ ‖K‖2|VM |2d̄,
(27)

where last inequality comes from Lemma 6 and the fact that for any rooted
tree the height is smaller than its diameter. Note that DM̄ = O(‖c‖2

2), and
|EM | = |VM | − 1, which ends the proof.

Note that RHS will converge to zero if |E| will be sufficiently large. This
is in fact general result that will happen in further graphs as well.

The upperbound presented in the theorem above may be inexact for two
reasons. First, the original bound from Theorem 5 may be not tight in
general. Second, the bound on ‖c‖2

2 may be not sufficiently tight. However,
we will show that in the worst case scenario the latter bound is tight.

Let d̄ be odd and n > d̄ be even. We consider the following graph with n
vertices. Let v1, . . . , vd̄−1 be vertices forming a path in the given order, and

let t1, . . . , tn′ and u1, . . . , un′ for n′ = n−d̄+1
2

be vertices connected to v1 and
vd̄−1 respectively, as in Fig. 3. Let K : v 7→ k > 0 be a constant conditioning
function. Since the graph is a tree, by the Theorem 8 the function c is unique
and thus optimal.

The solution function c takes the form

c(e) =


−k, e = {v1, ti},
−k, e = {vd̄−1, ui},
(−1)i+1(n′ − 1)k, e = {vi, vi+1}.

(28)
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t1

t2

t3

...

tn′

u1

u2

u3

...

un′

v1 v2 · · · vd̄−1

Figure 3: Glued stars with maximal 2n′ + d̄ − 1 number of nodes and d′

diameter

Thus, we have

‖c‖2
2 = 2n′k2 + (d̄− 2)((−1)i+1(n′ − 1)k)2

≥ (d̄− 2)(n′ − 1)2k2 (29)

Note that n′ = n−d̄+1
2

, hence n′ = Θ(n− d̄). If we choose d̄ ≤ n/2, then the
graph satisfies the theorem statement.

3.3 Success probability for nonbipartite SAMC

In this section we will show an upperbound for general non-bipartite SAMC.
The proof, visualized on Fig. 4 goes as follows. First, we choose an unicyclic
spanning subgraph of SAMC. Since SAMC is non-bipartite, we can find such
graph with cycle of odd length. Then we set the values of edges for edges
outside the cycle, as it was done in Theorem 7. Then, we solve the system
of linear equations in order to determine the values of c for the rest of the
edges. Finally, we upperbound the norm of ‖c‖2

2.

Proposition 10. Let G = (V,E) be a non-bipartite SAMC of some connected
graph with an appropriate conditioning function K and cycle of odd length ḡ.
Then there exists solution c of the optimization problem Eq. (11) such that

‖c‖2
2 ≤

ḡ

4
|V |2‖K‖2 + (|V | − ḡ)(|V | − ḡ + 1)2‖K‖2, (30)

and

‖c‖2
2 ≤

(
|V | − 3

4
ḡ

)
‖K‖2

1. (31)
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Figure 4: The sketch of the proof for non-bipartite and bipartite graphs.
First, unicyclic graph is chosen, all edges not belonging to the unicyclic
graphs are set to 0. Then, we set all values for edges outside the cycle
(marked blue). Finally, values for edges on the cycle graphs are set.

Proof. Let C = (VC , EC) be a cycle of G of length ḡ, with vertices v1, . . . , vḡ
with respectively e1, . . . , eḡ where ej = {vj, vj+1}. Let H = (V,EH) be a
connected, unicyclic spanning subgraph of G containing C. We set c(e) = 0
for all e ∈ E \ EH .

Now let us consider graph (V,EH\EC). Such constructed graph is a forest
which consists of ḡ trees such that each tree contains precisely one vertex from
cycle C. Each tree can be considered as an ordered tree Tj = (Vj, Ej, vj) with
root vj ∈ VC , and by Lemma 7 we can define uniquely c for each tree such
that

∀u ∈ Vj \ {vj} |c(ep(u))| ≤ ‖K‖Vj

1 , (32)

∀u ∈ Vj
∣∣∣ ∑
e∈IjC(u)

c(e)
∣∣∣ ≤ ‖K‖Vj\{vj}

1 . (33)

Now let us consider the missing part of the domain of c, which is EC .
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Based on the condition of Eq. (11) the values c(ej) must satisfy

c(ej) + c(ej+1) = −
∑

e∈Ij+1
C (vj+1)

c(e)−K(vj+1) =: zj+1. (34)

Since there is odd number of variables, there exists unique solution of the
form

c(ej) =
(−1)j

2

(
j∑

k=1

(−1)kzk −
ḡ∑

k=j+1

(−1)kzk

)
. (35)

Note that since we have

|zj| ≤
∣∣∣ ∑
e∈IjC(vj)

c(e)
∣∣∣+ |K(vj)| ≤ ‖K‖Vj\{vj}

1 + |K(vj)| = ‖K‖Vj

1 , (36)

we have as well

|c(ej)| ≤
1

2

ḡ∑
k=1

|zk| ≤
1

2

ḡ∑
k=1

‖K‖Vk
1 =

1

2
‖K‖1. (37)

Finally using all of the equations above we have

‖c‖2
2 =

ḡ∑
j=1

|c(ej)|2 +

ḡ∑
j=1

∑
e∈Ej

|c(e)|2 ≤ ḡ

4
‖K‖2

1 +

ḡ∑
j=1

∑
e∈Ej

(
‖K‖Vj

1

)2

≤ ḡ

4
‖K‖2

1 + (|V | − ḡ)‖K‖2
1 =

(
|V | − 3

4
ḡ

)
‖K‖2

1,

(38)

where we used |Vj| ≤ |V |− ḡ+ 1,
∑ḡ

j=1 |Ej| = (|V |− ḡ), and equations given

before. Furthermore using |Vj| ≤ (|V | − ḡ+ 1) and ‖K‖A1 ≤ |A|‖K‖ we have

‖c‖2
2 ≤

ḡ

4
‖K‖2

1 +

ḡ∑
j=1

∑
e∈Ej

(
‖K‖Vj

1

)2

≤ ḡ

4
|V |2‖K‖2 +

ḡ∑
j=1

∑
e∈Ej

(|V | − ḡ + 1)2‖K‖2

≤ ḡ

4
|V |2‖K‖2 + (|V | − ḡ)(|V | − ḡ + 1)2‖K‖2.

(39)
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w1

w2

w3

...

wn′

v1

v2 v3 · · · v ḡ−1
2

v ḡ+1
2

· · ·vḡ−1vḡ

Figure 5: Nonbipartite graph for which the unique solution c : E → R
satisfies

∑
e∈E c

2(e) = Θ(ḡ(|VM |− ḡ+ 1)2‖K‖2). We have distinguished with
thick lines a unique cycle of the graph

Contrary to the case of trees, here uniqueness of c function is guaranteed
only if the marked component is unicyclic itself. Note also that for different
unicyclic subgraphs we obtain different solutions c. Let us now formulate the
success probability upper-bound for general non-bipartite graph and general
K function.

Theorem 11. Let GM = (VM , EM) be a non-bipartite SAMC of connected
graph G = (V,E) with an appropriate conditioning function K. Then the
probability pM(t) of finding any element from VM at time t satisfies

max
t≥0

pM(t) = O
( |VM |3‖K‖2

2|E| − 2|EM | −DM̄

)
. (40)

Proof. Based on the Theorem 5 we have to upperbound the part ‖c‖2
2 +

2DM̄ . Note that DM̄ ≤ |VM |‖K‖ based on the definition of DM̄ . Using
Proposition 10 and noting 3 ≤ ḡ ≤ |VM | we have ‖c‖2

2 = O(|VM |3‖K‖2).
Since DM̄ = O(|VM |‖K‖) and |EM | = O(|VM |2), we obtained the RHS of
the upperbound.

Let us now present an example that shows tightness of the result above.
Let a SAMC GM = (VM , EM) be a graph with V = {v1, . . . , vḡ, w1, . . . , wn−ḡ}
with odd ḡ, and edge set constructed as follows:

1. v1, . . . , vḡ forms a cycle in given order,

2. for each i = 1, . . . , n− ḡ we have {v1, wi} ∈ E,

see Fig. 5 for visualization. The graph G is unicyclic, hence the c function
is unique. Let us consider conditioning function K : v 7→ k > 0. Note that
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function of the form

c(e) =


−k, e = {v1, wi},
k(n− ḡ − 1)/2, e = {vḡ, v1},
k(n− ḡ − 1)/2, e = {vi, vi+1} and i odd,

−k(n− ḡ − 1)/2− k, e = {vi, vi+1} and i even

(41)

is a unique solution of optimization problem Eq. (11). Finally we have

‖c‖2
2 = (n− ḡ)k2 +

ḡ + 1

2
(k(n− ḡ − 1)/2)2 +

ḡ − 1

2
(−k(n− ḡ − 1)/2− k)2

≥ ḡk2(n− ḡ − 1)2/4 = Ω(ḡ‖K‖2(n− ḡ + 1)2)

(42)

As we can see in case of ḡ ≈ n/2 our theorem is tight.

3.4 Success probability for bipartite SAMC

Finally, we will prove similar bounds for bipartite graphs. The proofs again
follow the sketch presented on Fig. 4. However, bipartite graphs do not have
cycles of odd length. This in turn implies that for fixed unicyclic graph
solution c is no longer unique.

Proposition 12. Let G = (V,E) be a bipartite SAMC of connected graph
with an appropriate conditioning function K and cycle of length ḡ. Then
there is a solution c of optimization problem Eq. (11) such that

‖c‖2
2 ≤ ḡ|V |2‖K‖2 + (|V | − ḡ)(|V | − ḡ + 1)2‖K‖2 (43)

and
‖c‖2

2 ≤ |V |‖K‖2
1. (44)

Proof. The proofs goes similarly to proof of Theorem 10, up to system of
linear equations. In this case we have an even number of equations with
either no solutions, or infinite number of solutions. Since K satisfies Eq. (12)
it turns that the solution is parametrized by single free variable and takes
the form

c(ej) = (−1)j+1

ḡ−1∑
k=j

(−1)kzk + (−1)j+1z. (45)

where z is a free parameter. Let z := zḡ. Then

|c(ej)| ≤
ḡ−1∑
k=j

|zk|+ |zḡ| ≤
ḡ∑

k=1

|zk| ≤
ḡ∑

k=1

‖K‖Vk
1 = ‖K‖1. (46)
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Finally, similarly to the proof of Theorem 12

‖c‖2
2 =

ḡ∑
j=1

|c(ej)|2 +

ḡ∑
j=1

∑
e∈Ej

|c(e)|2

≤ ḡ‖K‖2
1 + (|V | − ḡ)‖K‖2

1 = |V |‖K‖2
1

(47)

and

‖c‖2
2 ≤ ḡ|V |2‖K‖2 + (|V | − ḡ)(|V | − ḡ + 1)2‖K‖2. (48)

Below we present an upperbound for general bipartite graphs. The proof
goes the same as it was the non-bipartite case.

Theorem 13. Let GM = (VM , EM) be a bipartite SAMC of connected graph
G = (V,E) with an appropriate conditioning function K. Then the probabil-
ity pM(t) of finding any element from VM at time t satisfies

max
t≥0

pM(t) = O
( |VM |3‖K‖2

2|E| − 2|EM | −DM̄

)
. (49)

Note that in the proof we searched for unicyclic spanning subgraph, while
we could search for spanning tree and use Theorem 9. Careful analysis would
show the same bound O(|VM |3‖K‖2), since diameter of any spanning tree is
at most |VM |.

3.4.1 Special case: constant conditioning function K

We can lower the upperbound for bipartite SAMC if we assume K to be
constant. The proof goes the same way as previous proofs, however it differ
in details regarding the estimation of the ‖c‖2

2.

Proposition 14. Let G = (V,E) be a bipartite SAMC of some graph with
an appropriate constant conditioning function K and with cycle of length ḡ.
Then there exists a solution c of optimization problem Eq. (11) such that

‖c‖2
2 ≤ |V |(|V | − ḡ + 1)2‖K‖2. (50)

Proof. Whole construction of c and other variables remains the same, as in
Theorem 12, however we can provide more explicit form of c on edges from
cycle. Note that according to the construction we have

zk = −z0
j −K ′, (51)
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where z0
j :=

∑
e∈IjC(vj) c(e). Thus we can do following

c(ej) = (−1)j+1

ḡ−1∑
k=j

(−1)kzk + (−1)j+1z

= (−1)j
ḡ−1∑
k=j

(−1)k(z0
k +K ′) + (−1)j+1z

= (−1)j
ḡ−1∑
k=j

(−1)kz0
k +

K ′

2

(
1− (−1)j

)
+ (−1)j+1z

(52)

Hence for |z| = |z1| we have

|c(ei)| ≤ ‖K ′‖+

ḡ∑
k=1

(|Vk| − 1)‖K‖ = (|V | − ḡ + 1)‖K‖. (53)

Hence, similarly as in Theorem 12, we have

‖c‖2
2 ≤

ḡ∑
j=1

|c(ej)|2 +

ḡ∑
j=1

∑
e∈Ej

|c(e)|2

≤ ḡ(|V | − ḡ + 1)2‖K‖2 + (|V | − ḡ)(|V | − ḡ + 1)2‖K‖2

= |V |(|V | − ḡ + 1)2‖K‖2.

(54)

Again the proof goes similar as in previous cases, apart from the fact that
upperbound |EM | = O(|VM |2) is no longer useful here.

Theorem 15. Let GM = (VM , EM) be a bipartite SAMC of a connected graph
G = (V,E) with appropriate constant conditioning function K and cycle of
length ḡ. Then the probability pM(t) of finding any element from VM at time
t satisfies

max
t≥0

pM(t) = O
( |VM |(|VM | − ḡ + 1)2‖K‖2 + |EM |

2|E| − 2|EM | −DM̄

)
. (55)

Now let us present an example which shows our results concerning bipar-
tite graphs are almost tight in worst case scenario. Let us consider SAMC
with vertices

V = {v1, . . . , vḡ, w1, . . . , wn′ , t1, . . . , tn′ , } (56)

with ḡ being even, ḡ/2 odd, with n′ = n−ḡ
2

and edge set constructed as
follows:
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w1

w2

w3

...

wn′

t1

t2

t3

...

tn′

v1

v2 v3 · · · v ḡ
2

v ḡ
2

+1

v ḡ
2

+2· · ·vḡ−1vḡ

Figure 6: Bipartite graph for which the optimal solution c : E → R satisfies∑
e∈E c

2(e) = Θ(ḡ(n − ḡ + 1)2‖K‖2). We distinguish a unique cycle with
thick lines

1. v1, . . . , vḡ form a cycle in the given order,

2. for each i = 1, . . . , n′ we have {v1, wi} ∈ E and {v ḡ
2

+1, ti} ∈ E.

Let us consider conditioning function K : e 7→ k for fixed k ≥ 0. Then
K satisfies Eq. (12) and, by the proof of Theorem 12, we have one-variable
parameterized solution. Let us consider the family of functions constructed
as in the proof of Theorem 12

cz(e) =



−k, e = {v1, wi},
−k, e = {v ḡ

2
+1, ti},

k(n′ + 1)/2 + z − k, e = {vi, vi+1}, i = 1, 3, . . . , ḡ/2,

−k(n′ + 1)/2− z, e = {vi, vi+1}, i = 2, 4, . . . , ḡ/2− 1,

k(n′ + 1)/2− z − k, e = {vi, vi+1}, i = ḡ/2 + 1, ḡ/2 + 3, . . . , ḡ,

−k(n′ + 1)/2 + z, e = {vi, vi+1}, i = ḡ/2 + 2, ḡ/2 + 4, . . . , ḡ − 1.

(57)

With these functions we have

min
z∈R
‖cz‖2

2 = min
z∈R

(
(n− ḡ)k2

+
ḡ + 2

4
(k(n′ + 1)/2 + z − k)2

+
ḡ − 2

4
(−k(n′ + 1)/2− z)2

+
ḡ + 2

4
(k(n′ + 1)/2− z − k)2

+
ḡ − 2

4
(−k(n′ + 1)/2 + z)2

)
,

(58)
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which is the quadratic function in z. One can note, that it takes the form
ḡz2 +C, where C does not depend on z. Thus, it takes its minimum at z = 0
and therefore

min
z∈R
‖cz‖2

2 = (n− ḡ)k2 +
ḡ + 2

32
k2(n− ḡ − 2)2 +

ḡ − 2

32
k2(n− ḡ + 2)2

= Θ(ḡ‖K‖2(n− ḡ + 1)2)
(59)

3.5 Overview of the results for general graphs

In previous section we present several theorems which, depending on the
properties of the marked component or K function, yields different upper-
bounds. All of them can be gathered into single suitable equation.

Theorem 16. Let GM = (VM , EM) be a SAMC of a connected graph G =
(V,E) and an appropriate conditioning function K. Let DM̄ denotes the
number of edges from VM to V \ VM . Then the probability pM(t) of finding
any element from VM at time t satisfies

max
t≥0

pM(t) = O
( |VM |3‖K‖2

2|E| − 2|EM | −DM̄

)
. (60)

We would like to emphasize several interesting additional remarks. The
proofs of the theorem were always constructive. Furthermore, it turned out
that for trees and unicyclic nonbipartite graphs the function c is unique.
These properties are particularly helpful, as the optimal c is needed to show
the tightness of the bound derived in the theorem above.

Furthermore for general K we have provided similar bounds on ‖c‖2
2 in

terms of ‖K‖1 instead of ‖K‖, which may be more precise when not all values
are close to the maximum of K.

4 Special graphs

In this section we will provide how we can apply Theorem 16 for several im-
portant classes of graph. From this moment we will assume that we’re given
a connected graph G = (V,E) with corresponding SAMC GM = (VM , EM).

First, suppose graph G is bounded-degree, and we have finite order SAMC
GM . Then VM , EM , DM̄ and ‖K‖ are also bounded by constant. Further-
more, |E| = Θ(n). Hence the success probability of finding any vertex is
O(1/n).

Similarly, one can show that success probability of finding any vertex
from constant-order SAMC in d-regular graphs is O(d/n). Note that d may
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grow with n, and unless d � n, we have that the success probability grows
very slowly. This is expected, as for complete graph, which for our model is
equivalent to Grover search, there is success probability 1 − o(1) at proper
measurement time.

Finally, let us focus on random graph models. In [13] authors considered
exceptional configuration as a way to maliciously decrease the efficiency of
quantum search. They considered Erdős-Rényi [18], Watts-Strogatz [19] and
Barabási-Albert graphs [20] as potential input graphs, on which the quantum
search is run. In particular, authors considered what is the efficiency of
their attack, for these models, see Fig. 2 in the paper, which was defined
as the ratio of the success probability between single marked component
and SAMC. While for Erdős-Rényi and Watts-Strogatz models it turned out
that the success probability is much smaller for SAMC, for Barabási-Albert
the numerical results were not obvious. In fact, it turned out, that by an
appropriate change of measurement time we can keep high efficiency of the
search. Below we will present an analytical quantification of this effect.

Let us start with Erdős-Rényi model G(n, p) of graphs of order n, where
p is the probability that any two vertices are connected. Note that for p >
(1 + ε) log(n)/n the graphs are connected and almost regular, which means
that almost surely for any vertex v we have deg(v) = np(1 + o(1)). This
means that we can use the same reasoning as it was for regular graphs, and
show, that the probability for finite |VM | is of order O(d/n) = O(np/n) = p.
For sparse graphs, where np = O

(
logk(n)

)
, the success probability decreases

almost like 1/n.
Watts-Strogatz graphs are transitioned model between Erdős-Rényi graphs

and regular ring lattice [19]. While contrary to Erdős-Rényi model it pro-
duces small-world graphs, the graphs are again almost-regular. This enables
us following the above reasoning.

Finally let us consider Barabási-Albert model G(n,m0). Graphs in this
model are constructed by consecutively adding new nodes, and connecting
them to m0 already existing nodes. It is the first model which is scale-free,
thus not regular or even almost-regular. The minimum degree is always m0,
which is constant, while the largest degree ∆ grows like Θ(

√
n) [21].

Let us consider finite order SAMC . Any graph sampled from Barabási-
Albert distributions has |E| = nm0(1 + o(1)) edges. Since VM is finite, so is
EM . Note that DM̄ ≤ |VM |∆ = O(

√
n). This simplifies our bound to

max
t≥0

pM(t) = O
(
‖K‖2/n

)
. (61)

Note that ‖K‖ equals to the maximal degree over marked vertices. If the
marked vertex has a degree Θ(

√
n), then we obtain maxt≥0 pM(t) = O(1),
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which does not provide us anything interesting. However, most of the ver-
tices in Barabási-Albert model are bounded [22], and for them the success
probability is O(1/n). This provides us an example of important class, for
which the success probability strongly depends on the vertices being marked.
We claim that such variety of the results explains the robustness obtained
and presented on Fig. 2 in [13].

5 Conclusions

In this paper we presented a general upperbound on success probability,
which takes the following form

Theorem 17. Let GM = (VM , EM) be a SAMC of a connected graph G =
(V,E) and an appropriate conditioning function K. Then the probability
pM(t) of finding any element from VM at time t satisfies

max
t≥0

pM(t) = O
( |VM |3‖K‖2

2|E| − 2|EM | −DM̄

)
. (62)

The result can be applied to any graph and marked subgraph combina-
tion, as long as the appropriate quantum search operation have a stationary
state which is uniform over edges not being marked. We also provided ex-
amples, which show our results are tight in complexity.

Finally, we applied our results for a variety of wide class graphs, which
includes bounded degree graphs, regular graphs, and selected important ran-
dom graph models. For many cases we showed that the success probability
decreases at least as O(1/|V |). However for Barabási-Albert model, we have
shown that the success probability bound depends on the marked vertices.
By this we explained the robustness obtained in [13].

We believe that further analysis of exceptional configurations may im-
prove the already obtained results concerning the malicious input data mod-
ification [13], or may help generalizing the algorithms for detecting perfect
matching [14].
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