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Abstract

Quantum key distribution (QKD) protocols allow two parties to establish a shared
secret key, secure against an all powerful adversary. This is a task impossible to achieve
through classical communication only; indeed, to distribute a secret key through clas-
sical means requires one to assume computationally bounded adversaries. If, however,
both parties are “quantum capable” then security may be attained assuming only that
the adversary must obey the laws of physics. But “how quantum” must a protocol
actually be to gain this advantage over classical communication? This is one of the
questions semi-quantum cryptography seeks to answer.

Semi-quantum communication, a model introduced in 2007 by M. Boyer, D. Kenigs-
berg, and T. Mor (PRL 99 140501), involves the use of fully-quantum users and semi-
quantum, or “classical” users. These classical users are only allowed to interact with the
quantum channel in a limited, classical manner. Originally introduced to study the
key-distribution problem, semi-quantum research has since expanded, and continues
to grow, with new protocols, security proof methods, experimental implementations,
and new cryptographic applications beyond key distribution. Research in the field of
semi-quantum cryptography requires new insights into working with restricted proto-
cols and, so, the tools and techniques derived in this field can translate to results in
broader quantum information science. Furthermore, other questions such as the con-
nection between quantum and classical processing, including how classical information
processing can be used to counteract a quantum deficiency in a protocol, can shed light
on important theoretical questions.

This work surveys the history and current state-of-the-art in semi-quantum re-
search. We discuss the model and several protocols offering the reader insight into how
protocols are constructed in this realm. We discuss security proof methods and how
classical post-processing can be used to counteract users’ inability to perform certain
quantum operations. Moving beyond key distribution, we survey current work in other
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semi-quantum cryptographic protocols and current trends. We also survey recent work
done in attempting to construct practical semi-quantum systems including recent ex-
perimental results in this field. Finally, as this is still a growing field, we highlight,
throughout this survey, several open problems that we feel are important to investigate
in the hopes that this will spur even more research in this topic.

1 Introduction

Through most of history, cryptography was an art primarily focused on hiding and sending
information secretly (i.e., encryption). Numerous ciphers were used through history, many of
which are now considered insecure by modern standards. In fact, it wasn’t until very recently
in the mid 20th century that cryptography transformed from an art to a science. Now we have
rigorous methods and techniques to argue and measure security of cryptographic systems.
Interestingly, along with these new techniques came a great extension to the underlying
applications beyond encryption, such as authentication, secret sharing, signatures (just to
name a few), along with a great explosion in user base.

In general, there are two flavors to modern cryptography: private key and public key
(also known as symmetric key and asymmetric key respectively). In a private key setting,
all users of the underlying primitive (whether it be encryption, authentication, or some other
task), share the same secret key k (i.e., this key is privately shared and all users have the
same symmetric information concerning this key). In a public key setting, one user has a
public/private key pair while all other users, including potential adversaries, hold the public
key. Thus there is an asymmetry to the overall system with one user having additional
information.

While public key cryptography is an incredibly useful mechanism, allowing for users with
only public information to, for instance, send information securely to a single party holding
the secret key (namely, public key encryption), it is also orders of magnitude slower than
symmetric key systems. Furthermore, while some symmetric key systems can be proven
information theoretic secure (i.e., secure without requiring computational assumptions), this
is impossible with public key cryptography where security must always depend on some
unproven computational assumption. Thus, despite public key cryptography’s great appeal,
it is still desirable in practice to use symmetric key cryptography whenever possible. But
how do parties agree on a secret key k without an adversary learning it? This is exactly the
key distribution problem. For more information on these issues, the reader is referred to [1].

Of course, if distances are short and the user-base is small, a secret key could be agreed
on by meeting in person. Obviously this solution does not scale. Today, we use public key
cryptography to distribute secret keys (for instance in a TLS/SSL connection, public key
encryption is used to transfer a randomly generated shared session key between parties [2] -
thus, public key cryptography is used to “boot-strap” symmetric key mechanisms which are
much faster). But the security of such systems, then, depend entirely on the security of the
underlying public key system used to distribute the key.

Rather interestingly, it is a mathematical impossibility for two parties to agree on a
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shared secret key which is secure against a computationally unbounded adversary, when
using only classical communication. Instead, one must always make assumptions on the
power of the adversary. Thankfully, this impossibility result does not hold when parties
switch to quantum communication. Indeed, if users utilize quantum information (in addition
to classical information), it is possible to establish a shared secret key, secure against an all-
powerful adversary (i.e., an adversary who is bounded only by the laws of physics, and not
necessarily by some computational hardness assumption). Requiring only that the adversary
live in a physical universe, as opposed to the adversary having difficulty solving certain
mathematical problems, is an arguably safer assumption for securing our communication
infrastructure.

Quantum Key Distribution (QKD) was initially discovered in 1984 by Bennett and Bras-
sard [3] and, independently, in 1991 by Ekert [4], however it wasn’t until many years later
in 2001 that a full proof of security was developed [5]. An alternative, information theoretic
proof technique was developed in 2004 by Renner et al. [6]. Such protocols require the two
users, whom we refer throughout this work as the customary Alice (A) and Bob (B), to
both be capable of manipulating qubits in certain manners (e.g., being able to prepare and
measure qubits in arbitrary bases). Both parties must, therefore, be quantum capable.

But is this always needed? If both parties are capable only of classical communication,
perfectly secure key distribution is impossible; if both parties are quantum capable, then it is
possible. What is the middle-ground and what exactly happens in this “gap” between clas-
sical and quantum communication? This is the question which semi-quantum cryptography
seeks to shed light on. Introduced originally in 2007 by M. Boyer, D. Kenigsberg, and T.
Mor in [7], this field has seen growing interest over the years with new protocols, new crypto-
graphic primitives, and new security proofs leading to a growing research area. Furthermore,
as our society begins to move towards practical implementations of quantum communication
networks [8, 9, 10, 11], the semi-quantum model may hold unique benefits allowing for po-
tentially cheaper devices (as less “quantum capable hardware” may be required) or devices
that are more robust to hardware faults (as one may switch to a semi-quantum mode of
operation if some devices fail). Finally, the theoretical and practical innovations necessary
to study the semi-quantum model, where users are highly restricted in their abilities, may
lead to great innovations in the broader field of quantum information science.

This paper surveys the development and the latest state of the art in the field of semi-
quantum cryptography. We will begin by discussing basic (fully) quantum key distribution
topics that are relevant. After this, we will present the semi-quantum model in detail along
with the first protocols developed for key distribution - so called semi-quantum key distri-
bution (SQKD) protocols. We will cover in detail semi-quantum key distribution protocols,
past and current along with the research being done to reduce quantum resource require-
ments even further. Following this, a detailed review of security results and methods will
be presented, including proof techniques and noise tolerance results. The last topic in key-
distribution will be a survey of multi-user SQKD protocols, including protocols where mul-
tiple classical users establish a key through the use of an untrusted (adversarial) quantum
server.
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Semi-quantum cryptography now spreads beyond key distribution so we will then survey
other applications of the model to primitives such as secret sharing, secure direct communi-
cation, and private state comparison. We will conclude with a survey on current practical
SQKD research, including recent experimental implementations.

1.1 Quantum Key Distribution

Before discussing the semi-quantum model of cryptography, we review here some basic facts
about quantum key distribution. We only review some important facts needed to put into
context the work done in the semi-quantum model - for a more complete survey of standard
(i.e., “fully-quantum”) quantum cryptographic protocols and technology, the reader is re-
ferred to [8, 9, 10, 11]. This survey, of course, will focus on semi-quantum communication
and cryptography.

QKD protocols utilize both quantum and classical communication. A quantum channel
connects users allowing them to send quantum resources to one another (e.g., qubits); an
authenticated classical channel is also available on which users may send authenticated, but
not secret, messages to one another. A QKD protocol generally consists of two stages: first is
a quantum communication stage followed by a second post processing stage. Much research
is often spent in the first stage, while the second generally consists of standard classical
cryptographic processes (though, we note, developing new, faster, and more efficient systems
for this second stage is also an area of active research and interest). Certainly, in the
semi-quantum field, at the moment all research has been on the first stage, using standard
techniques and methods for the second stage.

The quantum communication stage of a protocol typically operates over numerous, inde-
pendent, iterations. Each iteration consists of random choices by users, however the choice
is independent of previous iterations. Thus, when presenting a protocol later, we generally
write out only a single iteration of the quantum communication stage - it is understood,
then, that what is written would be repeated a sufficiently large amount of time as required by
the users. The goal of this stage is to utilize the quantum communication channel and the
classical authenticated channel, to establish what is called a raw key. These are two strings of
classical bits, one string held by A and one by B, which are partially correlated and partially
secret. Due to noise in the quantum channel (either natural or adversarially generated), the
strings will inevitably have errors in them. Furthermore, one must assume the worst case
that an adversary has some classical or quantum system correlated or entangled with this
raw key. Thus, the raw key, by itself, cannot be used directly for cryptographic applica-
tions. Instead it must be further processed through the second stage of a QKD protocol.
Before this, however, a second output of the quantum communication stage is some form of
sampling data on the quantum channel determining, at a minimum, the noise level in the
quantum channel. We refer to this data as the channel’s noise signature. Exactly what data
this consists of depends on the protocol.

The second stage, the classical post processing stage, takes as input the raw key and
the noise signature and, first, runs an error correction protocol. This uses the authenticated
classical channel thus leaking additional information to E; this additional leakage must be
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taken into account in any security proof. Following this a privacy amplification protocol
is run, taking the error corrected raw key and hashing it down to a secret key. Privacy
amplification is done using a two-universal hash function [6]. Namely, A will choose a
hash function f randomly from a family of two-universal hash functions. She will send a
description of f to B using the authenticated channel (thus the adversary then knows which
function f is used). Following this, both users run their raw key through the hash function
resulting in a secret key KA and KB of size ` bits.

If the protocol is correct, it should hold that KA = KB with high probability (i.e., they
should differ only with negligible probability as determined by some user specified security
parameter). If the protocol is secure, it should be that any adversary’s system should be
independent of the final secret key and, furthermore, the secret key should be no different
from one chosen uniformly at random.

More formally, let ρKE be the state of the system describing the generated secret key K
(known to A and B) and E’s system (which includes anything learned from error correction
and the chosen privacy amplification hash function). Then, the protocol is considered secure
if: ∣∣∣∣ρKE − IK/2` ⊗ ρE∣∣∣∣ ≤ ε, (1)

where ||X|| is the trace distance of operator X. In essence, the above says that, after
execution, the actual protocol state, ρKE, is ε-indistinguishable from an ideal state consisting
of a key chosen uniformly at random and completely independent of E’s system. One is very
often interested in the key rate of a (S)QKD protocol, defined to be the ratio of secret bits
(`) to either the size of the raw-key N , or the number of qubit signals sent (the latter of
which is, of course, never smaller than N and can, in fact, be much larger depending on how
efficient the protocol is); note that the latter term is smaller and is often called the effective
key-rate. We will return to these notions later when we discuss key-rate computations for
SQKD protocols.

As we will see later, an important question, given a new (S)QKD protocol, is to determine
a bound on its key-rate `/N , either in the finite key setting or the asymptotic setting (the
latter being when N approaches infinity). This bound should be a function only of observed
noise statistics (the noise signature). Once this is computed, one is also interested in a
(S)QKD protocol’s noise tolerance - namely the maximal observed noise for which the key-
rate remains positive. We will return to these concepts later.

2 Semi-Quantum Key Distribution

The question, “how quantum does a protocol or system need to be to gain an advantage
over its classical counterpart” is an important one both theoretically and practically. This
question has been studied in various manners, but it wasn’t until Boyer et al., introduced
the semi-quantum model for key distribution that this question was first extended to the
field of cryptography [7].

A semi-quantum key distribution (SQKD) protocol typically consists of two users: a fully
quantum user Alice (A) and a classical user Bob (B) (though the names may occasionally
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Figure 1: The typical setup of an SQKD protocol. A fully quantum user A begins by sending
quantum states to B. This user, A, is allowed to prepare any state required by the protocol.
This qubit passes through the forward channel to the semi-quantum or classical user B. This
user, B, is only allowed to perform certain operations, namely ignore the qubit (Reflect)
or interact with the qubit in the computational Z basis only (e.g., Measure and Resend).
B may also only prepare Z basis qubits. The reverse channel then carries qubits back to A.
Note that, B, the classical user, can only interact with the channel directly in the Z basis, or
disconnect from the channel, in which case A is sending quantum information to herself in a
large loop. When qubits return to A through the reverse channel, she is allowed to perform
any operation on them.

be reversed in some references, it is irrelevant to our discussion). Before introducing actual
protocols, it is important to more rigorously understand and define exactly what a “classical”
user is in the context of this problem. Indeed, what does it even mean for a so-called
“classical” user to interact with a quantum channel?

2.1 The Semi-Quantum Model

The quantum user has access to a quantum channel which starts at her lab, travels out, and
returns to her. The classical user (sometimes called the semi-quantum user) B can access
a portion of this channel. Thus, semi-quantum protocols operate over a two-way quantum
channel where qubits, or other quantum carriers, travel first from the quantum user A, to
the classical user B, then return to the quantum user. See Figure 1.

Besides the requirement of a two-way quantum channel, SQKD protocols place a further
restriction on the classical user. Namely, he is only allowed to interact with the quantum
channel by performing a Z basis measurement or sending Z basis qubits. Alternatively, he
can simply ignore the channel, disconnect from it, in which case A, the quantum user, is
simply “talking to herself.” More specifically, for every qubit received, B may choose one of
the following options:

1. Measure: Subject the incoming qubit to a Z basis measurement.

2. Prepare: Prepare a Z basis state and send it to A on the reverse channel.
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3. Measure and Resend: Subject the incoming qubit to a Z basis measurement and
then resend the result back to A as a Z basis qubit (a combination of the above two
operations, though with the restriction that B always sends the same state he observes
- this is actually important for security as discussed later in this paper).

4. Reflect: Reflect the qubit back to A undisturbed. This is equivalent to simply dis-
connecting from the quantum channel and forwarding everything back to the sender
(e.g., A). The classical user does not learn anything about the state of the qubit in
this case.

5. Permute: Reorder the qubits received (or a subset of qubits received) without otherwise
disturbing them. The classical user does not learn anything about the underlying states
of the qubits, he only permutes their order.

Protocols that utilize Reflect and Measure and Resend are generally called measure-
resend protocols while those that require Permute are usually called randomization based
protocols [12]. Note that B can only directly work in the Z basis; otherwise he can disconnect
from the quantum channel in which case A, the fully quantum user, is simply “talking
to herself.” We comment that, occasionally, new semi-quantum research introduces new
operations that the semi-quantum user B may perform and we will comment on these other
operations as they arise in our survey.

Note that if both A and B were restricted to these operations (either working in a single
Z basis or disconnecting from the quantum channel), the resulting protocol would be no
different, from a mathematical standpoint, from a purely classical protocol and, thus, could
never be unconditionally secure. The question is, can one user be classical in this sense
(in that he can only operate in a single basis or ignore the channel) while still maintaining
security? As it turns out, the answer is, indeed, yes.

2.2 First Protocols

In their seminal paper, Boyer et al. [7], introduced two SQKD protocols to demonstrate
the model. Here we discuss these protocols to give the reader some idea as to how SQKD
protocols typically operate.

As with QKD protocols, SQKD protocols operate in two stages. The quantum commu-
nication stage of the original measure-resend style SQKD protocol from [7], which we denote
here BKM07, operates by repeating the following:

Protocol: BKM07 [7]

1. A prepares one of the four states |0〉 , |1〉 , |+〉, or |−〉 with uniform probability, remem-
bering her choice. She sends the resulting qubit to the classical user B.

2. B will choose to either Measure and Resend or to Reflect the incoming qubit.
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3. A will measure the returning qubit in the same basis she initially used to prepare it
(Z or X).

4. A discloses her choice of basis while B discloses his choice of operation. Measurement
results and initial state preparation choices remain secret.

5. If A choose to send a Z basis qubit and if B choose Measure and Resend, parties
may use this round for their raw-key. In particular, A will use her initial preparation
choice while B will use his measurement result (these should be correlated). All other
iterations, along with a suitably sized random sample of raw-key iterations, are used
for sampling the quantum channel error rates.

Note that the protocol could be written equivalently with A using her measurement result
for her key-bit instead of her initial state preparation choice. Indeed, A can choose later
which option to follow based on the observed noise - if the noise in the forward channel
is higher than the reverse, it would make sense to switch (this way there will be a higher
correlation between A and B’s raw key results). For sampling, note that due to the two way
quantum channel, several statistics can be gathered, namely:

• pA→Bi,j : The probability that B measures a |j〉 given that A sent a |i〉 and B choose
Measure and Resend, for i, j ∈ {0, 1}.

• pB→Ai,j : The probability that A measures a |j〉 given that B sent a |i〉 (for i, j ∈ {0, 1}).

• pA→Ai,R,j : The probability that A measures a |j〉 given that she initially sent a |i〉 and B
choose Reflect (now, for i, j ∈ {0, 1,+,−}).

Note that, while users can measure the Z basis noise (e.g., a |i〉 flipping to a |1− i〉 for
i = 0, 1) in each of the forward and reverse channels, they can only measure the X basis
noise in the entire joint channel. Since B cannot measure or prepare in the X basis, it is
impossible to observe the X basis error in either channel separately. This opens up potential
attack strategies for an adversary and makes security analyses difficult (we comment on
current security techniques later in this paper).

The second SQKD protocol introduced by the same authors in [12], utilized the Permute

operation as opposed to the Measure and Resend.

Protocol: BGKM09 [12]

1. A preparesN qubits, each qubit prepared randomly in one of the four states |0〉 , |1〉 , |+〉,
or |−〉. She sends all N qubits to B.

2. For each qubit, B chooses randomly to Measure or to Reflect. For those qubits he
chooses to Reflect, he also permutes the qubits before returning them. That is, he
does not disturb their state through any measurement, however he re-orders them
before resending. Those qubits he measures he does not resend.
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3. A stores the returning qubits in a quantum memory. At this point, B will inform
her which qubits he choose Reflect and also the order he reflected them back. The
quantum user A then undoes the permutation and measures the returned qubits in the
same basis she initially sent them.

4. A discloses which qubits she sent in the Z basis. Whenever A sent a Z basis qubit and
B choose to Measure, users now have a correlation used for their raw key.

Note that the above protocol requires a quantum memory on the part of the quantum
user. It also, in a way, requires more advanced capabilities on the part of the classical user
in that he must be able to randomly permute qubits (perhaps, through delay lines [12]).
Note that, if B does not “resend” then he must “permute” otherwise the protocol becomes
susceptible to the so-called double CNOT attack [12]. Indeed, in this case, E can apply
a CNOT gate to all qubits traveling in the forward direction. If B measures, but does
not resend, E will notice a vacuum leaving his lab in which case a measurement of her
ancilla provides full information to her. If B chooses to Reflect, then E will simply apply
a CNOT gate in the reverse channel, undoing the initial state (since B’s operation is the
identity operation in this event and so the two CNOT gates invert each other) and thus avoid
detection. Therefore, it is vital for any point-to-point SQKD protocol to have the classical
user “resend” or “permute.”

The above protocols were prepare-and-measure protocols whereby qubits are prepared
and subsequently measured (similar to BB84). Additionally, entanglement based SQKD
protocols were also subsequently proposed where the fully quantum user prepares entangled
states, sending one particle to the other (classical) user and holding the other locally (similar
to an E91 style protocol [4]). For instance, [13] proposed two protocols in this line where
the quantum user prepares a Bell state, sending a particle to the classical user. This user
then performs the Reflect or Measure and Resend operation, returning the state to A.
Whenever B performed Reflect, A will measure the qubit pair in the Bell basis - she should
receive the same Bell state she originally prepared. On other iterations, she measures her
qubit in the Z basis, creating a correlation between the two parties that is used as their
raw key (A’s qubit measurement in the Z basis should match B’s). A similar protocol was
described in that same reference where B also uses the Permute option.

An alternative entanglement based protocol was presented in [14]. Here a different en-
coding scheme was used in that a key bit of 0 is encoded by sending a Bell state |Φ+〉 =
1√
2
(|00〉+ |11〉) while a key bit of 1 is encoded by sending a Bell state |Ψ+〉 = 1√

2
(|01〉+ |10〉).

Namely, on each iteration of the protocol A prepares, randomly, a Bell state |Φ+〉 or |Ψ+〉;
her choice determines her random raw key bit for this iteration. It is, therefore, the goal of
B to guess which Bell state A prepared. This is done by A sending one particle to B, keep-
ing the remaining one private. B then chooses Measure and Resend or Reflect. Finally,
when a qubit returns to A, she will measure both particles either in the Bell basis or the
computational basis. Parties then disclose their operations. When B choose Reflect and
A chose to measure in the Bell basis, she should receive the same outcome that she initially
prepared (other outcomes being counted as errors). For all iterations where A measured in
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the computational basis, however, she will disclose the measurement result of the qubit she
kept private (i.e., she discloses 0 or 1 based on the computational basis measurement of the
qubit she initially kept private). This disclosure, combined with B’s measurement outcome
(which he keeps private) allows him to determine which of the two Bell states A prepared,
thus allowing him to guess A’s raw key bit for that iteration. Note that for E to guess this
also, she would have to know the measurement result of the qubit particle that traveled
between parties - however such a measurement on her part would have caused a disturbance
in the cases where B choose Reflect. We discuss general security issues later in this work,
however this encoding scheme is interesting in that it allows a classical party to, in a way,
determine the result of a Bell state preparation with help from A.

2.3 Reducing Resource Requirements

Numerous SQKD protocols have been developed, beyond those mentioned in the previous
section, each with various advantages, disadvantages, and theoretical interests. One of the
primary theoretical goals of semi-quantum cryptography is to better understand “how quan-
tum” a protocol must be to gain an advantage over its classical counterpart; thus, one impor-
tant research direction in semi-quantum communication is in further reducing the quantum
resource requirements on the part of the two users. This includes both the fully-quantum
user, and the semi-quantum user. As this is a vital area of research in semi-quantum cryp-
tography, we spend some time here surveying the recent progress in this area.

The first result in this line of investigation came in 2009 with a paper by Zou et al.,
[15]. In this work it was shown, for the first time, that the fully-quantum user can also have
reduced resource requirements. Namely, five new protocols were proposed. These protocols
required fully-quantum Alice to send only three, two, or even a single state to B. On return,
of course, the fully-quantum user must be able to measure in two bases. In light of their
work, one may classify SQKD protocols as n-state SQKD protocols where n is the number
of states that the quantum user A may choose to prepare. If n = 1 we call the protocol a
single state protocol; otherwise it is a multi state protocol. Zou et al., [15] presented the
first single state protocol along with 2 and 3 state protocols. Note that BKM07 is a 4-state
protocol.

The so-called single state SQKD protocol from [15] is of particular interest as it sparked
several additional protocols along this line; furthermore, such protocols actually admit cer-
tain nice reductions in their security proofs which we will comment on later. The quantum
communication stage of this protocol repeats the following process:

Protocol: Single State SQKD [15]

1. A prepares a single qubit in the state |+〉 and sends it to B.

2. B chooses randomly to Measure and Resend or to Reflect recording his choice and,
if applicable, his measurement outcome.
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3. A chooses to measure in the Z or the X basis randomly.

4. Users A and B disclose their choices. If B chose to Measure and Resend and if A
chose to measure in the Z basis, they should share a correlated bit to be used for their
raw key. If B chose Reflect and if A chose to measure in the X basis, she should
observe outcome |+〉 and any other outcome is considered an error.

This single state protocol is remarkably simple and demonstrated that the fully quantum
user need not have advanced source preparation capabilities. Rather remarkably, as we
comment later, the security properties of this protocol were also shown to be optimistically
comparable to certain fully-quantum protocols, at least in the perfect qubit scenario (we will
discuss this later when we talk about security of SQKD protocols).

Since Zou et al.’s 2009 paper [15], several other single-state protocols have been proposed.
In 2014 it was shown that a key need not be distilled from measurement choices, but instead
may be distilled from B’s action [16]. While the BKM07 protocol may be considered a
semi-quantum version of the BB84 protocol (since all four BB84 states are transmitted on
the return channel) and the Single State SQKD protocol may be considered a semi-quantum
three-state BB84 [17, 18] (since only three states, |0〉 , |1〉, and |+〉 are transmitted on the
return channel), this new protocol is, in a way, a version of the Extended B92 [19] protocol.
This is due to the fact that three states are transmitted on the return channel (|+〉, |0〉,
and |1〉) and, furthermore, the encoding scheme is based on alternative basis choice (as
determined by B’s actual operation) and not based on the qubit state directly. This single-
state protocol operates as follows:

Protocol: Reflection-Based SQKD [16]

1. A prepares a single qubit in the state |+〉, sending it to B.

2. B chooses a random bit kB. If kB = 0, he will choose to Reflect the qubit, and
furthermore he sets a private internal register acceptB to TRUE with 1/2 probability
(otherwise it is set to FALSE). If kB = 1 he chooses to Measure and Resend setting
acceptB = TRUE only if he observes |0〉.

3. A chooses randomly to measure in the Z or X basis. If she chooses the Z basis and
observes outcome |1〉, she sets kA = 0 and acceptA = TRUE. If she chose the X
basis and observes outcome |−〉, she sets kA = 1 and acceptA = TRUE. All other
measurement outcome possibilities result in her setting acceptA = FALSE (in which
case kA is set arbitrarily).

4. Users A and B both divulge their value of acceptA and acceptB respectively. If both
are TRUE, they will keep their bits kA and kB to contribute towards their raw key.
Otherwise, the iteration is discarded.
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It is not difficult to see the similarity between the above protocol and a B92-style protocol.
Indeed, the key is transmitted only when B chooses Reflect (which should result in him
sending a |+〉) or when he chooses Measure and Resend and observes |0〉. However, there
is one very significant difference - namely, B cannot be certain he is sending a |+〉 when
he chooses Reflect. Indeed, an adversary will attack the forward channel (see Figure 1),
altering this state. Unlike security proofs of standard one-way protocols, security proofs
of semi-quantum protocols must take into account that what B sends is affected by E’s
forward channel attack. This complicates security analyses. Another protocol based also
on this reflection-based encoding scheme was developed in [20] which is, in a way, the semi-
quantum version of B92 (the non-extended version).

In [21], a two state SQKD protocol was proposed where the quantum user prepares a
random X basis state (either |+〉 or |−〉) and sends it to the classical user. Note that in their
paper, they referred to the quantum user as B and the classical user as A (thus flipping the
labels with B now initiating the communication). However, to remain consistent throughout
this work, we will maintain the notion that A is the quantum user who initiates the com-
munication and B is the classical user. Obviously the exact labeling is irrelevant. Following
this state preparation, the classical user chooses one of two operations Measure and Resend

or Reflect; finally the quantum user will choose to measure in a random basis Z or X.
Both parties disclose their choices and the key is distilled from those iterations where B, the
classical user, chose Measure and Resend and the quantum user A chose the Z basis. Thus,
it is, in a way, a two-state version of the BKM07 protocol.

Another single-state protocol, along with a new four-state protocol, was proposed in [22].
This paper increased B’s abilities by allowing him to choose a Measure and Prepare option
(as opposed to simply resending whatever he observed). This option gives B the ability to
measure a qubit in the Z basis, but prepare any Z basis state he likes, regardless of his
measurement outcome (normally the Measure and Resend option forces him to always send
the basis state he measured). This augmentation allows for the construction, also, of a secure
direct communication protocol.

Attack on B’s Send Operation: Rather interestingly, it was recently shown in [23] that
by allowing B this extra ability (namely the ability to prepare any Z basis state regardless
of measurement outcome), only partial security may be achieved. Thus, rather interestingly,
if both parties are fully quantum, secure protocols exists (e.g., BB84 [3]); if B is classical
in that he only chooses Reflect, Measure and Resend, or Permute, the protocol may also
be secure (e.g., BKM07 [7]); however if we take this and add a little extra power to B,
security may break down. The attack discovered in [23] operates as discussed below, though
we generalize it slightly here to show how it may be applied to arbitrary protocols which
operate using the Measure and Prepare operation (where the prepared Z basis qubit may
be in a different state than what was measured) as opposed to the Measure and Resend

operation - that is, their attack described in [23] can be applied to arbitrary semi-quantum
protocols whenever B deviates from sending exactly the Z basis state he measured:

1. In the forward channel (refer to Figure 1), Eve applies a CNOT gate, using the traveling
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qubit as a control and her private ancilla as a target. Her private ancilla is initially in
a |0〉E state.

2. In the reverse channel, E applies the following operator which acts on the traveling
qubit (denoted the T space) and her private ancilla as follows:

UR |00〉TE = |00〉TE
UR |11〉TE = |10〉TE
UR |01〉TE = |02〉TE
UR |10〉TE = |13〉TE .

Note that we assume E’s ancilla is four dimensional, spanned by basis states |0〉, · · · ,
|3〉. Also note that the operator UR as described is an isometry and so may be dilated
to a unitary operator through standard techniques (thus, it is an operation E could
physically perform).

Now, on any particular iteration of a SQKD protocol, Alice will send a state of the form
α |0〉+ β |1〉. These α and β may be chosen randomly if the protocol is a multi-state one, or
they may be publicly known if the protocol is a single state one. After the initial CNOT gate,
the joint system becomes α |0, 0〉TE + β |1, 1〉TE. If B chooses Reflect, the state returning
to E is exactly this; E will then apply UR evolving the joint state to (α |0〉 + β |1〉) ⊗ |0〉E
thus creating no detectable disturbance.

On the other hand, if B chooses to Measure and Prepare, he will detect |0〉 with proba-
bility |α|2 or |1〉 with probability |β|2, the same probability had E chosen to not attack and,
so far at least, her attack is not detected. We may write the resulting state as a density
operator:

|α|2 |0〉 〈0|B ⊗ |0〉 〈0|E + |β|2 |1〉 〈1|B ⊗ |1〉 〈1|E ,

where we introduced a B register storing B’s measurement result. Next, B chooses to prepare
a fresh qubit (unlike Measure and Resend, the state he sends may be different from that he
observed). If he sends a |0〉, the resulting state, again modeling as a density operator due to
B’s measurement, is:

|α|2 |0〉 〈0|B ⊗ |00〉 〈00|TE + |β|2 |1〉 〈1|B ⊗ |01〉 〈01|TE ,

which becomes, after applying UR:

ρ0 = |α|2 |0〉 〈0|B ⊗ |00〉 〈00|TE + |β|2 |1〉 〈1|B ⊗ |02〉 〈02|TE . (2)

Following the same logic, had B chosen to send |1〉, we have density operator:

ρ1 = |α|2 |0〉 〈0|B ⊗ |13〉 〈13|TE + |β|2 |1〉 〈1|B ⊗ |10〉 〈10|TE . (3)

The T qubit is passed to A. It is not difficult to see that this attack goes undetected.
However, by measuring her ancilla, if E observes |2〉E she knows for certain that B choose to
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Measure and Prepare, that he originally observed |1〉 and that he sent |0〉. If E observes |3〉E
she knows that B originally observed |0〉 and sent |1〉. In these cases, E has full information
on B and A, thus causing a security break. Of course this attack does not always work.
Indeed, it fails whenever B chooses to send exactly the same state he measured (i.e., he ends
up using Measure and Resend)! Thus, by increasing B’s capabilities, we actually cause a
security break. Since this attack does not work all of the time (some iterations will give E no
information) it leads to a partially secure system (i.e., it may be partially robust as defined
in [7] though we will return to this notion of “robustness” later in this work).

Open Problem 1: While security is broken when B sends an alternative state than
what he observed for key distillation, are there potential advantages to this, perhaps, in
better categorizing E’s attack? Additional noise statistics may be gathered which could
help security so long as those iterations where B sends the opposite state are never used for
the key.

Research has shown that decreasing A’s source preparation ability (e.g., single-state pro-
tocols) can still lead to secure key distribution systems. Interestingly it is also possible to
decrease her ability to measure. In [24], it was shown that A need only measure in the X
basis and send three states. In [25], it was shown that A needed only to prepare two states, a
|0〉 and a state |a〉 where | 〈0|a〉 | ∈ (0, 1) while only measuring using a three outcome POVM.
This last paper provided an SQKD protocol that could smoothly transition from classical
communication to (semi) quantum communication and proposed a method of measuring the
affects this transition has on secure communication rates. However, their security analysis
required a three outcome POVM - while weaker than a two basis measurement, it is not
as weak as simply measuring in a single basis as in [24] (though that paper required three
states). This leads to a rather interesting open problem:

Open Problem 2: Does there exist an SQKD protocol where A sends only two (non
orthogonal) states and only performs a measurement in a single basis?

Clearly, a single state SQKD protocol where A measures only in one basis cannot exist.
This is easy to see: assume such a protocol exists - then, since A sends only a single state,
no key material can be transferred on the forward channel, instead it must be transmitted
somehow using the reverse or loop channels. But, since A can only measure in a single basis,
and since this basis is public knowledge (due to Kerckhoffs’ principle [1], the basis choice
should be public knowledge), Eve could simply also measure in this basis any qubit arriving
to A. Thus A and E’s systems will be fully correlated and no key can be distilled. Thus, to
have any hope of further reducing resource requirements on the quantum user, a two state,
one basis protocol is the only possibility. It is unclear if such a protocol can exist.

One candidate was proposed in [25], but it is not clear that it is secure. While it was
shown to be secure against a single Intercept/Resend attack in [25], beyond this no proof
of security (or insecurity) exists. Since single-state with two basis measurement protocols
exist [15, 16, 20, 21], and since three state, one basis measurement protocols exist [24], a
two-state, one basis measurement protocol would be an interesting development in SQKD
research and represent the minimal resource requirements on the part of the quantum user,
in a point-to-point SQKD system (there are other models of semi-quantum communication
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involving third parties which are outside of this question’s scope and which we discuss later).
Continuing our discussion on reducing resource requirements, a protocol where B does

not need to actually perform a measurement was shown in [26]. This protocol required the
Measure and Permute operations. Namely, on receipt of a qubit stream from A, B will
choose to discard a random subset of the qubits and prepare fresh Z basis ones in place of
them (these qubits are not first measured). He then applies the Permute operation sending
these qubits back to A. Another protocol in [27] was introduced where B needs only to be
able to Reflect or discard a qubit (he need not measure nor must he prepare a qubit). This
required a third party however. The protocol consisted of A sending qubits to B who can
choose to drop them, or forward them (the Reflect operator in this case) to the third party
server. This third party was responsible for applying a unitary gate to the qubits received
and sending them back to B. This classical user B may again choose to discard or forward
them back to the third party who then measures the qubits.

2.4 Other SQKD Protocols

While a large portion of research has been in the direction of further reducing resource
requirements for an SQKD protocol (either for the fully quantum or the semi quantum user),
other novel protocols with interesting theoretical insights have also been developed. One area
of research has been in attempting to develop “authenticated SQKD protocols” which do
not utilize an authenticated channel (instead relying on a pre-shared key). Protocols of this
nature have been proposed in [28, 29]. Security in this regime, however, is difficult to define
and attacks have been shown in [30]. There has not been a complete information theoretic
security analysis for these protocols as of writing this, instead security is generally shown
against certain classes of attacks.

Strategically utilizing the two-way quantum channel is another possible research direction
to take when designing new SQKD protocols. In [31] a new SQKD protocol was developed
where A uses information from both the forward and reverse channels. This results in a loss
of efficiency but results in a drastic increase in protocol noise tolerance - something we will
comment on later when discussing security results.

Efficiency is an important consideration to take into account when designing new SQKD
protocols. In [32, 33] protocols were proposed to improve efficiency by biasing choices to
improve their overall efficiency (e.g., by leading to fewer discarded iterations due to incom-
patible choices), similar to what is done for fully-quantum protocols [34].

Other encoding schemes are also worth investigating. In [35], two qubits were used in
a form of time-bin encoding. The encoding was done in a way so as to allow for robust
protection against dephasing noise. A six-qubit encoding scheme was presented in [36] (sub-
sequently improved in [37]) allowing for protection against dephasing and rotation noise.

While the majority of SQKD research is in reducing resource requirements, some work in
[38, 39] has been done in high-dimensional (beyond a small fixed constant number of qubits
per signal) SQKD. Since it is now known that the use of high-dimensional quantum states
for fully quantum key distribution provides several benefits, especially in noise tolerance (see
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[40, 41, 42, 43, 44] for a few references), it is interesting to see that this also translates to
the semi-quantum case.

When working with high-dimensional semi-quantum communication, one must define
what the classical user’s capabilities are when interacting with high-dimensional states. The
natural approach (used also in [38, 39]) is for A, the fully quantum user, to send an arbitrary
state |ψ〉, now living in a d-dimensional space (instead of the usual d = 2). B, when receiving
this state, can either choose Reflect in which case he reflects the entire d-dimensional state,
or he can choose Measure and Resend in which case he performs a measurement in the
d-dimensional computational basis, namely {|0〉 , |1〉 , · · · , |d− 1〉} and prepares a fresh d-
dimensional state based on his measurement outcome. Of course when d = 2 this agrees
completely with Boyer et al.’s original definitions [7]; furthermore, if both A and B are
restricted to these operations, the protocol is no different, mathematically, from a classical
one and, so, this seems the natural way to extend semi-quantum communication to higher
dimensions. In [38], a high-dimensional SQKD protocol based on the use of quantum walks
was presented (here, the states A prepared were results from evolving a quantum walk
[45, 46]). In [39] a high-dimensional version of BKM07 was presented which was shown
to tolerate high levels of noise as the dimension of the quantum state increases (similar to
what occurs in the fully-quantum setting [41]). Future work in developing high-dimensional
semi-quantum protocols may prove very interesting in further discovering the differences,
and similarities, between the semi-quantum and fully-quantum models of communication.

3 Security Results

In this section we discuss research on security aspects of SQKD protocols in the perfect
qubit scenario (we leave practical security issues for a later section). There are two main
challenges to performing a security analysis of a semi-quantum protocol. First is the fact
that at least one party (potentially both as discussed above) is limited in some nature and,
therefore, users cannot make certain measurements on the noise in the quantum channel.
For instance, they cannot measure the X basis noise in the forward channel (from A to B).
Second is the fact that E has two opportunities to interact with the qubit in flight - first
when it travels to B and second on its return. Indeed, as shown in [47], attacking twice can
allow an adversary greater information gain than simply attacking one channel, at least for
some SQKD protocols. In this section we review general techniques for arguing about the
security of SQKD protocols.

3.1 Robustness

The first notion of security for a semi-quantum protocol was robustness. This was a term
introduced by Boyer et al., in the original SQKD paper [7] and states that an SQKD protocol
is robust if any attack which causes an adversary to learn non-zero information on the raw
key of the protocol must necessarily induce a detectable disturbance in the quantum channel.
That is, the adversary cannot get any information without risking detection. The notion
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Figure 2: Showing the attack scenario considered in Boyer et al.’s proof of robustness [12].
Each Ui is a unitary probe acting on all N qubits and E’s quantum ancilla.

of partial robustness was introduced in that same paper which weakens the definition to
allowing the adversary to gain some information without being detected, but any attack
which gains full information on the raw key must induce a detectable disturbance.

To prove an SQKD protocol robust, one must show that for any attack, if E’s ancilla is
somehow correlated with A or B’s raw key bit register, then this attack cannot go undetected
with unit probability. In general, there are two main methods of proving a protocol robust.
The first, introduced in [12] involves the following:

1. First, assume that E is able to capture all N qubits leaving A’s lab in bulk. Before
forwarding them to B, E applies a unitary probe U0 acting jointly on all qubits and
E’s private ancilla.

2. Following this probe, E forwards the first qubit to B. After B’s operation, the qubit
returns to A however E captures it again. At this point, the adversary once again
holds all N qubits and applies a new unitary probe U1 which, as with U0, acts jointly
on all qubits and E’s private ancilla (the same ancilla throughout).

3. E then repeats the above, sending the next qubit to B, capturing it on its return, and
probing it with a new unitary operator Ui.

4. Once all N qubits have gone through this process, E returns the N qubits to A who
completes the protocol.

This process is depicted in Figure 2. It is obviously a very strong attack model allowing E
to capture these qubits in bulk.

The second method of showing robustness was introduced first in [15] by Zou et al., and
makes the assumption that A only sends a subsequent qubit to B after receiving the previous
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one back from him. This assumption restricts E from storing all N qubits simultaneously,
however the probe E uses need not be the same for every iteration. This assumption generally
simplifies the security proof and allows for an inductive style argument to prove robustness.
Indeed, consider the BKM07 protocol - an inductive style of robustness proof could proceed
along these lines: Consider the first iteration of the protocol. Then, A sends a qubit state
of the form |i〉T for i ∈ {0, 1,+,−} (we use “T” to represent the transit space - i.e., the

two-dimensional Hilbert space modeling the qubit in transit between parties). Let U
(1)
F be

E’s first probe in the forward direction. Since this is the first iteration, E’s ancilla is cleared
to some default pure state |χ〉E which we may assume is known to E (note, the state is pure
to E’s advantage). The action of this first probe on basis states may be written as:

U
(1)
F |0〉T ⊗ |χ〉E = |0, e0〉TE + |1, e1〉TE

U
(1)
F |1〉T ⊗ |χ〉E = |0, e2〉TE + |1, e3〉TE

where the |ei〉 are arbitrary states in E’s private ancilla (these are not assumed to be nor-
malized or orthogonal). However, with non-zero probability this iteration will be used for
error detection. Thus, to avoid detection, E must set |e1〉 ≡ |e2〉 ≡ 0, that is, both must be
the zero vector. When the qubit returns (recall, this second model of robustness from [15]
assumes A will not send another qubit until this one returns - thus E is forced to probe the
qubit immediately on return from B), E applies a second probe U

(1)
R whose action we may

write as:

U
(1)
R |0, e0〉TE = |0, f0〉TE + |1, f1〉TE

U
(1)
R |1, e3〉TE = |0, f2〉TE + |1, f3〉TE ,

where, like the |ei〉 states, the |fj〉 are arbitrary states in E’s ancilla. Note that U
(1)
R ’s action

on states not of the form |0, e0〉 and |1, e3〉 is irrelevant as they never appear. As before,
this iteration may be used for error detection with non zero probability. Thus to avoid
detection, namely to avoid inducing any Z basis noise in the reverse channel, E must set
|f1〉 ≡ |f2〉 ≡ 0. Now, with non-zero probability A might have sent |+〉 and B may have
chosen Reflect. In this case, the state returning to A is found to be:

U
(1)
R U

(1)
F |+, χ〉TE = U

(1)
R

(
1√
2
|0, e0〉+

1√
2
|1, e3〉

)
=

1√
2
|0, f0〉+

1√
2
|1, f3〉

=
1

2
|+〉 (|f0〉+ |f3〉) +

1

2
|−〉 (|f0〉 − |f3〉), (4)

where the last equality arises from changing the transit space from the Z to the X basis.
At this point, it is clear that to avoid detection, it must hold that |f0〉 = |f3〉. Thus, E’s
ancilla after this first iteration is completely independent of the transit space and A and B’s
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measurements. Through induction, one sees that this holds for each subsequent iteration
for probes U

(i)
F and U

(i)
R (though note that the initial state |χ〉E is potentially different each

iteration, but remains independent of A and B’s state).
Proving robustness in the first model introduced by Boyer et al., in [7] is more involved.

It is an interesting open problem, however, to know whether or not this iterative attack as
assumed in the Boyer model of robustness gives E any advantage.

3.2 Information Theoretic Analysis

The notion of robustness gives a good security guarantee in that any adversary who attempts
to learn something about the raw key risks being detected. Beyond this, it is often useful,
however, to know exactly how much an adversary could have learned given a certain amount
of detectable noise. As current quantum communication systems are not perfect there will
always be natural noise that cannot be avoided. As we assume all-powerful adversaries,
we must actually assume, therefore, the worst case that the adversary replaces the noisy
quantum channel with a perfect one. She then hides her attack within the expected natural
noise. Thus, as is typical with standard QKD research [8, 9, 10, 11], we must assume that any
detectable noise is the result of an adversary. The question then is how much information
can an adversary gain? And, furthermore, how much noise is “too much.” Similar questions
also involve the protocol’s efficiency as determined by its key-rate.

Recall that a (S)QKD protocol is considered secure if, after privacy amplification, Equa-
tion 1 holds. If we consider collective attacks [8] (i.i.d. attacks where E is free to postpone
measurement of her ancilla until any future point in time and, furthermore, is free to perform
a joint coherent measurement on her ancilla at that point to attempt to extract maximal
information), let N be the size of the raw key before error correction and privacy amplifica-
tion are run. Let ` be the size of the secret key satisfying Equation 1; then it was shown in
[6] that, in the asymptotic limit it holds that:

lim
N→∞

`

N
= inf [S(A|E)−H(A|B)] , (5)

where the infimum is over all collective attacks which induce the observed noise statistics
(e.g., error rates). Here, S(A|E) is the von Neumann entropy of A’s raw-key bit register
conditioned on E’s quantum memory system while H(A|B) is the classical Shannon entropy
of A’s raw-key bit register conditioned on B’s. This equation is very intuitive: it states that
the key-rate increases when E has a lot of uncertainty (measured by S(A|E)) and B has little
uncertainty (measured by H(A|B)). The goal of a (S)QKD security proof in this manner
is to determine a lower-bound on r, given only the observed noise statistics. That is, one
cannot compute S(A|E) with certainty since we do not know exactly what attack E used -
however, one can attempt to lower-bound E’s uncertainty based on the noise assuming she
chose an optimal attack which induces that observed noise. Note that an alternative, and
equivalent, version of Equation 5, derived in [48], is:

lim
N→∞

`

N
= inf [I(A : B)− I(A : E)] , (6)
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where I(A : E) is the quantum mutual information and I(A : B) is the classical mutual
information. That these two versions of the key-rate expression are the same follows im-
mediately from the definition of mutual information and the fact that the systems under
consideration, namely A and B’s classical raw-key registers and E’s quantum register, are
classical-classical-quantum states.

The question, then, becomes: given certain observed channel statistics (e.g., noise rates
in the quantum channel(s)), what is a protocol’s key-rate?

Individual Attacks: The first papers to attempt to answer this question were [21] and
[49] which both considered information gain as functions of observed noise assuming in-
dividual attacks, namely attacks whereby the adversary attacks each qubit identically and,
furthermore, is forced to measure her ancilla immediately thus leading to a classical memory.

In [21], the authors introduced a new SQKD protocol which we discussed in an earlier
section. Security for their protocol was proven in terms of an individual attack on the reverse
channel (an argument was made that attacking the forward channel for their specific protocol
under the assumption of individual attacks did not provide her with any additional informa-
tion). Under this attack, they derived the following expression for the mutual information
held between A and E, namely:

I(A : E) = 1− h
(

1 + x

2

)
, (7)

where:
x = 2

√
QX(1−QX), (8)

and QX is the observed X basis error rate in the channel whenever B chooses Reflect.
Of course I(A : B) is simply 1 − h(Q) where h(·) is the binary Shannon entropy function
and Q is the probability of a Z basis error in the reverse channel (note that the reverse
channel is used to carry key material for this particular protocol). A graph of the resulting
key rate r = I(A : B) − I(A : E) is shown in Figure 3. Interestingly, the noise tolerance
of this protocol in this attack model is 14.6% (when QX = Q) which is exactly that which
BB84 can tolerate against individual attacks [50]. This connection in noise tolerance between
semi-quantum and fully-quantum key distribution is something we will comment on again
later when looking at stronger security models and shows that, even though semi-quantum
protocols are limited in their quantum capabilities, they hold similar security properties to
that of fully quantum protocols, at least in ideal qubit channels (practical issues surrounding
semi-quantum cryptography remain a large area of open research which we address later in
this paper). It would be interesting to investigate SQKD protocols in other attack models
where an adversary is limited in their quantum abilities and compare to the fully-quantum
counterpart.

Open Problem 3: It has been demonstrated that the noise tolerance of SQKD protocols
are comparable, or equal, to that of fully quantum protocols in the individual attack scenario
and, as we discuss later, against stronger collective attacks. Does this relation hold for
security models that may be weaker than individual attacks? For instance, intercept-resend

20



Figure 3: Showing the key-rate of the two-state protocol introduced in [21] assuming indi-
vidual attacks. For the Solid Line, we consider QX = Q; for the Dashed Line, we consider
QX = 2Q(1−Q).

attacks (where E must measure in a particular basis and forward a result - i.e., she cannot
probe the qubit sent any other way).

In [49], an analysis of Zou’s single state protocol (introduced in [15]) was performed also
assuming individual attacks. There, the mutual information between A and E was found to
be:

I(A : E) ≤ 2
√
QX + 6Q1/4. (9)

This is the first upper-bound on the mutual information for the single-state SQKD protocol,
at least for individual attacks. It also hints at robustness as, when QX = Q = 0, then
I(A : E) = 0; that is, when there is no noise, E cannot extract information. Of course,
robustness should not assume that E measures her ancilla which is an assumption made
when handling individual attacks. Note that this result is only an upper-bound and, as
shown in Figure 4, is very pessimistic as E’s information gain is potentially very large even
for small disturbances. More optimistic bounds for this protocol have since been shown also
assuming a stronger attack model as we discuss later. However, the paper [49] was one of the
first to actually derive a connection between noise and information gain for a semi-quantum
protocol and remains an important work.

Restricted Attacks:
One of the challenges with proving security of an SQKD protocol, either in terms of

robustness, or some other security model, is that the adversary is allowed two opportunities
to attack the qubit as it travels. However, there are currently two techniques for reducing
this complexity.

We consider, now, collective attacks where E attacks the forward channel with an operator
UF and the reverse with an operator UR. Both of these are unitary and act on the two
dimensional qubit space and E’s private ancilla (of arbitrary dimension). This can be used
to prove robustness in Zou’s model [15] or for an information theoretic analysis of noise
tolerance against collective attacks which we discuss next.
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Figure 4: Showing the upper bound on the mutual information held between A and E as
derived in [49] for Zou’s single-state protocol introduced originally in [15]. This assumes E
is restricted to individual attacks. New work has since determined more optimistic bounds,
but this original result remains important as one of the first to derive a relation between
disturbance and information gain for an SQKD protocol.

First, it was shown in [16] that for any single-state SQKD protocol using only the
Measure and Resend and Reflect operations, the forward attack operator does not need
to entangle the traveling qubit with E’s quantum ancilla. Instead, it is sufficient to bias the
state’s probability amplitudes. However, beyond this, the attack does not provide E with
any additional information. Note this result is not true if B is allowed to use an operation
beyond Measure and Resend or Reflect. Of course it is also not true if B is more powerful
than semi-quantum.

More formally, as proven in [16], to prove security against collective attacks, or robustness
in Zou et al.’s model, it suffices to consider an attack whereby E sends to B a qubit state:

|ψ〉 =

√
1

2
+ b |0〉+

√
1

2
− b |1〉 , (10)

for some real bias parameter b ∈ [−1/2, 1/2]. Any arbitrary collective attack of the form
(UF , UR) can be “reduced” to this restricted collective attack without loss of advantage to an
all-powerful adversary. This allows for simplified security analyses as one must only consider
the forward channel bias and not any entanglement with an adversarial system. In fact, one
may even enforce a symmetry to E’s attack in that, if A was supposed to send a |+〉 state,
B can enforce that b = 0 and abort otherwise (such a symmetry assumption is often made in
S(QKD) security proofs). Regardless, however, it is clear that this value b is an observable
parameter that may be used in any security proof.

This restricted attack definition was recently extended to arbitrary multi-state SQKD
protocols in [51]. For multi-state protocols, E need only apply a restricted forward attack
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operator F which acts as follows:

F |0〉T ⊗ |χ〉E = q0 |0, 0〉TE +
√

1− q20 |1, e〉TE

F |1〉T ⊗ |χ〉E = q2 |1, f〉TE +
√

1− q22 |1, 0〉TE .

where, qi are positive real numbers no greater than one and, furthermore, one may assume
that:

|e〉E = η0 |0〉E +
√

1− |η0|2 |1〉E
|f〉E = η1 |0〉E +

√
1− |η1|2 |1〉E

where η0 and η1 are complex numbers such that |ηi| ≤ 1. Note that, unlike the single-state
case, for a multi-state protocol one must consider E entangling the qubit with her quantum
ancilla in the forward channel. However, the dimension of E’s memory need only be two
dimensional. Furthermore, rather interestingly, the state of her ancilla is essentially a “right”
or “wrong” state - namely it is |0〉E when F does not flip the input while it is one of the
|e〉 or |f〉 otherwise. Such simplified attacks can help to perform a security analysis of any
SQKD protocol which relies on operations Measure and Resend and Reflect. For single-
state protocols, one should use the restricted bias-only version [16]; for others, one must use
the alternative definition for multi state protocols from [51].

Open Problem 4: Do equivalent restricted attacks exist for protocols where B uses
Permute? Proofs of equivalency from [16, 51] normally employ the following strategy: Fix
an attack against the protocol. Work out the density operator describing the protocol when
the particle(s) return to Eve for the second time. Next, show that, if a restricted attack
were used, the returning state can be “fixed” via a unitary operator so that it is equal to the
general case. If this is possible, there is no advantage to E using a full attack, she might as
well use the simplified attack. Note that one must also be careful to ensure that A and B
cannot tell the difference (e.g., the two attacks should induce the same observable statistics
in both cases). Can a definition of restricted attack for the Permute, or other semi-quantum,
operations be defined and proven?

Key Rate Computations:
Moving beyond robustness, it is important to understand how a protocol behaves when

faced with noise. In detail, one wishes to derive an information theoretic bound on the key-
rate of a protocol (see Equation 5) as a function only of observable parameters. This allows
for the better understanding of a protocol’s performance (e.g., its noise tolerance) and also
allows us to better compare semi-quantum protocols with fully-quantum ones. Since one of
the main theoretical goals of the semi-quantum model of cryptography is to better map out
the “gap” between fully quantum and partially quantum protocols, having a rigorous way to
gauge relative performance of two protocols is vital. Key-rate under certain noise conditions
makes for an excellent measure to compare.

The first information theoretic analysis of an SQKD protocol was in 2015 in [52] with
several other protocols analyzed since then. Assuming collective attacks in the asymptotic
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scenario, doing so ultimately requires bounding the entropy term S(A|E), where ρAE is a
density operator describing a single iteration of the protocol conditioning on that iteration
being used for raw-key distillation. In general, there seem to be three main methods currently
for deriving key-rate computations for SQKD protocols:

1. Compute a lower bound on S(A|E) based on strong subadditivity.

2. For single state-protocols, use biased-restricted attacks to argue that when the bias is
0 (see Equation 10), the SQKD protocol is equivalent to a known one-way protocol for
which the entropy is known; next, argue using the continuity of von Neumann entropy
[53, 54, 55], that as the bias changes, the entropy cannot differ “too much.” Thus the
key-rate cannot decrease “too much” based on b.

3. Reduce the protocol to an equivalent one-way entanglement based protocol (shown in
[51, 39] to be possible at least for some SQKD protocols) and use entropic uncertainty
relations [56, 57, 58, 59].

First Key-Rate Proof Method: Perhaps the most generally applicable approach is to
compute S(A|E) directly and this seems to be the approach used for the majority of SQKD
key-rate computations. First used in [52] but improved in [60], one must begin by writing out
a density operator description of a single iteration of the protocol assuming that iteration
is used to distill a raw key bit. Namely, one must condition on events leading to a raw-
key iteration. Taking into account also E’s attack (one may take advantage, here, of the
restricted attack results for single-state [16] or multi-state [51] protocols as discussed earlier)
this results in a classical-classical-quantum state (ccq-state) of the form:

ρABE =
1

N

∑
i,j∈{0,1}

|i, j〉 〈i, j|AB ⊗ ρ
(i,j)
E , (11)

where ρ
(i,j)
E is a density operator modeling E’s attack in the event A’s raw key bit happens

to be i and B’s raw key bit is j and where N is a normalization term.
The operators ρ

(i,j)
E can always be written as a sum of the form:

ρ
(i,j)
E =

∑
k

|E(i,j)
k 〉 〈E(i,j)

k | ,

where |E(i,j)
k 〉 are vectors (possibly sub normalized if the above sum has more than one

element) in E’s ancilla. The fact that one may write the operators ρ
(i,j)
E in this form is a

basic fact of linear algebra. However, the exact structure of these operators usually is found
through the derivation of ρABE and so, generally, no additional work is needed to decompose
the operators in this structure (after tracing the protocol to derive ρABE).

In [60] a general theorem was derived allowing one to compute the conditional entropy
of a state shown in Equation 11:
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Theorem 1. (From [60]): Let ρAE be a state of the form:

ρAE =
1

N
|0〉 〈0|A ⊗

(
M∑
k=0

|E(0)
k 〉 〈E

(0)
k |

)
+

1

N
|1〉 〈1|A ⊗

(
M∑
k=0

|E(1)
k 〉 〈E

(1)
k |

)
(12)

and denote by N i
k to mean N i

k = 〈E(i)
k |E

(i)
k 〉. Then it holds that:

S(A|E) ≥
M∑
k=1

(
N0
k +N1

k

N

)
Sk, (13)

where:

Sk =

{
h
(

N0
k

N0
k+N

1
k

)
− h(λk) if both N0

k > 0 and N1
k > 0

0 otherwise
(14)

and finally:

λk =
1

2

1 +

√
(N0

k −N1
k )

2
+ 4Re2 〈E(0)

k |E
(1)
k 〉

N0
k +N1

k

 . (15)

Note that this theorem is very general and can be applied to any cq-state - either one
produced by a SQKD protocol, or one produced by some other protocol, quantum or semi-
quantum. It states that one may compute the conditional entropy simply by knowing (or

bounding) the inner products of states 〈E(i)
k |E

(i)
k 〉 (in an SQKD protocol these are typically

found by looking at the Z basis noise in the quantum channel) and the overlap between

|E(0)
k 〉 and |E(1)

k 〉 (which in an SQKD protocol can usually be bounded by looking at the X
basis noise in the case when B chooses Reflect).

We make three comments on the above theorem. First, one may always write a density
operator ρAE in the form shown in Equation 12. This is due to the fact that the theorem
allows some |E(j)

k 〉 to be zero vectors and so the total number of terms in the 0 and 1 case
may both be M .

Secondly, the ordering of the terms appearing in the E portion of the density operators
in Equation 12 is irrelevant. Indeed, one may apply any permutation π : {1, · · · ,M} →
{1, · · · ,M} and consider the (equivalent) density operator:

ρAE =
1

N
|0〉 〈0|A ⊗

(
M∑
k=0

|E(0)
k 〉 〈E

(0)
k |

)
+

1

N
|1〉 〈1|A ⊗

(
M∑
k=0

|E(1)
π(k)〉 〈E

(1)
π(k)|

)
.

Theorem 1 will provide a lower-bound on S(A|E) for any such ordering, even though, now,

one considered inner-products of the form Re 〈E(0)
k |E

(1)
π(k)〉. For all permutations, all lower-

bounds are correct bounds on the entropy in the state ρAE. Thus, when applying this
theorem to key-rate computations, one must arrange the terms strategically to get the most
optimistic lower-bound. In general, the “rule of thumb” appearing in most SQKD papers
using this result is to arrange vectors so that |E(0)

k 〉 and |E(1)
k 〉 have both similar weights (i.e.,
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N0
k is close to or equal to N1

k ) and appear in E’s system when similar events occur (e.g.,
when there is no error in the quantum channel or when there is a double-error). Of course,
this is just a guideline - when working with this theorem, it is important to keep in mind
that an alternative arrangement of the terms may lead to more optimistic results (but all
orderings lead to technically correct lower-bounds on S(A|E)).

Third, and finally, one may actually get a more optimistic bound on S(A|E) by defining
λk as:

λk =
1

2

1 +

√
(N0

k −N1
k )

2
+ 4| 〈E(0)

k |E
(1)
k 〉 |2

N0
k +N1

k

 . (16)

That is, instead of using only the real part of 〈E(0)
k |E

(1)
k 〉, one should use both real and

imaginary to get a tighter bound. This fact is easily seen from the proof of Theorem 1 from
[60]. Though, in key-rate proofs, it is often easier to determine a bound on only the real
part, thus the original statement, using only the real part, has, so far, been more useful.

To demonstrate its application, we consider the original Boyer et al., protocol [7], BKM07.
The following proof is from [60], we highlight the main details here. Consider a particular
collective attack as a pair of unitary operators UF applied in the forward channel and UR
applied in the reverse. Since we are considering collective attacks, we may assume E’s ancilla
is initially cleared to some default state |χ〉E. Then, without loss of generality, we may write
the action of E’s attack operators as follows:

UF |0, χ〉TE = |0, e0〉+ |1, e1〉 (17)

UF |1, χ〉TE = |0, e2〉+ |1, e3〉

UR |i, ej〉TE = |0, e0i,j〉+ |1, e1i,j〉 .

where the various |ei〉 and |eki,j〉 states are arbitrary states which are not necessarily normal-
ized nor orthogonal in E’s ancilla.

Now, one must construct the ccq-state ρABE. Full details can be found in [52, 60],
however, tracing the protocol’s execution, including E’s attack, and conditioning on the
iteration being used for key-distillation (thus, one need only consider A sending a Z basis
state, B choosing Measure and Resend and A measuring again in the Z basis), one finds
the following operator:

ρABE =
1

2
|00〉 〈00|AB ⊗

(
|e00,0〉 〈e00,0|+ |e00,2〉 〈e00,2|

)
(18)

+
1

2
|11〉 〈11|AB ⊗

(
|e11,3〉 〈e11,3|+ |e11,1〉 〈e11,1|

)
+

1

2
|01〉 〈01|AB ⊗

(
|e01,3〉 〈e01,3|+ |e01,1〉 〈e01,1|

)
+

1

2
|10〉 〈10|AB ⊗

(
|e10,0〉 〈e10,0|+ |e10,2〉 〈e10,2|

)
.
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Tracing out B yields:

ρAE =
1

2
|0〉 〈0|A ⊗

(
|e00,0〉 〈e00,0|+ |e00,2〉 〈e00,2|+ |e01,3〉 〈e01,3|+ |e01,1〉 〈e01,1|

)
(19)

+
1

2
|1〉 〈1|A ⊗

(
|e11,3〉 〈e11,3|+ |e11,1〉 〈e11,1|+ |e10,0〉 〈e10,0|+ |e10,2〉 〈e10,2|

)
.

Note that the structure of this state is already in the form of Equation 12 needed to
apply Theorem 1. The states have been paired according to the general rule as mentioned
earlier; indeed, note that 〈e00,0|e00,0〉 and 〈e11,3|e11,3〉 are the highest weighted vectors since
they appear when there is no Z basis noise in the forward and reverse channel. The inner
products 〈eki,j|eki,j〉 (needed to compute the resulting lower bound from the theorem) can all
be computed by observing the Z basis noise in the channel. If Q is the observed Z basis
noise in the forward and reverse channel, one finds [60]:

〈e00,0|e00,0〉 = 〈e11,3|e11,3〉 = (1−Q)2

〈e00,2|e00,2〉 = 〈e11,1|e11,1〉 = Q(1−Q)

〈e10,0|e10,0〉 = 〈e01,3|e01,3〉 = Q(1−Q)

〈e01,1|e01,1〉 = 〈e10,2|e10,2〉 = Q2.

The above are all found simply by tracing the evolution of the qubit and using Equation 17.
To finish the computation, one requires also bounds on the inner-products E1 = Re 〈e00,0|e11,3〉,
E2 = Re 〈e11,1|e00,2〉, E3 = Re 〈e10,0|e01,3〉 and E4 = Re 〈e01,1|e10,2〉. These are more involved - for
complete details see [60]. However if one assumes a symmetric channel, the final entropy
expression simplifies to:

S(A|E) ≥ (1−Q)2[1− h(λ1)] +Q(1−Q)[1− h(λ2)] (20)

+Q(1−Q)[1− h(λ3)] +Q2[1− h(λ4)],

where:

λ1 =
1

2

(
1 +

|E1|
(1−Q)2

)
λ4 =

1

2

(
1 +
|E4|
Q2

)
λ2 =

1

2

(
1 +

|E2|
Q(1−Q)

)
λ3 =

1

2

(
1 +

|E3|
Q(1−Q)

)
.

Finally, it can be shown that E1 = 1 − 2QX − E2 − E3 − E4, where QX is the observed X
basis noise whenever B chooses Reflect and A measures in the X basis (having sent an
X basis state initially). To compute S(A|E), therefore, one must minimize over all E2, E3,
and E4 subject to the constraints |E2|, |E3| ≤ Q(1 − Q) and |E4| ≤ Q2 (these bounds were
derived from the Cauchy-Schwarz inequality). For complete details on this proof method,
the reader is referred to [60]. Computing H(A|B), necessary to finish the key-rate bound, is
trivial given the observed error rates in the raw key (in this case, it is H(A|B) = h(Q)).

A plot of the resulting key-rate is shown in Figure 5. Generally, when evaluating key-
rates for protocols relying on a two-way quantum channel (fully quantum or otherwise), one
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Figure 5: Showing an evaluation of the key-rate of the BKM07 protocol as derived in [60],
namely Equation 20. We consider both dependent (Solid Line, when QX = Q) and indepen-
dent (Dashed Line, when QX = 2Q(1−Q)) channels - see text for explanation.

often considers independent channels and dependent channels [61, 60]. For the first, it is
assumed that the observed X basis noise in the entire joint forward-reverse channel (when
B chooses Reflect) is 2Q(1−Q); for the dependent channel, the observed X basis noise is
simply Q, the error in each channel individually. Note that certain fiber channels can exhibit
this dependent case [61, 62]. Of course, these two assumptions are not necessary for security
- instead they are just used to evaluate the key-rate and determine noise tolerances. Since
these are commonly used, they also provide good comparison cases.

Evaluating the key-rate expression (Figure 5), one notes that the noise tolerance for a
dependent channel is 11% exactly that of BB84 [3, 5, 6]. For an independent channel, where
the X basis noise is roughly twice as high, the noise tolerance drops to 7.9%. However,
for a similar X basis noise, this is also the noise tolerance of BB84. In fact, the key-rate
equation shown in Equation 20 numerically agrees with BB84 on these two channels. This
demonstrates that the semi-quantum model, at least from a theoretical perspective, can attain
just as high noise tolerances and similar security properties to that of fully quantum protocols!

In general, Theorem 1 allows one to derive a bound on the key-rate expression allowing
for fine-grained control over the result through the use of numerous statistics. This method
has been used, now, for several other SQKD protocols beyond BKM07. Compared with the
other methods for proving SQKD security, this has, so far, given the most optimistic results.
However, this method can also result in cumbersome expressions and, for certain protocols,
more direct and efficient proof methods are available which we discuss next.

Second Key-Rate Proof Method: When working with a single state protocol, as men-
tioned, it is sufficient to consider E’s forward channel attack as simply biasing B’s measure-
ment result. This opens up an alternative proof strategy consisting of the following three
steps [63]:

1. First, consider E’s bias to be 0 (see Equation 10). In this case, E is actually performing
the identity operator on the forward channel and, so, the protocol reduces to a one-way
protocol consisting of three states. Namely, the protocol reduces to a protocol where B
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(who is no longer classical) prepares |ψ0〉 or |0〉 or |1〉. Eve attacks the reverse channel
normally through a unitary probe, and A performs her operations as dictated by the
original protocol. Since this is essentially a one-way protocol (as E is not attacking
the forward channel when the bias is 0), its security analysis may be potentially easier
(or, even, already completed in past work since, often, the protocol reduces to one that
is mathematically equivalent to a known one-way QKD protocol) thus giving a bound
on S(A|E)ρ0 in this case.

2. Next, consider a fixed reverse attack probe but now alter the bias parameter b. Let
ρb be the resulting density operator for a bias value of b (where this b is the actual
observed bias in the operation of the protocol). We need to compute S(A|E)ρb , the
conditional entropy for the actual attack we observe. Since we know, from the first
step, the value of S(A|E)ρ0 (i.e., when there is no bias), we may compute S(A|E)ρb
using the continuity of von Neumann entropy [53, 54, 55]. Indeed, using a continuity
bound in [55], we may write (since dimHA = 2):

S(A|E)ρb ≥ S(A|E)ρ0 − δ − (1 + δ)h

(
δ

1 + δ

)
, (21)

where:

δ =
1

2
||ρb − ρ0||. (22)

Thus, the goal of this second step, is to compute a bound on δ as a function only
on observed noise parameters, including the observed bias b. Of course when b = 0,
we obtain S(A|E)ρb = S(A|E)ρ0 as expected. As the bias increases (e.g., as E’s
forward channel attack becomes stronger), δ increases, thus causing S(A|E)ρb (the
actual conditional entropy of the protocol operation) to decease, thus causing the key-
rate to also decrease.

3. Finally, the two steps are combined, however care must be taken in that, on step (1),
the entropy S(A|E)ρ0 was bounded as a function of the observed noise - however on the
one hand, the observed X basis noise (when B chooses Reflect) is a function now of
both forwards and reverse attacks, whereas the entropy bound from step (1) assumes
it is only in the reverse channel. That is, E’s attack in the reverse may actually emit
more X basis noise by itself (when b = 0) then the actual observed noise. Therefore,
to complete the proof, given QX , the observed X basis noise and given the bias b,
determine a bound on Q̃X , the noise produced only in the reverse channel by the
unitary probe.

Ultimately, the above method leads to simpler security proofs. Step (1) is often achieved
by recognizing that the protocol, when the bias is set to zero, reduces to a well known
protocol such as the Three State BB84 [17, 18] (as is the case of the Zou et al., protocol [15])
or the Extended B92 protocol [19] (as is the case of the Reflection-Based protocol introduced
in [16]). However, the use of a continuity bound gives a worst-case result. Indeed, the first
method has, so far, always led to more optimistic results (all results have been lower-bounds,
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so there is no contradiction). The first method also allows for finer-grained control of the
result. Indeed, as shown in [64], the bias can positively and negatively affect E’s uncertainty
(as expected) - however this observation is not possible when using the second method as
any bias automatically leads to a decrease in uncertainty (as δ increases); i.e., it leads to a
worst-case bound.

Third Key-Rate Proof Method: Finally, the third method of proof involves reducing
the SQKD protocol to a one-way, fully quantum protocol and then analyzing that protocol
directly. It was proven in [51] that the BKM07 protocol can be reduced to an equivalent
one-way protocol (where, now, both parties are actually fully quantum) of the following
form:

Protocol: Equivalent One-Way Protocol for BKM07 [51]

1. B, who is now a fully quantum user, prepares either the state 1√
2
(|00〉A1A2

+ |11〉A1A2
)⊗

|0〉B or the state 1√
2
(|000〉A1A2B

+ |111〉A1A2B
), choosing randomly each iteration (with

the same probability that he normally would have chosen Reflect or Measure and Resend

respectively in the original SQKD protocol). He then sends the A1A2 qubits to Alice
(E is allowed to attack both qubits simultaneously).

2. A measures both the A1 and A2 qubits in either the Z basis or the X basis, choosing
randomly.

3. A discloses her choice of basis and B his choice of state preparation. If B choose to
prepare the GHZ state 1√

2
(|000〉A1A2B

+ |111〉A1A2B
), and if A chose to measure in the Z

basis, this iteration may be used for raw key distillation (they should share a correlated
bit). Otherwise, the iteration may be used for error estimation.

The proof that security of this one-way fully quantum protocol implies security of the
original BKM07 protocol can be found in [51]. A similar reduction was recently proven for
a higher dimensional SQKD protocol in [39]. It is currently an open problem as to which
families of SQKD protocols have a similar reduction.

Open Problem 5: Do all SQKD protocols have an equivalent one-way protocol that
they may be reduced to?

Regardless, once reduced, the one-way protocol may be analyzed through standard tech-
niques, for instance using entropic uncertainty relations [57, 58, 59]. This then may be
translated to a key-rate bound for the semi-quantum protocol. As with the second method,
this leads to a clear and concise security bound, but it does not give as optimistic a result as
the first method (due, perhaps, in part to the fact that the one-way protocol affords E more
attack opportunities than in the actual two-way SQKD protocol, thus causing a less than
optimistic bound on security to the adversary’s advantage). Indeed, while the first method
described earlier can show that BKM07 can suffer 11% noise tolerance [60], this third method
shows only 6.14% [51]. However, that is not an entirely fair comparison: the first method
relied on the collection of numerous mismatched measurements (thus allowing for a tighter
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bound on the entropy) whereas the third method did not use any mismatched measurements
- only the error rate. It is unclear if mismatched measurements are necessary to attain this
high noise tolerance and, perhaps, the 6.14% as determined by this third method is actually
tight for this protocol without these statistics.

Mismatched Measurements:
As discussed, three methods of computing the key-rate of an SQKD protocol have so far

been developed. The first method, direct computation of S(A|E), combined with mismatched
measurements have so far given the most optimistic results. Mismatched measurements
are a technique originally introduced in 1993 by Barnett et al., in [65] for fully-quantum
protocols. Later the technique became more refined in [66, 67, 68] showing that substantial
improvements in noise tolerance and asymptotic efficiency are possible for fully-quantum
protocols with restricted resources such as the Three State BB84 [17, 18] or the Extended
B92 [19] protocols - indeed for the Three State BB84 protocol, despite A’s inability to send
the |−〉 state, noise tolerance can be as high as the standard four-state BB84 as shown in
[69, 70].

This technique of using mismatched measurements was extended in [60] to two-way quan-
tum channels and semi-quantum users using two bases and extended in [31] for three bases.
Using this method, one may show that the noise tolerance of the BKM07 protocol, assuming
E’s attack is symmetric (an enforceable assumption), is as high as BB84 as discussed in the
previous section. To compute this key-rate requires looking at 18 different measurement
statistics as shown in Table 1. Without these statistics, the current best result is based
on reducing to a one-way protocol and using an entropic uncertainty bound - using such
a method does not require collecting all of these statistics (it only requires looking at er-
ror rates) but the (lower-bound bound on) noise tolerance drops to 6.14% [51]. Whether
mismatched measurements are necessary for the BKM07 protocol to attain this high noise
tolerance is still an open question. Indeed, the 6.14% tolerance from [51] is only a lower
bound.

Open Problem 6: Are mismatched statistics necessary for the BKM07 protocol to
attain the same noise tolerance as BB84, namely 11%? Or can this tolerance be achieved by
looking only at error statistics?

Note that we did not ask the question in regards to any semi-quantum protocol. In fact, it
was shown in [24, 25] that for some SQKD protocols (specifically the two developed in those
references), mismatched measurements are necessary to attain any level of security. That
is, without mismatched measurements, there are semi-quantum protocols that are completely
insecure. This seems to suggest that mismatched measurements may be necessary for all
SQKD protocols (either to show any form of security or, in the case of BKM07, to improve
security bounds) though an exact proof of this is elusive. It is interesting to note, however,
that by dropping the resource requirements of users (namely, when moving from the fully
quantum to the semi-quantum setting), one can use additional classical post processing (e.g.,
mismatched measurements), to compensate. This seems to suggest the semi-quantum model
of communication can shed light on interesting fundamental connections between classical

31



Error Statistics pA→Bi,1−i Forward channel Z basis noise
pA→Ai,j,1−j Reverse channel Z basis noise
pA→Ai,R,1−i Z basis noise when B chooses Reflect

pA→A±,R,∓ X basis noise when B chooses Reflect

Mismatched pA→B+,i Forward channel X → Z statistic.
Statistics pA→Ai,j,+ Reverse channel Z → X statistic.

pA→A+,R,0 Loop channel X → Z statistic
pA→Ai,R,+ Loop channel Z → X statistic

Table 1: Showing all observable statistics used in the key-rate computation for the BKM07
protocol in [60]. Here, i, j ∈ {0, 1} and we use pA→Bi,j to denote the probability that B
observes |j〉 given that A initially sent |i〉 and B chooses Measure and Resend; pA→Ai,j,k is
the probability that A observes |k〉 (for k ∈ {0, 1,+,−}) conditioned on A initially sending
|i〉, B choosing Measure and Resend and actually observing |j〉, and finally A choosing to
measure in the correct basis to observe |k〉; finally pA→Ai,R,k is similar, but now conditioning on
B choosing Reflect. In [31], this was extended to allow the quantum user to choose from
three bases, Z, X, or Y ; while this increases noise tolerance, it also roughly doubles the
number of statistics needed for mismatched measurements. Note that by “Loop channel”
above, we mean the joint channel when B chooses Reflect.
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Original Protocol Noise Proof Comments
Tolerance Reference

BKM07 [7] 11% [60]
Single State by Zou et al., [15] 9.65% [71]

Reflection-Based [16] 5.36% [64]
Semi-Quantum B92 [20] 3.46% [20]

Single-A-Measurement [24] 11% [24] MM Required
Classical-to-Quantum [25] < 1% [25] MM Required; Noise

tolerance depends on
distance from classical.

High-Noise-SQKD M2 [31] 16.4% [31]
High-Noise-SQKD M3 [31] 26% [31]

High-Dimensional SQKD [39] 30% [39] Noise tolerance increases
to 30% as dimension
approaches infinity

Table 2: Showing state of the art best noise tolerances for those SQKD protocols which have
this analysis performed. “MM Required” means that mismatched measurements are required
for the protocol to be secure at all (i.e., the protocol is completely insecure without them);
note that mismatched measurements may be used in the above results for other protocols
besides those specifically marked as such, but it is not required for security - see text for
discussion.

and quantum information processing.
Overall, as of writing this, several SQKD protocols have a key-rate analysis lower-bound

thus giving us a lower-bound on the protocol’s noise tolerance. A summary of the current
best case noise tolerances are shown in Table 2. Noise tolerances are reported here based
on the Z basis error in the forward and reverse channel, denoted here as Q (we also assume
QX = Q). In particular, the value reported is the maximal Q for which the resulting key-rate
r is positive. Note that many key-rate proofs for SQKD protocols support different noise
scenarios, including different Z basis noise rates in the forward and reverse channels; we only
report the symmetric case here for simplicity in presentation. Where appropriate we also
assume depolarization channel noise. Complete details for alternative scenarios, if available,
can be found in the original reference for the proof of security provided in the table.

4 Multi-User SQKD

While the vast effort in SQKD research (i.e., research specific to key distribution in the semi-
quantum model) is in trying to discover, and prove secure, novel protocols requiring fewer
resources on the part of the users, other directions have also seen great interest. Perhaps
the most fruitful as of writing this is the development of multi-user protocols. Multi-user
protocols within the semi-quantum realm come in two flavors: first is trusted quantum user
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Figure 6: Based on an image in [74] showing the assumed network topology for their protocol
in that reference. Each Bi and Ai is a classical user while T is a fully quantum user.

(where this quantum user is trusted and, generally, shares the secret key) and the second is
the mediated model (where the quantum user is adversarial and should not share the key).

The first multi-user SQKD protocols were introduced independently in [21] and [72].
The network topology assumed by their protocols is circular in that users communicate
in sequence. Here, one fully quantum user, who is trusted and is one of the key-holders,
transmits quantum resources to the first classical user B1. This user then can perform
some semi-quantum operation (e.g., Measure and Resend or Reflect), forwarding a qubit
to the next classical user B2. This repeats for the next user and so on until Bn at which
point the qubit returns to the quantum user who is free to measure in any basis. After the
protocol, all Bi’s transmit their choice of operation and A will transmit her basis choice. It
is assumed this broadcast communication is done in an authenticated manner, though the
classical communication mechanism required for this to operate successfully is not discussed.
In general, whenever two B’s choose Measure and Resend those users share a key bit. Key
bits are shared with the quantum user A whenever a Bi chooses Measure and Resend and
the quantum A chooses to measure in the Z basis. Thus, these protocols permit different
subgroups of users to share different keys.

Other multi-user protocols in the semi quantum model have also been proposed. In [73] a
protocol based on a trusted server preparing GHZ states was described and security analyzed
with regards to certain attacks including some attacks based on an adversarial server. One
of the main limitations to previous multi-user protocols is that, for m users to agree on a
key, all m have to choose the “correct” options for that event to happen (e.g., all classical
users must choose Measure and Resend in the protocol of [72]). To improve efficiency, a
new multi-user protocol was proposed in [74] which uses cluster states [75] and an alternative
network topology shown in Figure 6. Their protocol allowed for a roughly quadratic speedup
in efficiency over previous work. Also provided in [74] was an information theoretic analysis
of the key-rate showing a maximal noise tolerance of 2.82%.

Beyond multi-user protocols where M users all wish to agree on a key, an alternative
model involving multiple users is the mediated semi-quantum model. This model was first
introduced in 2015 in [76] and it involves a fully quantum server and two “classical” users
A and B. These two users wish to agree on a secret key known only to them and not the
server. Furthermore, they do not trust the server who may even be adversarial. Two forms
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Figure 7: Based on an image in [76] showing the structure of a mediated SQKD protocol.
Here a central, fully quantum, server C (which may be adversarial) prepares and measures
quantum states. A and B are classical users. An authenticated classical channel connects
the two users while a standard (unauthenticated) classical channel connects the server to
each user.

of adversarial models were considered: first a semi-honest server who follows the protocol but
may attempt to learn additional information later; alternatively a stronger fully adversarial
model is also considered. A general scenario of this framework is shown in Figure 7. The
original mediated protocol consisted of the following steps:

Protocol: Mediated SQKD [76]

1. The server prepares a Bell state |Φ+〉 = 1√
2
(|00〉+ |11〉), sending one particle to A and

the other to B.

2. Each user, A and B, choose, independently, to either Measure and Resend or to
Reflect.

3. When both particles return to the server, the fully quantum server performs a Bell
measurement, sending the classical message “−” if and only if the outcome is |Φ−〉 =
1√
2
(|00〉 − |11〉). For any of the other three potential outcomes, the server sends the

classical message “+”.

4. A and B both divulge their choice of operation. If the server sent the message “−”
and if both users chose Measure and Resend, they will use their measurement results
as their raw key. Note that if both users chose Reflect, the server should always send
the message “+” and any other result is counted as an error.

Proof of security in [76] (improved in [77]) assumes an adversarial server may prepare any
arbitrary state on step (1) (possibly entangled with its quantum ancilla) and, furthermore,
may perform any quantum operation on step (3). Furthermore, there may be third-party
adversaries attacking the quantum channel and the classical communication between the
server and the users (the classical channel connecting A and B needs to be authenticated,
however the classical channel between the users and the server is not authenticated and so
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subject to manipulation by an adversary - security is still possible). This shows that even
with classical capabilities, users may enforce security of a more powerful quantum server.
Furthermore, as shown in [77], the noise tolerance can approach 22.05% if the server is semi-
honest or 13.04% if the server is fully adversarial. As shown in [78], if two independent
mediators are used by A and B (referred to in that source as the multi-mediated SQKD
model), noise tolerance can increase to 18.7% if both servers are adversarial but do not
collude with each other (compared to 13.04% with only one server).

Several other mediated protocols have since been introduced, mostly with the goal of pro-
viding greater efficiency (indeed, the original mediated protocol is very inefficient with many
iterations being lost due to incompatible choices or measurement results), or fewer resource
requirements on the users or server. In [79], a mediated SQKD protocol was proposed where
classical users did not have to measure (assuming perfect qubit channels) but, instead, could
choose to Reflect or Permute. This protocol also had greater efficiency than the original me-
diated SQKD protocol. The authors of [80] developed a new mediated SQKD protocol where
the server needs to only send single photons and perform single photon measurements. Users
must choose either Reflect or Measure and Resend. This protocol decreases the quantum
complexity of the server, a useful direction to move towards as this mediated model may
prove to be a practically beneficial quantum communication infrastructure. Other “light-
weight” mediated protocols were presented in [81, 82] designed to help mitigate trojan horse
attacks against the classical users. Finally, in [83], a new mediated protocol was designed
where users need only to Measure (but not resend ; thus users do not need a single photon
source for this protocol) or Reflect. This protocol, which was also experimentally imple-
mented, shows that the mediated model of SQKD is a practical possibility. We will discuss
this protocol in more detail when we turn our attention to practical issues of semi-quantum
cryptography.

5 Beyond Key Distribution

The original application of semi-quantum cryptography, much like standard, fully-quantum
cryptography, was to solve the key distribution problem. Investigating this makes sense as it
is a much celebrated result showing a very clear advantage to quantum communication over
classical communication (key distribution using only classical communication, as mentioned
in the introduction, requires one to make computational assumptions on the adversary’s
capabilities). However, the semi-quantum model of communication, involving at least one
fully quantum party and one (or more) limited, “classical” parties, can be, and has been,
applied to other problems.

5.1 Secret Sharing

Perhaps the first application of semi-quantum communication outside of the key-distribution
problem was to the task of secret sharing [84, 85]. Secret sharing is a primitive used in
numerous other cryptographic protocols and consists of a dealer (who has some secret s)
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and n other parties. The dealer creates n shares of this secret and sends one share to each
party (there are n parties). In its simplest form, it should be that if t or more parties come
together with their respective shares, the original secret may be recovered; however if one
has strictly less than t shares, the secret cannot be learned. While information theoretic
secret sharing is possible using classical communication only, one of the advantages to using
quantum protocols is the additional ability to detect eavesdropping [86, 87] or to potentially
decrease share size (thus increasing communication efficiency) [88]. Alternatively, quantum
protocols must be used if the original secret itself is quantum.

The first semi-quantum secret sharing (SQSS) protocol was developed in 2010 by Qin Li
et al., in [89]. Here the dealer, A, is quantum while two parties B and C are both classical.
The threshold t is set to 2 (thus both B and C must come together to recover the secret) and
the secret itself is classical data. Two protocols were presented, one requiring the Permute

operation, the other using only Reflect and Measure and Resend. We present the second
here as it is easier to follow:

Protocol: First Semi-Quantum Secret Sharing Protocol [89]

1. A, the fully-quantum dealer who holds the secret s (a bit string), creates N GHZ
states, each of the form:

|ψ0〉 =
1√
2

(|+ + +〉+ |− − −〉). (23)

She sends one particle to B, another to C, and keeps the third private in her own lab.

2. When each user receives a qubit, parties choose either to Measure and Resend or to
Reflect.

3. When the qubits return to A, she stores them and alerts B and C. The two parties
then disclose their choice of operation for each qubit.

4. For each of the N triplets, and based on B and C’s choice, A performs the following
operations:

• Case 1: B = Measure and Resend and C = Measure and Resend. Then A
measures her qubit in the Z basis.

• Case 2: B = Measure and Resend and C = Reflect. Then A performs a Bell
measurement with her qubit and C’s reflected qubit.

• Case 3: B = Reflect and C = Measure and Resend. Then A performs a Bell
measurement on her qubit and B’s qubit.

• Case 4: B = Reflect and C = Reflect. Then A performs an appropriate
three-qubit measurement where one basis state is 1√

2
(|+ + +〉+ |− − −〉).
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Cases 2, 3, and 4 are used only for error detection (along with a random subset of Case
1 instances). Case 1 produces a bit string kA for the dealer A of size n < N (the length
of n is expected to be N/4−m bits where m is the size of the random subset used for
error detection in the Case 1 instances). The dealer then sends s⊕ kA to B and C.

The claim for correctness and security is that the string kA is random and independent
of B and C’s individual information. However, B and C can only recover kA by XOR’ing
their measurement results. This can be seen by rewriting Equation 23 in the Z basis:

|ψ0〉 =
1√
2

(
|0〉A ⊗

|00〉BC + |11〉BC√
2

+ |1〉A ⊗
|01〉BC + |10〉BC√

2

)
.

Note that B and C’s bits are randomly distributed and that by XOR’ing their results, they
recover A’s bit.

In [90], a SQSS protocol was proposed which only required the dealer to prepare N copies
of the state 1√

2
(|+, 0〉 + |−, 1〉), sending one particle to B and the other to C. Both these

first papers [89, 90] showed secret sharing is possible with semi-quantum users, however it
required the generation of entangled states (e.g., Equation 23) and the protocol only worked
with two parties. In [91], both issues were considered and improved on. First, a protocol
was proposed for n classical parties, extending the technique of [89]. For this to operate, the
dealer must prepare a state of the form:

1

2(n+1)/2

(
|+〉⊗n+1 + |−〉⊗n+1) .

Exact details of the protocol may be found in [91], however, this still requires the generation
of a highly entangled state. To mitigate this, the same authors in [91] propose a two-party
SQSS protocol where the dealer need only prepare separable states of the form |+〉 |+〉,
sending one particle to B and the other to C. For the multiparty case, the dealer must
prepare the n qubit state |+〉⊗n thus creating a more practical system (though, as pointed
out in [91], efficiency of the protocol may be problematic for large n).

So far these SQSS protocols shared a secret through the use of a randomly generated
pad. That is, before the protocol executed, the dealer had no way to deliberately create
shares based on the secret itself. An alternative SQSS protocol was devised in [92] where the
actual creation of shares depends on the secret - thus, there was no need for an additional
transmission of s⊕ kA as was required with these other protocols discussed so far. In their
protocol, the secret is a single bit b ∈ {0, 1} (though this may be increased simply by running
multiple instances of the protocol in sequence). At the start, A prepares N states of the
form 1√

2
(|+ + +〉 + (−1)b |− − −〉) (thus N quantum states are required for a secret of one

bit). One particle is sent to B, another to C, and a third is kept private. At the end,
the secret bit can only be recovered if all three users (including the dealer in this protocol)
present their final classical shares, distributed during the quantum stage of the protocol. In
the same paper, an n party protocol was also developed, though still requiring N quantum
states per classical bit of the secret and requiring the generation of entangled states. In
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[93] an intercept-resend attack was shown against this protocol allowing a participant to
recover the message without having to collaborate. While a fix was presented in that paper,
it required parties to be fully quantum (in that they should also measure in the X basis).
However, an alternative fix was presented in [94] which is semi-quantum.

Numerous other SQSS protocols have been proposed in addition to these. In [95], a new
SQSS protocol was proposed using higher-dimensional states that affords greater efficiency.
A “circular” SQSS protocol was developed in [96] which only required single particles and
removed the need for measurements (though it does require the Permute operation). This
protocol is “circular” in its network topology, requiring these single particles to travel from
the dealer A to B, then to C, and finally return to the fully-quantum A.

An SQSS protocol without the need for measurement was proposed in [97]. A d-dimensional
protocol was proposed in [98] which also did not require classical users to measure and sup-
ported multiple (beyond two) classical users. A secret sharing protocol using W -states for
encoding (as opposed to Bell states or GHZ states) was developed in [99].

In [100] a new multi-user (i.e., where the number of parties was greater than two) pro-
tocol was developed with greater efficiency than prior multi-user versions at the time of its
publication; also it was proven in that reference that multi-user SQSS protocols may be
converted to SQKD protocols and a construction was given (furthermore, some simulations
were performed on the IBM quantum computer). Bell states were used to create an SQSS
protocol in [101] (where classical users applied Reflect or Measure and Resend) though
a security flaw was found in [102] (no fix was provided leaving this an open question); an
alternative SQSS protocol using Bell states was developed in [103] though where classical
users need also the Permute operation. An interesting encoding scheme for SQSS was devel-
oped in [104] allowing a secret to be shared by A preparing multiple, initially unspecified,
entangled states (their protocol also works for more than two classical users); though in [105]
an attack was found on this protocol, however possible fixes were also presented. A scalable
SQSS protocol was developed in [106] allowing users to be added or removed by the dealer.

One interesting observation is that all current SQSS protocols have the dealer as the
fully-quantum user. This makes sense from a practical standpoint (it should be the dealer
who has the most capabilities). However, from a theoretical stand-point can one construct
other scenarios?

Open Problem 7: Does there exist an SQSS protocol where the dealer is classical?
There are two possible variants: first, one of the participants is fully quantum and “helps”
by getting the protocol started (e.g., sending quantum resources to the classical dealer). A
second is in line with mediated SQKD protocols as discussed earlier: namely, the dealer and
all participants are classical, but there is an untrusted quantum server to perform the needed
quantum operations. Showing protocols exist for both settings would be an interesting
theoretical result; showing a protocol in the mediated case may also be interesting from
a practical standpoint as one could envision a future communication infrastructure where
untrusted servers help facilitate both key distribution (through mediated SQKD protocols)
and other cryptographic protocols (such as secret sharing) performed by classical users.

Finally, does sharing a quantum state make sense in the semi-quantum setting? In [107],
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the authors proposed a protocol where a quantum state may be shared between classical
A and quantum B (the dealer is also quantum and, of course, only the quantum user can
recover the secret later). Further research in this may prove interesting.

5.2 Secure Direct Communication

Secure direct communication (SDC) is the task of sending a message directly from A to B,
through a quantum channel, without having to first establish a shared secret key (beyond
that needed for authentication of classical information). SDC protocol development in the
fully-quantum model dates back to the early 2000’s and there have been several protocols
since with various advantages and disadvantages (see [108, 109, 110, 111, 112] for just a few
instances in the fully-quantum setting).

The first semi-quantum SDC protocol was developed in [113] showing that, like with key
distribution, the task of SDC is also possible in the semi-quantum model. In their protocol,
the sender of the message m ∈ {0, 1}n is the classical user (B) while the receiver is the
quantum user (A). Their protocol utilizes a hash function h : {0, 1}n → {0, 1}k for some
k < n. The protocol operates as follows:

Protocol: First Semi-Quantum SDC Protocol [113]

1. A prepares N ≈ 4(n+ k) qubits, each of which is prepared independently at randomly
as one of the four states |0〉, |1〉, |+〉, or |−〉. She sends these qubits to the classical
user B (who is the message sender).

2. When B receives the qubits, half are selected randomly for error testing, the other
half for message encoding. Those selected for error testing are subjected to a random
choice of Reflect or Measure and Resend. When these qubits return to A, B informs
her of their indices (he is still, through a delay line, holding on to the other half of
the qubits) allowing parties to check for eavesdroppers in the standard way. If this is
detected, parties immediately abort.

3. Assuming no eavesdropping was detected on the test half, B will choose n+ k random
qubits from the remaining portion and measure them in the Z basis. He then computes
the classical bit string M̂ = M ||h(M) where || represents bit-string concatenation.
Finally, for each measured qubit and for each bit in M̂ he will prepare a new Z basis
qubit either in the same state he measured if that bit of M̂ is 0 or he will prepare
the opposite Z basis state if the bit of M̂ is 1. All qubits (both those he measured
and encoded the message and hash in and those others he is choosing Reflect), are
returned to the quantum user (the receiver of the message). Notice that, due to the
random choice of qubit preparation, the message, at this point, is encoded using a
classical one time pad which only A and B know the key to.

4. A receives all qubits and is told from B which are those he encoded his message in
and which were reflected. Security is verified on all reflected qubits; for the others, A
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measures in the Z basis to receive the classical string M̂ ′ = M ′||H ′ and verifies that
H ′ = h(M ′) ensuring that an adversary did not tamper with the message.

Note that, in its original form as described above, the protocol was actually shown in
[114] to be susceptible to a Double CNOT attack; two potential solutions were presented in
that reference, however, such as changing the protocol so that B uses the Permute operation
before sending any qubits back to the quantum user.

Other semi-quantum SDC protocols have been proposed. While the above protocol from
[113] allows a classical user to send a message to a quantum user, the reverse direction,
namely sending a message from the quantum user to the classical user, was considered in
[115] where a novel protocol was developed allowing for this functionality. A protocol utilizing
EPR pairs allowing a classical user to send a message to the quantum user was developed in
[116, 117]. Two protocols were proposed in [118] which also used Bell states though claimed
higher qubit efficiency.

Another protocol developed in [119] removed the need for an authenticated channel by
assuming a pre-shared secret key is first agreed on (though, this key must be linear in the
size of the message). A so-called delay attack on these authenticated style protocols was
discovered in [120] along with a new protocol to counter it (this new protocol also had the
added advantage that it required less resource requirements on the part of the classical user).
This was further improved in [121, 122] which reduced the required resources on the part
of the quantum user also, though added the requirement again of an authenticated classical
channel. An authenticated SDC protocol using only single qubits was proposed in [123].
Finally, [124] proposed two new SDC protocols allowing quantum A to send a message to
classical B in such a way that both users can verify the authenticity of the message (assuming
a pre-shared key was already shared) using quantum error correction codes.

The notion of Quantum Dialog, first introduced for fully quantum users in [125, 126], is
similar to SDC except that it allows for a message to be transmitted from A to B and a
separate message from B to A. This was extended to the semi-quantum domain first in [127]
(which also proposed a novel semi-quantum SDC protocol) and an alternative protocol in
[128]. A quantum dialog protocol consisting of two classical users and an untrusted server
was presented in [129]; their protocol could also tolerate certain noisy channels.

5.3 Other Cryptographic Protocols

While secret sharing and secure direct communication seem to be the two largest avenues
of research in semi-quantum cryptography, outside of key distribution, other cryptographic
primitives have recently begun to be investigated.

One avenue, similar to key distribution, is quantum key agreement [130, 131, 132]. Here,
the goal is to ensure that both A and B contribute to the generated raw key equally and
that no one party can bias the result. Protocols achieving this in the semi-quantum case
have been proposed in [127, 133, 134, 135].

Private state comparison is a cryptographic primitive where parties A and B each hold
some data iA and iB respectively (e.g., parties hold two numbers) and they wish to compare
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their data to determine, for instance, who has the larger number or, in the case of private
state comparison, whether they are equal or unequal. However, they wish to do so in
a way that does not reveal their data to the other party. This is a particular instance
of Secure Multiparty Computation (SMC), an important area of research in cryptography
[136, 137]. This task has been extended to the quantum domain through several works
[138, 139, 140] (this is hardly an exhaustive list of fully-quantum results - see [141] for a
review); of course, Lo [142] proved that the equality function cannot be computed securely
even using quantum means. Thus, research in this area often involves the use of a third
party or weaker security models. Recently, and relevant to us, this task has been extended
to semi-quantum communication.

The first semi-quantum private comparison (SQPC) protocols were developed indepen-
dently in [143, 144] where the two users A and B were classical but the third-party was fully
quantum. A holds classical data MA and B holds MB; parties wish to know if MA = MB

without A learning MB or B learning MA (also, the third party should not learn either MA

or MB). To give some idea how these protocols operate, we present the main details from
the protocol in [143]:

Protocol: SQPC Protocol [143]

1. Parties A and B, using the fully quantum third-party, first run a mediated SQKD
protocol (such as the one in [76]) to establish a shared secret key which only A and B
know, but not the third party. Call this key kAB.

2. Next, each party separately establishes a private key with the third party using a
standard SQKD protocol (e.g., BKM07). Call these keys kAT (held by A and the third
party) and kBT (between B and the third party).

3. The quantum third party prepares a sufficient number of Bell states, choosing randomly
from all four possibilities. One particle of each pair is sent to A and the other to
B. These parties then, independently, choose either to Measure and Resend or to
Reflect.

4. For each returning Bell state pair, the third party performs a Bell measurement on
them. If the result was the same Bell state that was initially prepared, the third party
sends the classical message “0” to both parties; if the Bell state observed is different
(due to one party choosing Measure and Resend for instance), then the third party
sends the message “1.”

5. A and B disclose their choices and run a suitable error-checking protocol comparing
their measurement results and the third party’s response on a suitably chosen random
subset of states. On all other iterations where both parties choose Measure and Resend,
they now share a correlated string KA and KB (the third party discloses his initial Bell
state preparation allowing B to “flip” the correct bits of KB so that KA = KB).
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6. A sends the message:
CA = MA ⊕KA ⊕KAB ⊕KAT ,

while B sends:
CB = MB ⊕KB ⊕KAB ⊕KBT

to the third party

7. Finally, the third party computes CA ⊕ CB ⊕ KAT ⊕ KBT and announces the result.
Note that if this is the zero string then MA = MB; otherwise MA 6= MB.

A security analysis and also the effects of noise, was performed on this protocol in [143].
Other SQPC protocols have been proposed. In [145, 146], protocols requiring only single

photons were presented. Another protocol in [135] was developed which used a new semi-
quantum key agreement protocol developed in the same reference. A protocol where the
quantum third party was not required to prepare entangled states was developed in [147].

Semi-quantum protocols for identity verification were developed recently in [148, 149].
These protocols allow quantum A and classical B to verify their identities assuming a pre-
shared secret key. In [150], a protocol was developed allowing a classical user to securely
query a database entry owned by another classical user. Here, the database owner should
not know the query and the user asking should not learn anything else about the database.
This protocol required a quantum third party of course.

Finally, a form of measurement device independent protocol was constructed in [151].
Here a quantum A sends qubits to both the third party measurement device and to classical
B. In this protocol B is allowed to Reflect (in this case reflecting to the third party
measurement device) or discard the qubit, preparing a fresh Z basis state (since B does
not measure, he cannot perform Measure and Resend exactly thus he is dropping the qubit
from A and preparing a fresh one independent of the state received). The third party
measurement device must perform a Bell measurement. Also, an oblivious transfer (OT)
protocol was presented in [152] and a quantum signature scheme developed in [153]. More
research in device independence, along with alternative cryptographic primitives (such as OT
or signatures, perhaps using alternative security models such as bounded storage [154, 155]
or noisy storage [156, 157]) for semi-quantum protocols would be highly valuable.

6 Practical Semi-Quantum

While the original motivating factor behind the semi-quantum model of communication is to
study the theoretical question “how quantum must a protocol be to gain an advantage over
its classical counterpart” [7], as QKD technology matures, it is worth also considering the
question: can practical SQKD systems be implemented? Indeed, in the fully-quantum setting
(e.g., BB84), companies already exist producing commercial QKD systems and QKD has
been used in several real-world applications. Outside of these applications, there continues
to be rapid progress in experimental research involving QKD systems. For a general survey
of fully-quantum cryptography, the reader is again referred to [11].
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When it comes to implementing a semi-quantum protocol, several major challenges
quickly arise. First, semi-quantum protocols require a two-way quantum channel. Second,
many theoretical protocols require the classical user to Measure and Resend - in practice
this would be implemented through a photon detector which absorbs the photon and, so,
to “resend” B would need to prepare a fresh photon opening the door to multiple attacks
[158, 159, 160]. Third, the act of switching between Measure and Resend and Reflect

requires fast, low noise, switching capabilities. Finally, device imperfections need to be
considered and finite-key security proofs must be derived.

As it turns out, the first major challenge, the dependence on a two-way quantum channel,
may not be as much a hindrance as initially one might think and may, in fact, be advan-
tageous in some scenarios. Indeed, several fully-quantum QKD systems, especially in the
continuous variable (CV) model [161, 162, 163, 164, 165, 166, 167], have been proposed and
experimentally implemented, using a two-way channel and, furthermore, have shown in some
cases to hold an advantage to one-way quantum communication in terms of noise tolerance
[161] or efficiency [167]; they are also potentially more secure against source preparation
noise [163]. It would be interesting to see if these CV techniques could be applied to the
semi-quantum scenario. Of course, for this, the notion of “semi-quantum” must be defined
for continuous variables.

Open Problem 8: Can a rigorous definition of continuous variable semi-quantum com-
munication be developed? What kinds of protocols can be discovered in such a setting and
what are their advantages, especially with regards to two-way quantum communication?

For the semi-quantum case, it has been shown, at least in the ideal theoretical perfect
qubit case, that two-way channels can be used advantageously to promote the noise tolerance
of protocols [31]. While this is the perfect qubit scenario, it does show that two-way channels
can be advantageous for semi-quantum communication. Furthermore, the techniques there
may perhaps be applied to practical SQKD systems.

The second major challenge is perhaps the most critical to overcome. If B prepares fresh
qubits after performing a measurement, this opens the system to photon tagging attacks [158]
or trojan horse attacks [160]. Thus, for any SQKD protocol to be practical, it would seem that
B should never prepare a fresh photon when performing the theoretical Measure and Resend

operation. As it turns out three SQKD protocols [168, 169, 83], so far, have been proposed
which are able to choose Reflect and Measure and Resend yet, when choosing the latter,
do not actually result in a new photon being created.

The first protocol to achieve this is the so-called mirror protocol and it was the first
SQKD protocol designed with practical implementation issues in mind [168]. To describe
the protocol, we require the use of the Fock basis, where, briefly, we write |i, j〉 to mean
a state consisting of i photons in the |0〉 state and j photons in the |1〉 state (physically,
these may be polarization, time-bin, spatial encoding, or some other encoding as needed
by the protocol). We write |i, j〉X to mean a similar thing but now in the X basis. B’s
allowed operations were then refined to allow the classical user to only measure |0〉 states,
ignoring |1〉 states; only measure |1〉 states, ignoring |0〉 states; or measure both |0〉 and |1〉
states. However he does not need to “prepare” or “resend” a photon which is critical for
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practical SQKD security. This operation can be done in a classical manner through the use
of time-bin encoding. For instance, to observe only photons in the |0〉 state, B needs to be
able to detect photons in time bin t0 while reflecting the photons in time bin t1 (the |1〉)
states. This requires the use of a controllable mirror (hence the name “mirror protocol”).
The protocol, which is a single-state protocol, operates as follows:

Protocol: Mirror Protocol [168]

1. Fully-quantum A sends a single photon in the |+〉 state which, in Fock notation, is
|1, 0〉X = 1√

2
(|0, 1〉+ |1, 0〉).

2. B chooses randomly either to Reflect or to Measure. If he chooses the latter, he
chooses one of three options: Measure-All, Measure-0, or Measure-1. These op-
erations are described in the text above. If he chooses one of these measure oper-
ations, he records whether he received a “click” (a detection) or not. Note that if
he chose, say, Measure-0, and assuming the state arriving at his lab is the correct
|1, 0〉X = 1√

2
(|1, 0〉+ |0, 1〉), he will only see a click with probability 1/2. If he does not

see a click, the state is projected to the unobserved state (e.g., the other time bin).

3. A measures the returning state in either the Z or X basis, choosing randomly.

4. Following her measurement, A discloses her basis choice. B discloses the following
information: whether he reflected, or measured and, if the latter, whether he got a
detection or not. Note that he does not disclose which of the three measurement
choices he made - he only discloses that he chose one of them and whether that led to
a detection or not.

5. If A choose the Z basis, and if B choose to measure and did not see a photon, they
will use this iteration for their raw key. Namely, A will use her measurement result
and B will use the opposite measurement choice he made (i.e., if he chose Measure−j
and did not see the photon, his raw key bit will be 1− j).

6. A suitable subset of all iterations are chosen and all choices and results are disclosed
on this subset to determine the error in the channel.

In the same paper, this protocol was proven to be robust. Note that it never requires B
to send newly-prepared qubits. Instead, the idea is that he makes a partial measurement of
only the |0〉 or the |1〉 states; if he does not see the photon (which happens, ideally, with
probability 1/2) then he knows it’s been projected to the opposite state. That is, if he uses
Measure−j and does not see the photon, it should be leaving his lab in the state |1− j〉).
Then, when A later measures in the Z basis, she should receive the outcome 1− j. A version
of this protocol was experimentally implemented in [170]. Interestingly, it was shown in
[171] that if this protocol is simplified to remove the Measure-All operation, the protocol is
insecure.
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An alternative SQKD protocol for practical implementations was presented in [169], based
off of the Reflection-Based SQKD protocol from [16]. Again, the protocol was constructed so
that B never had to prepare fresh photons. Security was shown only against a few practical
attacks, namely an unambiguous state discrimination attack similar to the one used against
B92 [172], and a multi-photon attack assuming imperfect devices.

Finally, a mediated SQKD protocol was developed in [83] where a fully quantum server
prepares and later measures photons. The two classical users need only to choose Reflect

or to Measure. They do not need to prepare photons; in fact, they also do not need to
measure in a particular basis - they simply need to “look” at their portion of the quantum
channel thus showing key distribution is possible with very minimal resources. In the same
paper, a complete security proof against collective attacks in the finite-key setting was de-
rived, including device imperfections and assuming an adversarial server (which may even
prepare multi-photon states maliciously). Finally, an experimental demonstration of this
protocol was performed and the key-rate computed using these experimental observations
thus showing its practicality and the potential for practical semi-quantum communication.

The remaining major challenges, namely the need to switch rapidly from Measure and Resend

(or some equivalent operation) and Reflect and, finally device imperfections, remain a
challenge. The latter (e.g., dark counts, loss, and detector efficiency) affects all QKD (semi-
quantum and otherwise) work and these should be accounted for in proofs. Indeed, in the
semi-quantum case, they have been accounted for in the papers we consider in this section.
For the first, perhaps new protocols can be developed which do not require rapid switching,
or some alternative mechanism for switching can be developed. For instance, in [173], an
alternative switching technique using only passive optics was proposed. Perhaps also the
mediated model presents a solution to both: we now know practical mediated SQKD pro-
tocols can be built consisting of an (untrusted) quantum server and several classical users.
In the future, as the technology becomes more capable, one can envision only requiring a
few commercial centers needing to purchase this expensive technology while end-users need
only basic, perhaps poorly performing (e.g., detectors with low efficiency), quantum devices.
Moving forward, when investigating practical semi-quantum communication, these are issues
to keep in mind, and device imperfections, along with solutions for mitigating them (perhaps
through the use of central servers with good devices, thus allowing end users to have less
efficient devices) is an important area of investigation.

Considering the relative ease with which fully-quantum, one-way protocols (such as BB84)
may be implemented, it is important to consider how the semi-quantum model may fully con-
tribute beneficially to practical quantum communication. It seems that several avenues are
potentially available: (1) if devices “break down” theoretical work within the semi-quantum
communication model show that secure communication may still be possible with fewer re-
sources, perhaps by changing the classical post processing; (2) the techniques developed to
study these “limited resource” protocols, can translate to novel practical insights creating
more efficient fully-quantum systems; (3) one may “offload” expensive devices to centralized,
but untrusted, servers, leaving end-users with cheap, potentially poorly performing, quantum
devices yet still attain optimistic security results. Research in semi-quantum communication

46



can lead to insights and breakthroughs in these, and other, areas!

7 Closing Remarks and Future Directions

Semi-quantum cryptography and communication was originally introduced to study the the-
oretical question: how quantum must a protocol be to gain an advantage over its classical
counterpart. This has led to developments in quantum key distribution (namely, semi-
quantum key distribution) showing that it is possible to establish a shared secret key, secure
against a computationally unbounded adversary, when users have fewer theoretical quantum
capabilities. Namely, even when one user is restricted to “classical” operations. Beyond this,
these protocols have even been shown to be comparable in noise tolerance to fully-quantum
protocols, at least in ideal perfect qubit channels. Furthermore, exciting possibilities exist
involving semi-quantum users with weak quantum abilities, being able to perform certain
cryptographic tasks using the help of strong, but untrusted (and potentially adversarial)
servers. Moving beyond key distribution, the semi-quantum model of communication has
been applied to other cryptographic primitives including secret sharing, state comparison,
and secure direct communication, to list a few.

This paper has surveyed the history of semi-quantum cryptography and the current state
of the art. We have also discussed recent research in practical, experimental, semi-quantum
communication showing that this is a potentially viable model. There still remains many
interesting theoretical and experimental problems, only some of which we have highlighted
throughout this review. On the theory side, it is interesting to see how far one can go in
reducing resource requirements and how this affects security. On the experimental side, it is
interesting to see what systems can be built and how.

We believe that research in semi-quantum cryptography can offer great insight into other
fields of quantum information science. The tools and techniques that have been, and are
being, developed to construct and analyze semi-quantum protocols can be applied to fully-
quantum protocols. We can gain insight into when security is possible and how to compensate
for limited quantum capabilities - all of which are important problems for standard, fully-
quantum, systems. It also provides insight into the great importance of quantum and classical
information processing - indeed, many results in semi-quantum cryptography have shown
how some lack of a quantum resource may be compensated for by using purely classical
means. There are still many exciting questions and research directions in this area which
may shed light on fundamental issues within quantum and classical information science and
cryptography.
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