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Abstract Quantum Key Distribution, as a branch of quantum mechanics
in cryptography, can distribute keys between legal communication parties in
an unconditionally secure manner, thus can realize in transmitting confiden-
tial information with unconditional security. We consider a Phase-Matching
Quantum Key Distribution protocol with 3-state systems for the first time,
where the phase of the coherent state is 3,thus we propose three different ways
to response to every successful detection and two parties gain their raw keys
by “flip and flip”. The simulation results show that compared with Phase-
Matching Quantum Key Distribution protocol where the phase equals 2, the
proposed protocol breaks the limit of linear key generation rate in a shorter
distance, and the longest practical transmission distance is about 470 km,
whereas the ones of BB84 protocol is lower than 250 km.
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1 Introduction

Quantum cryptography [1] is an interdisciplinary subject combining cryp-
tography and quantum mechanics [2] .It is an important research topic.Its
security is based on the basic principles of quantum mechanics, such as quan-
tum non-cloning theorem, uncertainty principle [3] et al., the quantum key
distribution technology in quantum cryptography provides a means of com-
munication for both parties to obtain unconditional security keys. Security
and practical applications are the core of this research.

The first quantum cryptography protocol,the BB84 quantum key distribu-
tion protocol [1] , was proposed by Bennett and Brassard in 1984, which in-
troduced quantum mechanics into practical applications. However, until 1999,
Lo and Chau proved the security of the BB84 protocol by equating the BB84
protocol with an entanglement and purification protocol [4] ;but the quantum
computer was needed in the proof process. Then in 2000, Shor and Preskill pro-
posed a more concise proof method for CSS quantum error correction code for
entanglement and purification [5] ;which removed the dependence on quantum
computers. Lo et al’s research further proved bit error correction and phase
error correction can be implemented separately [6] .

Although the theoretical security of the BB84 protocol has been proved,
its actual implementation still has a large security risk. Since there is no ideal
single-photon source [7] in practice, a weak coherent pulse (Weak Coherent
Pulse) [8] is commonly used to simulate a single-photon source, which leads
to the generation of Photon Number Splitting [9] . In 2003, the problem was
solved for the first time, since a decoy-state scheme [10] was proposed to de-
fend against PNS attacks. Besides the hidden dangers of the light source,
the detector side channel attack [11] also greatly threatened the security of
the password. HK proposed decoy Measurement-Device-Independent Quan-
tum Key Distribution (MDI-QKD) protocol [12] in 2012, which eliminates the
detector side channel attack [13] without introducing more implementation
equipment and double the transmission distance covered by the traditional
QKD scheme at the same time.

However, these QKD protocols has same limitations—they never exceed
the limit of the Secret Key Capacity (SKC) [14] of the lossy optical quantum
channel. X.B.Wang et al. proposed the Twin-field Quantum Key Distribution
(TF-QKD) protocol [15] in 2018, which broke the SKC bound of the previous
QKD protocols under the condition of ensuring key security. The square root
dependence of the key generation rate on the channel transmittance is ob-
tained. However, the security of the agreement has not been proven. X.F.Ma
et al. proposed the Phase-matching Quantum Key Distribution (PM-QKD)
protocol in 2018 [16] which illustrated a security proof based on optical mode,
and resisted all possible measuring attacks.

In the PM-QKD protocol, the communication parties Alice and Bob each
generate coherent state pulses independently. For a d-phase PM-QKD proto-
col, Alice and Bob encode their key information κa, κb ∈ {0, 1, · · · · d− 1} into
the phase of the coherent state. Paper[16] mainly studied the the PM-QKD
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in the case of phase d=2 (2-PM-QKD protocol) with phase randomization. In
theory, the protocol is immune to all possible measurement attacks, and its key
rate can even exceed the transmission probability η between two communicat-
ing parties; In practice, the protocol applies phase compensation to devise a
practical version of the scheme without phase locking [17] , which makes the
proposed scheme feasible in current technology.

Inspired by the PM-QKD protocol in [18] , this paper proposes a new PM-
QKD whose phase d=3 with phase randomization(For simplicity,we use the
name “3-PM-QKD protocol” in the text below).

In the 2-PM-QKD protocol, each transmitted 32-bit binary bit can encode
the largest unsigned number, but if the 3-PM-QKD protocol is used, every 32-
bit ternary trit can be successfully transmitted. In addition, in this protocol,
the range of random phase matching is wider and the probability of successful
matching is higher. Alice and Bob retain their key trits when their declared
random phases difference is 0, 2π

3 , or 4π
3 , which significantly improves the

success rate of the phase sifting phase and also results in a higher final key
rate.

The paper organized as follows. Following the 2-PM-QKD protocol, we
propose the 3-PM-QKD protocol that can surpass the linear key-rate bound
and make the key rate increase, whose details are given In Sec.2. Then, the
security of 3-PM-QKD is proved in Sec.3, and in Sec.4, we consider all practical
factors to simulate the 3-PM-QKD key rate and compare it to the previous
QKD protocol. Finally, we summarize this work , put forward the the n-PM-
QKD protocol and expound its some curious features in Sec.5.

2 3-PM-QKD protocol

This paper proposes a 3-PM-QKD protocol with phase randomization.That
is,Alice and Bob add extra random phases on their coherent state pulses be-
fore sending these pulses to Eve. After Eve’s announcement,Alice and Bob
announce the extra random phases and postselect the signals based on their
random phases.The specific steps and related descriptions are as follows.

2.1 Specific steps

Step1 State Preparation - Alice randomly generates a key trit κa ∈ {0, 1, 2}and
a random phase φa ∈ [0, 2π), and then prepares a coherent state
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Step2 Measurements - Alice and Bob send their light pulses A and B
to an untrusted Eve,which needs to perform interferometry and record the
response detector (D0, D1, or D2). In particular,the detector response rules
are as follows:
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The way the detector responds in this protocol depends on the phase dif-
ference between Alice and Bob,The detector response mechanism is set to:







D0 response, when∆φ = 0 (mod2π),
D1 response, when∆φ = 2π

3 (mod2π),
D2 response, when∆φ = 4π

3 (mod2π).

Step3 Statement - Eve announces his detection result. Then Alice and
Bob announce random phase φa and φb ,respectively.

Step4 Sifting - Alice and Bob repeat the above steps multiple times. When
Eve announces a successful response (just one detector response),Alice and
Bob make the κa and κb the raw key trits.

According to Eve’s statement, Bob flips his key trits κb accordingly.The
flipped key trits are recorded as κ′

b. The flip rule is as follows:






κ′

b = κb, if D0 responce,
κ′

b = κb + 1(mod2π), if D1 responce,
κ′

b = κb + 2(mod2π), if D2 responce.

When Alice and Bob respectively announce random phases, Bob flips his
key trits κ′

b again according to their random phase difference |φa − φb| .The
flipped key trits are recorded as κ′′

b .Theflipping rules are as follows:






κ′′

b = κ′

b(mod2π), if |φa − φb| = 0 (mod2π),
κ′′

b = κ′

b − 1(mod2π), if |φa − φb| = 2π
3 (mod2π),

κ′′

b = κ′

b − 2(mod2π), if |φa − φb| = 4π
3 (mod2π).

Finally, Bob’s key trits are κ′′

b .
Step5 Parameter Estimation - Alice and Bob derive the gain Qµ and

quantum trit error rate EZ
µ from all the retained raw data and then estimate

EX
µ .
Step6 Key Distillation - Alice and Bob perform error correction and pri-

vacy amplification on the sifted key trits to generate a private key (note that
the error correction and privacy amplification of this protocol are the same
as in all QKD protocols except that we must use trits Not bits, so the parity
becomes a ternary test, ie the modulus is 3 [18] ).

In the actual implementation of this protocol, Alice and Bob retain their
signals only when their declared random phases difference is 0, 2π

3 , or 4π
3 .

However, due to the announcement of phase continuity, the probability of
successful sifting is 0. In addition, the phase locking technique required in
actual implementation is very difficult . Therefore, we use the phase post
compensation method [19] like paper.

The post-phase compensation method used here is similar to 2-PM-QKD
protocol. Alice and Bob divide the phase interval [0, 2π) into M slices first.
When a random phase is declared, Alice and Bob only compare the slice indi-
cators, not the exact phase. This makes the step of phase sifting practical, but
introduces inherent bias errors. This bias error can compensate for the inher-
ent bias error by sacrificing a portion of the data, minimizing the quiz error
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rate QBER based on random sampling, and calculating the appropriate phase
offset. In addition, Alice and Bob do not perform phase sifting immediately in
each round,but perform this phase sifting in data post-processing. This makes
the 3-PM-QKD protocol practical.

More importantly,in the 2-PM-QKD protocol, each successfully transmit-
ted 32-bit binary bit can encode the largest unsigned number to 232 − 1 ,but
if this protocol is used,every 32-trit ternary trit transmitted can be encoded
to 332− 1 . When the transmission efficiency is same, every coherent state can
carry more information.

In this protocol,the range of random phase matching is wider and the prob-
ability of matching success is higher. Alice and Bob retain their signals when
their declared random phases difference is 0, 2π

3 , or 4π
3 , which significantly

improves the success rate of the phase screening phase and also results in a
higher final key rate.

To illustrate the feasibility of this protocol, this paper presents a simple key
correspondence table to illustrate how Alice and Bob match key information
by “flip and flip” successfully.

2.2 Key-correspondence table of this protocol

In the 3-PM-QKD protocol, the key information κa(b) ∈ {0, 1, 2}, so a success-
ful key is generated if and only if the random phase difference is an integer
multiple 2π

3 (less than anon-negative integer multiple of 3).There are 27 cases,
and we list the situation when φa and φb satisfy with |φa − φb| = 4π

3 (mod2π)
in this section, and other cases are equally available.

Table 1 Key-correspondence table with |φa − φb| =
4π
3
(mod2π)

κa κb |φa − φb| ∆φ Response κ′

b
κ′′

b

0 0 4π/3 4π/3 D2 2 0
0 1 4π/3 2π/3 D1 2 0
0 2 4π/3 0 D1 2 0
1 0 4π/3 0 D1 0 1
1 1 4π/3 4π/3 D1 0 1
1 2 4π/3 2π/3 D1 0 1
2 0 4π/3 2π/3 D1 1 2
2 1 4π/3 0 D1 1 2
2 2 4π/3 4π/3 D1 1 2

The Table I shows that accurate detection response and key sifting can
guarantee a successful key match with a probability close to 1, and the prob-
ability of successful match is higher than that of 2-PM-QKD protocol.
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3 Security of 3-PM-QKD protocol

Unlike the general QKD protocol security proof, the commonly used pho-
ton number channel model [20] and the “tagging” method used in the security
proof by Gottsman et al.(GLLP security proofs) [21] are no longer applicable
here. This is because the random phases of Alice and Bob are annonced in
this protocol, and the quantum source can no longer be regarded as a mixture
of photon number states. But as mentioned in [16] , we can directly analyze
the optical mode by applying Lo-Chau entangled distillation theory to demon-
strate the security of PM-QKD with coherent pluses.

The proof of the security of this protocol is followed by the analysis of
distillable entanglement based on the equivalent entanglement protocol, and
transforms it into 3-PM-QKD protocol gradually. The security performance
is proved in each operation. The proof process is similar to the 2-PM-QKD
protocol, except we must use trits instead of bits, so we will not repeat them
here.

4 Simulation Results

Since our solution is generalized from 2-PM-QKD, the simulation in this
section is mainly compared with the 2-PM-QKD protocol. According to [16],
when l > 120km, the key rate of 2-PM-QKD exceeded the key rate of tra-
ditional BB84 protocol; when transmitting distance l > 250km, 2-PM-QKD
could exceed the limit of linear key rate; Compared with MDI-QKD, 2-PM-
QKD can achieve a longer transmission distance of l = 450km, and at the
time l > 300km, the key rate increased by about 4-6 orders of magnitude.
This section will prove that the 3-PM-QKD protocol is better than the 2-PM-
QKD protocol, and thus better than the traditional BB84 protocol and the
MDI-QKD protocol.

Applying the key rate formula in Shor-Preskill’s security proof [5]

r = 1−H
(

EZ
)

−H
(

EX
)

. (1)

And the key rate formula in [16]

R2−PM ≥ 2

M
Qµ

[

1− fH
(

Ez
µ

)

−H
(

EX
µ

)]

. (2)

Where EZ and EX are the Z error rate and the X error rate, respectively.
H(x) = −x log2 x−(1−x) log2(1−x) are the binary Shannon entropy function,
Qµ is the phase error rate, and f is the error correction efficiency.

Because we have only expanded the value range of the key bits in this
paper, other parts of the key rate formula are still similar to the 2-PM-QKD
protocol, but the phase sifting factor in this article is 3/M, Shannon’s entropy
function becomes H(x) = −x log3 x − (1 − x) log3(1 − x) for the three-state
system.Finally, our key rate formula is



The phase matching quantum key distribution protocol with 3-state systems 7

R3−PM ≥ 3

M
Qµ

[

1− fH
(

Ez
µ

)

−H
(

EX
µ

)]

. (3)

We use the parameters given in the Table 2 below to simulate the per-
formance of 3-PM-QKD. Assuming that the lossy channels of Alice and Bob
are symmetrical; the dark count rate is from Ref. [22] , and other parameters
are set to classic values. (Note that in order to identify the effect of the key
rate is on the protocol itself rather than other parameters , the actual setting
parameters used in this article are completely consistent with the 2-PM-QKD
protocol).

Table 2 Parameters used for simulation in 3-PM-QKD protocol

Parameters Values

Dark count rate pd 8× 10−8

Error correction efficiency f 1.15
Detector efficiency ηd 14.5%
Number of phese slices M 16
Misalignment error ed 1.5%

The simulation results are shown in the following figure.
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Fig. 1 Simulation of our protocol. For the considered simulation parameters, the key rate
is similar to 2-PM-QKD protocol, but it breaks the SKC bound in a shorter distance and
the effective transmission distance has increased by about 20 kilometers.

As can be seen, our protocol has a small increase on key rate compared with
the 2-PM-QKD protocol, but the effective transmission distance has increased
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by about 20 kilometers, and it has broken through SKC bound in a shorter
distance.

5 Summary and Outlook

This paper proposes the 3-PM-QKD protocol and proves its security. The
3-PM-QKD protocol not only breaks the boundaries of SKC, but also reduces
the distance to break the boundaries of SKC,meanwhile,the proposed protocol
increases the key rate and effective transmission distance.

Also,the higher-dimensional promotion of the 3-PM-QKD protocol in this
paper will be an interesting direction, such as the n-PM-QKD protocol with
phase randomization. This is a very difficult problem, because when space is
extended to any dimension, it is difficult to express all its properties strictly,
but this attempt is very interesting. At the time κa(b) ∈ {0, 1, 2, · · · , n}, al-
though the selection interval of the random phase was still the same, the
probability of successful screening could approach 100%.This is an interest-
ing change, which is because there is always a exact detector response for the
specific value of any phase difference, but this requires extremely accurate de-
tector standards. In any case, this will be one of the efforts of QKD protocol
in practice.The specific steps of n-PM-QKD is similar to 2-PM-QKD, which
will not be described in detail here.

However, the n-PM-QKD protocol is currently only possible theoretically,
but if it can be successfully implemented, that will greatly increase the key
rate of the QKD protocol and guarantee a 100% probability of successful phase
matching, in which the corresponding parameter estimation and security proof
will be the largest challenge . Once the phase of the coherent state is extended
to infinite dimensions, it may have some distinctive properties, which is a
subject worthy of study.
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