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Abstract By considering an exactly solvable model of a two interacting spin-
1/2 qubits described by the Heisenberg anisotropic interaction in the presence
of intrinsic decoherence, we study the dynamics of entanglement quantified
by the concurrence and measurement-induced nonlocality (MIN) based on
Hilbert-Schmidt norm and trace distance with different initial conditions. We
highlight the relationship between the entanglement and MIN for the pure
initial state. For an initial separable state, it is found that the robustness and
the generation of the quantum correlations depend on the physical parame-
ters. While considering the entangled state as an initial state, the results show
that despite the phase decoherence all the correlations reach their steady state
values after exhibiting some oscillations. We reveal that the enhancement of
correlations may occur by adjusting the strength of the Dzyaloshinskii–Moriya
(DM) interaction and the intervention of the magnetic field decrease the quan-
tum correlations. Finally, we show that the existence of quantum correlation
captured by MIN in the unentangled state.

Keywords Entanglement · Intrinsic decoherence · Dynamics · Quantum
correlation · Projective measurements

1 Introduction

For many decades, entanglement [1,2] is considered as a synonym of quan-
tum correlation and it is a direct consequence of the superposition principle.
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Quantum entanglement, a special type of correlation that only arises in quan-
tum systems, along with the superposition principle, stimulates the advances
in the field of quantum technology. It reflects nonlocal distributions between
pairs of particles, even if they are spatially separated and do not directly
interact with each other. In the early days of quantum information theory, en-
tanglement is viewed as the main resource that gives the speed-up over their
classical counterparts [3]. Later, it is identified that even separable state is also
responsible for quantum advantages. For example, Knill and Laflamme discov-
ered a protocol of deterministic quantum computation with one quantum bit
(DQC1) where the natural bipartite system is unentangled [4]. It can achieve
an exponential efficiency over classical computers, for a limited set of tasks [5,
6]. The Knill-Laflamme model is experimentally motivated by (liquid-state)
nuclear-magnetic resonance (NMR) information processing. This started to
throw doubt on entanglement being responsible for all quantum speed-up and
leads to the quest for quantum correlations beyond entanglement.

In 2001 while analysing different measures of information content in quan-
tum information theory, Henderson and Vedral [7], and (independently) Ol-
livier and Zurek [8] conclude that when entanglement is subtracted from total
quantum correlation, there remain correlations that are not entirely classical
of origin. This is named as quantum discord (QD). Then scientists tried to
connect the discord with the performance of certain information processing
tasks. Datta [5] calculated the discord in the Knill-Laflamme algorithm and
show the increase in quantum efficiency, unlike entanglement which remains
vanishingly small throughout the computation.

There are various correlation measures are available to capture beyond en-
tanglement, such as geometric Discord [9], measurementinduced nonlocality
(MIN)[10], measurementinduced disturbance (MID) [11], uncertainty-induced
nonlocality (UIN) [12], etc. MIN is a measure of bipartite quantum correla-
tion and maximal nonlocal effects due to local projective measurements. This
quantity is a more secure resource for quantum communication and cryptog-
raphy than the entanglement. This quantity is easily computable and also
experimentally realizable. However, MIN is not a bonafide measure to capture
quantum correlation due to the local ancilla problem [13,14]. To address this
issue different forms of MINs have been identified using relative entropy [15],
trace distance [16], fidelity [17], skew information [18], and affinity [19].

In general, quantum systems are always coupled with the environment. The
interaction of systems with their environments, another dynamics of an open
quantum system is characterized by the presence of decoherence terms, de-
scribing the loss of energy, coherence, and information into the environments.
In order to perform efficient information processing, we have to protect the
quantum resources such as entanglement against external perturbation or de-
coherence. Due to the decoherence parameter, the entanglement completely
vanishes and is known as the sudden death of entanglement. Independently,
Milburn [20] and Moya-Cessa et. al. [21] demonstrated that the quantum signa-
tures are automatically destroyed as the quantum system evolves. This process
is considered to be more generic to nature and which causes phase decoher-
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ence even without any averaging over an environment. This is known as the
intrinsic decoherence approach. Therefore the study on intrinsic decoherence
has profound importance.

In this present submission, we study the influence of intrinsic decoherence
on the dynamics of pair of spin-1/2 qubit quantum correlations such as en-
tanglement (measured by concurrence) and MIN (based on Hilbert-Schmidt
norm and trace distance). It is observed that the pure state quantum correla-
tion measures are wiggles and in the asymptotic limit, the state evolves into
a steady state. The observation highlights the MINs are more robust than the
entanglement against intrinsic decoherence.

The contents of this paper are as follows. In Sec. 2, we define the quantifier
of quantum correlation studied in this paper. In Sec. 3, we introduce the the-
oretical model under our investigation and the notion of intrinsic decoherence
in a quantum system. The dynamics of entanglement and MINs presented in
Sec. 4. Finally, the conclusions are given in Sec. 5.

2 Quantum correlation measures

Entanglement : Let ρ be a bipartite composite system shared by the subsystem
a and b in the Hilbert space H = Ha ⊗ Hb. The degree of entanglement
associated with a given two-qubit state ρ can be quantified using concurrence
[22], which is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (1)

where λi are the square root of eigenvalues of matrix R = ρρ̃ arranged in
decreasing order. Here ρ̃ is spin flipped density matrix, which is defined as
ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). The symbol ∗ denotes the usual complex conjugate
in the computational basis. It is known that the concurrence varies from 0 to
1 with minimum and maximum values correspond to separable and maximally
entangled states respectively.
Measurement induced nonlocality : This measure of quantum correlations (QC)
is defined as the maximal distance between the quantum state of a bipartite
system and the corresponding state after performing a local measurement on
one subsystem which does not change the state of this subsystem. This quan-
tity also captures the nonlocal effects that can be induced by local measure-
ments. Mathematically it is defined as [10]

N2(ρ) = max
Πa ‖ρ−Πa(ρ)‖2, (2)

where the maximum is taken over the von Neumann projective measurements
on subsystem a. Here Πa(ρ) =

∑
k(Πa

k ⊗ 1b)ρ(Πa
k ⊗ 1b), with Πa = {Πa

k} =
{|k〉〈k|} being the projective measurements on the subsystem a, which do not
change the marginal state ρa locally i.e., Πa(ρa) = ρa. If ρa is non-degenerate,
then the maximization is not required.
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Trace distance-based MIN : It is a well-known fact that the MIN based on
the Hilbert-Schmidt norm is not a credible measure in capturing nonlocal at-
tributes of a quantum state due to the local ancilla problem [14]. A natural way
to circumvent this issue is defining MIN in terms of contractive distance mea-
sure. Another alternate form of MIN is based on trace distance [16], namely,
trace MIN (T-MIN) which resolves the local ancilla problem [13]. It is defined
as

N1(ρ) := max
Πa ‖ρ−Πa(ρ)‖1, (3)

where ‖A‖1 = Tr
√
A†A is the trace norm of operator A. Here also, the maxi-

mum is taken over all von Neumann projective measurements. For any 2 ⊗ 2
dimensional system, the closed formula of trace MIN N1(ρ) is given as

N1(ρ) =

{√
χ+ +

√
χ−

2‖x‖1 if x 6= 0,

max{|c1|, |c2|, |c3|} if x = 0,
(4)

where χ± = α± 2

√
β̃‖x‖1, α = ‖c‖21 ‖x‖21 −

∑
i c

2
ix

2
i , β̃ =

∑
〈ijk〉 x

2
i c

2
jc

2
k, |ci|

are the absolute values of ci and the summation runs over cyclic permutation
of {1, 2, 3} and xi are the components of vector x.

3 The Model and Solution

In order to understand the behaviour of quantum correlations in a physical
system and the influence of intrinsic decoherence, we consider the Hamiltonian
of a pair of spin-1/2 particles with Heisenberg anisotropic interaction and DM
interaction [23,24] and is given as

H =
∑

i=x,y,z

Ji
(
σia ⊗ σib

)
+ D. (σa × σb) + (B + λ)σza + (B − λ)σzb , (5)

where σik (k = a, b and i = x, y, z) are Pauli spin matrices, Ji’s are the
anisotropic exchange coupling constant in respective directions, D is the DM
vector which we choose to be along the z-axis, B denotes the magnetic field
and λ denotes the degree of inhomogeneity in the magnetic field along the
z-axis. In matrix notation we have

H =


Jz
2 +B 0 0 J−

0 λ− Jz
2 J+ + iD 0

0 J+ − iD −λ− Jz
2 0

J− 0 0 Jz
2 −B

 (6)

with J± = 1
2 (Jx ± Jy). Eigenvalues and corresponding eigenvectors of the

Hamiltonian are computed by solving Schrödinger equation H|φ〉 = E|φ〉,
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which are

E1,2 = −Jz2 ± η , |φ1,2〉 = N±

( (λ± η)

D + iJ+
|10〉+ |01〉

)
E3,4 = Jz

2 ± µ , |φ3,4〉 = M±

(B ± µ
J−

|00〉+ |11〉
)

(7)

with η =
√
λ2 +D2 + J+2 ; µ =

√
B2 + J−2 and normalization constants are

N± =

(
D2 + J+

2

2η (η2 ± λ)

)1/2

and M± =

(
J−

2

2µ (µ2 ±B)

)1/2

.

For Jx = Jy = Jz and Dz = B = λ = 0 the eigenvectors are reduced to
maximally entangled Bell states.

Milburn [20] has proposed a simple modification of standard quantum me-
chanics based on an assumption that on sufficiently short time steps the system
does not evolve continuously under unitary evolution but rather in a stochas-
tic sequence of identical unitary transformations. This assumption leads to a
modification of the Schrdinger equation which contains a term responsible for
the decay of quantum coherence in the energy eigenstate basis, without the
intervention of a reservoir and therefore without the usual energy dissipation
associated with normal decay. Milburn obtained the following master equation
[20]:

dρ(t)

dt
= −i[H, ρ(t)]− γ

2
[H, [H, ρ(t)]], (8)

where H is the Hamiltonian of the system, ρ(t) indicates the state of the
system and γ is the intrinsic decoherence parameter (mean frequency of the
unitary step). First term on the right–hand side of Eq. (8) generates a coherent
unitary time evolution of the system, while the second term, which does not
commute with the Hamiltonian represents the decoherence effect on the sys-
tem. The formal solution of the above equation can be written in operator-sum
representation using Kraus operators Ml as

ρ(t) =

∞∑
l=0

Ml(t)ρ(0)Ml
†(t), (9)

where ρ(0) is the initial density operator of the system and Ml(t) is defined as

Ml(t) =
(γt)

l
2

√
l!
Hlexp(−iHt)exp(−γt

2
H2).

With this, the evolved state can be written as

ρ(t) =
∑
m,n

exp
[
−γt

2
(Em − En)2 − i(Em − En)t

]
〈φm|ρ(0)|φn〉|φm〉〈φn|, (10)

where Em,n and |φm,n〉 are the eigenvalues and the corresponding eigenvectors
of Hamiltonian H the system respectively.
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4 Dynamics of Quantum Correlations

In what follows, we study the influence of intrinsic decoherence on quantum
correlations captured by the entanglement (quantified by concurrence) and
measurement-induced nonlocality based on Hilbert-Schmidt norm and trace
distance. In order to study the dynamical behaviour of quantum correlation,
we will consider the X–state as an initial which encompasses a large number
of mixed states [25]:

ρ(0) =


a 0 0 ω
0 b z 0
0 z c 0
ω 0 0 d

 , (11)

where the diagonal entries are real, non-negative and satisfy the normalization
condition Tr(ρ(0)) = a+ b+ c+ d = 1.

The evolution of X-state under the Hamiltonian (6) also retains the form
of X–state. Here, we find ρ(t) from the solution of Master equation as given
in Eq. (10). Using the Eqs. (7) and (10) we compute the time evolved density
matrix as

ρ(t) =


ρ11(t) 0 0 ρ14(t)

0 ρ22(t) ρ23(t) 0
0 ρ∗23(t) ρ33(t) 0

ρ∗14(t) 0 0 ρ44(t)

 (12)

with the diagonal entries

ρ11 =
1

2µ2

(
(a(B2 + µ2) + 2BwJ− + dJ2

−) + e−2γtµ
2

cos[2µt]((a− d)J2
− − 2BwJ−)

)
,

ρ22 =
1

2η2

(
(c(D2 + J2

+) + b(η2 + λ2) + 2zλJ+) + e−2γtη
2

(2Dzηsin[2ηt]

+ cos[2ηt]((b− c)(D2 + J2
+)− 2zλJ+))

)
,

ρ33 =
1

2η2

(
(c(η2 + λ2) + b(η2 − λ2)− 2zλJ+)− e−2γtη

2

(2Dzηsin[2ηt] + cos[2ηt]

((b− c)(D2 + J2
+)− 2zλJ+))

)
,

ρ44 =
1

2µ2

(
(aJ2
− − 2BwJ− + d(B2 + µ2))− e−2γtµ

2

cos[2µt]((a− d)J2
− − 2BwJ−)

)
,
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and off-diagonal elements are

ρ14 = ρ∗41 =
1

2µ2

(
((a− d)BJ− + 2wJ2

−)− e−2γtµ
2

((a− d)J− − 2Bw)

(B cos[2µt]− iµ sin[2µt])
)
,

ρ23 = ρ∗32 =
1

2η2

(
i(D − iJ+)((b− c)λ+ 2zJ+) +

e−2γtη
2

η2 − λ2
(η sin[2ηt](D − iJ+)(−(b− c)

(D2 + J2
+)− 2iDzλ+ 2zλJ+) + cos[2ηt](iD + J+)(−(b− c)λ(D2 + J2

+)

− 2iDzη2 + 2zλ2J+))
)
.

The concurrence of the time evolved state is

C(ρ(t)) = 2max{0, |ρ14| −
√

(ρ33ρ22), |ρ23| −
√

(ρ44ρ11)}, (13)

and MINs are computed as

N2(ρ(t)) = 2(|ρ23|2 + |ρ14|2) and N1(ρ(t)) = 2(|ρ23|+ |ρ14|). (14)

For the detailed investigations, we choose a special kind of X-state as

ρ(0) = p|Φ〉〈Φ|+ (1− p)1
4
, (15)

where p is the probability of being in state |Φ〉〈Φ|, with 0 ≤ p ≤ 1. If p = 0, the
state is a maximal mixture of orthonormal bases i.e., ρ(0) = I

4 and if p = 1 the
state becomes a pure state. For our purpose, we consider the above state with
the pure state |Φ〉 = 1√

2
(|01〉+ |10〉) or |Φ〉 = 1√

2
(|00〉+ |11〉). We shall note

that the evolution of this state under the Hamiltonian (6) retains the form of
initial state.

To explore the effects of intrinsic decoherence, we study the dynamics of
pure state from the perspective of quantum correlation. For pure state dynam-
ics, we identify the simple relation between the entanglement and MINs. They
are

C(ρ) =
1

2
N1(ρ) and N2(ρ) =

1

2
C(ρ)2. (16)

For our investigations, first we choose the initial state with the following
initial conditions: a = (1 + p)/4, b = c = d = (1 − p)/4, ω = 0 and z = 0.
Here, we set p = 1, and the initial state is a product state ρ(0) = |00〉〈00|, i.e.,
at t = 0 the correlation between the qubits are zero. As time increases, the
correlation between the qubits generated by the time evolution of the state
under the Hamiltonian (6), implying that the spinspin interaction is respon-
sible for the induced correlation between qubits, which are shown in Fig. (1).
Both the entanglement and MIN measures are oscillating with period π/µ
and the damping factor exp[−2γtµ2] cause decay of amplitude of the oscilla-
tion exponentially, reaches a steady state after a long time. The role of DM
interaction and magnetic fields on the dynamics of quantum correlations are
shown in Fig. (1). It is a well-known fact that the DM interaction enhances the



8 R. Muthuganesan, V. K. Chandrasekar

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

Q
u
a
n
tu
m
C
or
re
la
ti
on
s

Miscible

Immiscible

0 3 6 9 12 15
t

0.0

0.1

0.2

0.3

Q
u
a
n
tu
m
C
or
re
la
ti
on
s

Miscible

Immiscible

0.118

0.025

Fig. 1 (color online) Dynamical behaviors of concurrence (blue), Hilbert-Schmidt (red)
and trace distance (dashed) based MIN of the state ρ(0) = |00〉〈00| as a function of time
for the parameters J+ = 1, J=0.5, γ = 0.05, p = 1 with (top) λ = D = B = 0 (bottom)
λ = 0.5, D = 3, B = 1.

strength of entanglement and MIN. Further, the applications of the magnetic
field decrease the quantum correlations and the state evolves into finite steady
state values at the earlier time compare to the zero-field case. The steady state
value for this case are C(ρ(∞)) = 0.236 and N2(ρ(∞)) = 0.025. We consider
another initial product state of interacting qubits such as |Φ〉 = |0〉 ⊗ |1〉. As
time increases, the spin-spin interaction described by the Hamiltonian induces
the correlation between the qubits by the time evolution of the state. Here
also we can observe the similar effects of the previous case of product state.
From the above observations, it is understood that the intrinsic decoherence
can decrease the correlation between the correlated spins asymptotically.

Next, we study the dynamics of pure entangled state ρ(0) = |Φ〉〈Φ| with
|Φ〉 = 1√

2
(|00〉 + |11〉). Setting p = 1 and the initial state is the maximally

entangled state. Here also we obtain the relation given in Eq. (16). At time t =
0, the concurrence and MIN are maximum. As time increases, the correlation
decrease due to the damping factor exp[−2γtµ2] with a period of oscillation
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of π
µ , which are illustrated in Fig. (2). For γ = 0.05, the quantum correlation

measures are wiggles and in the asymptotic limit t→∞, the concurrence and
MIN reaches the steady state value. Further, Fig. (2) shows the role of higher
γ = 0.1 & 0.5 values. The increment of the decoherence parameter γ causes
rapid decay in correlation measures and reaches a steady state as earlier. In
the asymptotic limit i.e., t → ∞, irrespective of γ values, both concurrence
and MIN reaches a constant value. In other words, for γ = 0.5, the concurrence
and MIN of the steady state are constant and the values are C(ρ(∞)) = 0.2
and N2(ρ(∞)) = 0.025. Any change in the value of γ will affect only the
oscillation part of dynamics, and the asymptotic limit doesn’t depend upon
this γ but it depends on the initial state of the system. Here also we may note
that the DM interaction and coupling constant strengthen the correlation and
the intervention of the magnetic field decreases the correlation between the
qubits.

To enhance our understanding, we now consider another pure maximally
entangled state ρ(0) = |Φ〉〈Φ| with |Φ〉 = 1√

2
(|01〉+|10〉). The initial conditions

are a = d = (1− p)/4, b = c = (1 + p)/4, ω = 0 and z = p/2 with p = 1. The
relation between the quantum correlation measures is given in Eq. (16). Fig.
(3) display the effects of intrinsic decoherence on dynamics concurrence and
MIN quantities. At time t = 0, measures show the maximum correlation. Fur-
ther, at a later time, due to the damping factor exp[−2γtη2], all the quantum
correlation measures are decreasing with the increase of time. For γ = 0.05,
the quantum correlation measures are wiggles and in the asymptotic limit, all
the measures reach a steady state value. If we consider higher values of γ, one
can observe the similar effects observed in the previous case. Here also the
steady state value independent of intrinsic decoherence and depends on only
the initial conditions.

To examine the dynamics of quantum correlation of mixed state, we con-
sider the initial non–separable state i.e, a mixture of entangled state with
|Φ〉 = 1√

2 (|00〉 + |11〉) for our dynamics with the following initial conditions:

a = d = (1 + p)/4, b = c = (1 − p)/4, z = p/2, ω = 0 and p = 0.6. In this
analysis also we observe that the dynamics of quantum correlation is periodic
in time with periodicity π

µ and decay with time. The concurrence is maximum
when t = 0, as time increases, the concurrence decreases and undergoes death
and revival which are shown in Fig. (4). Interestingly, after some time entan-
glement between the qubits remains zero and is known as the sudden death
of entanglement [26]. On the other hand, both the Hilbert-Schmidt norm and
trace distance-based MIN also decreases with time from the maximal value. In
the asymptotic limit, MINs are non-zero even in the entanglement. It implies
that the separable state also possesses the quantum correlation. This observa-
tion reveals that the presence of quantum correlation beyond entanglement in
the absence of concurrence. Further, the role of intrinsic decoherence is shown
in the remaining figures and one observes the similar effects which are observed
in the previous example. For higher values of γ entanglement decrease rapidly
and also exhibits sudden death. The region of non-zero entanglement decreases
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Fig. 2 (color online) Dynamical behaviors of concurrence (blue), Hilbert-Schmidt (red) and
trace distance (dashed) based MIN of the state |Φ〉 = 1√

2
(|00〉 + |11〉) as a function of time

for the parameters J+ = 1, J− = 0.5, p = 1, λ = 0.5, D = 1, B = 1 with (top) γ = 0.05
(middle) γ = 0.1 and (bottom) γ = 0.3.

with the increase of intrinsic decoherence. On the other hand, MINs decrease
slowly compared to entanglement and reaches a steady state after a sufficient
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Fig. 3 (color online) Dynamical behaviors of concurrence (blue), Hilbert-Schmidt (red) and
trace distance (dashed) based MIN of the state |Φ〉 = 1√

2
(|01〉 + |10〉) as a function of time

for the parameters J+ = 1, J− = 0.5, p = 1, λ = 0.5, D = 1, B = 1 with (top) γ = 0.05
(middle) γ = 0.1 and (bottom) γ = 0.3.

time and the steady state value is 0.049. In the case of |Φ〉 = 1√
2 (|01〉+ |10〉).

on the dynamics of concurrence and MIN, one can observe similar effects.
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Fig. 4 (color online) Dynamical behaviors of concurrence (blue), Hilbert-Schmidt (red) and
trace distance (dashed) based MIN of the state ρ(0) in Eq. (15) with |Φ〉 = 1√

2
(|00〉 + |11〉)

as a function of time for the parameters J+ = 1, J− = 0.5, p = 0.6, λ = 0.5, D = 1, B = 1
with (top) γ = 0.05 (middle) γ = 0.1 and (bottom) γ = 0.3.

For further understanding, we consider the separable state with |Φ〉 =
|10〉 or |00〉. At time t = 0, all the quantum correlations are zero. Here also
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Fig. 5 (color online) Dynamical behaviors of concurrence (blue), Hilbert-Schmidt (red) and
trace distance (dashed) based MIN of the state ρ(0) in Eq. (15) with |Φ〉 = |00〉 as a function
of time for the parameters J+ = 1, J− = 0.5, p = 0.6, λ = 0.5, D = 1, B = 1 with (top)
γ = 0.05 (middle) γ = 0.1 and (bottom) γ = 0.3.

the spin-spin interaction is responsible for the generation of nonlocal attributes
which are illustrated in Fig. (5). Similar to the entangled state, the dynamics
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of the separable state also exhibits sudden death for all values of γ. The other
companion quantities are non-zero in the asymptotic limit and more robust
to intrinsic decoherence than the entanglement. This also implies to a fact
that the absence of entanglement does not necessarily indicate the absence of
nonlocality. It is worth mentioning that MIN is also robust against external
decoherence [27].

5 Conclusions

In conclusion, we have examined the influence of intrinsic decoherence on var-
ious correlations in the model of two spin-1/2 qubits. While considering the
pure state as an initial state, we obtain a simple relation between the concur-
rence and MINs. The results show that despite the intrinsic decoherence all
the correlations reach their steady state values after exhibiting some oscilla-
tions. The DzyaloshinskiiMoriya (DM) interaction strengthens the quantum
correlations and the applications of the magnetic field decrease the quantum
correlations. For the initial mixed state, we observe that the dynamics under
intrinsic decoherence cause sudden death in entanglement, while MIN quan-
tities are more robust than entanglement. This indicates the presence of non-
locality (in terms of MIN) even in the absence of entanglement between the
subsystems. This also implies to a fact that the absence of entanglement does
not necessarily indicate the absence of nonlocality.

Further, our investigations emphasize that efficient information process-
ing based on the measurement-induced nonlocality offer more resistance to
the effect of intrinsic decoherence and are completely different from that of
entanglement.
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