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It is known that the witness operator is useful in the detection and quantification of entangled states. This

motivated us for the construction of the family of witness operators that can detect many mixed entangled

states. This family of witness operators is then used to estimate the lower bound of concurrence of the detected

mixed entangled states. Our method of construction of witness operator is important in the sense that it will

estimate a better lower bound of concurrence of the entangled states in arbitrary d1 ⊗ d2(d1 ≤ d2) dimensional

system compared to the lower bound of the concurrence given in [25]. We have shown the significance of

our constructed witness operator by detecting many bound entangled states that are not detected by the earlier

methods and then we use the expectation value of the witness operator to estimate the lower bound of the

concurrence of those bound entangled states.

PACS numbers: 03.67.Hk, 03.67.-a

I. INTRODUCTION

Entanglement [1] is the essence of quantum formalism and

can be considered as the heart of quantum information sci-

ence. It is a fully quantum mechanical phenomenon that has

no classical analogue. We can find quantum advantage over

classical if we use entangled states in quantum information

tasks such as quantum teleportation [2], superdense coding

[3], remote state preparation [4], quantum cryptography [5]

and quantum computation [6]. The detection of entangled

states is an important problem for the following reasons: (i)

When an experiment is particularly carried out to generate

a bipartite or multipartite entangled state, it is a challenging

task to verify whether the generated state is entangled. (ii)

Entanglement [7] serves as a useful ingredient in many

applications of quantum information. Another important

theoretical challenge in the theory of quantum entanglement

is to give a proper description and quantification of quantum

entanglement of bipartite and multipartite quantum systems.

Despite many efforts in the last decade, a completely satis-

factory solution to both the problems has not been found.

Attending to the first one the so-called separability problem,

there exist, nevertheless, several sufficient conditions for the

detection of entanglement. The first criterion to detect the

entanglement was proposed by Peres [8] and it is known

as partial transposition criterion. Later, it was proved to

be a necessary and sufficient criterion for 2 ⊗ 2 and 2 ⊗ 3
systems [9]. The partial transposition criterion tells us that

if the partial transposition of the bipartite state described by

the density operator ρ in d1 ⊗ d2 dimensional system has at

least one negative eigenvalue then the state ρ is said to be

the negative partial transpose entangled state (NPTES). The

d1 ⊗ d2 dimensional NPTES of rank at most max(d1, d2)
have been shown to be distillable entangled states [10, 11].

Apart from NPTES, there exist other entangled states in

the d1 ⊗ d2 (d1, d2 ≥ 3) dimensional system that are not

∗Electronic address: shruti˙phd2k19@dtu.ac.in, satyabrata@dtu.ac.in

detected by partial transposition criterion, i.e., these states

are described by positive semidefinite matrix even after

the application of partial transposition operation on them.

This kind of entangled states are known as positive partial

transpose entangled states (PPTES). PPTES are commonly

called bound entangled states (BES). BES are very weak en-

tangled states and they are not distillable by performing local

operation and classical communication (LOCC). Divincenzo

et.al. [12] have provided the evidence for the existence of

bound entangled states with negative partial transpose. Partial

transposition method fails to identify BES so we require other

methods that can detect BES. The methods to detect BES that

we will use in this work are: (i) Realignment criterion [13]

and (ii) Witness operator [9, 14].

Realignment criterion.— Let us consider a bipartite state

described by the density operator ρ =
∑

ijkl ρij,kl|ij〉〈kl| in

Hd1

A ⊗Hd2

B where Hd1

A and Hd2

B are Hilbert spaces of dimen-

sion d1 and d2, for two systems A and B, respectively. Let

R be the realignment operation and after applying it on ρ, the

output will take the form as ρR =
∑

ijkl ρkj,il|kj〉〈il|. If the

state ρ is separable then ‖ρR‖1 ≤ 1 holds, where ‖.‖1 denotes

the trace norm and defined by ‖H‖1 = Tr(
√
HH†). We note

here an important fact that since the eigenvalues of ρR may

be complex also, so the operator ρR may not be a hermitian

operator. But in this work, we have studied the examples in

which we find that the operator (ρR)TB has real eigenvalues,

where (.)TB denotes the partial transposition with respect to

the subsystem B.

Witness operator.—It is a hermitian operator that separates the

entangled states from separable states [9, 15]. It is an observ-

able with at least one negative eigenvalue. Mathematically,W
is said to be an entanglement witness operator if

(i)Tr(Wσ) ≥ 0, for all separable state σ and

(ii)Tr(Wρ) < 0, for at least one entangled state ρ

There are two classes of witness operator: Decomposable wit-

ness operators and indecomposable witness operators. For-

mer detects only NPTES and the later class of witness opera-
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tors detect BES together with NPTES. Terhal [15] first intro-

duced a family of indecomposable positive linear maps based

on entangled quantum states using the notion of unextendible

product basis. Soon after this work, Lewenstein et. al. [14]

extensively studied the indecomposable witness operator and

provided an algorithm to optimize them. The construction of

witness operators are important in the sense that they can be

used in an experimental set up to detect whether the gener-

ated state in an experiment is entangled. There are different

methods of the construction of witness operator in the litera-

ture [16–20].

Witness operators can also be used in the detection of entan-

gled states that act as a resource state in the teleportation pro-

tocol [21, 22]. Witness operator is also used in the quantifica-

tion of entanglement [23] and in the estimation of lower bound

of the concurrence of the entangled states in d1⊗d2(d1 ≤ d2)
dimensional systems [24, 25].

The motivation of this work is two fold. Firstly, since BES

are very weak entangled states so they behave like separable

states and thus it is very difficult to separate BES from the

set of separable states. Hence, in particular, the detection of

BES is an important problem to consider. Further, we find ap-

plication of bipartite BES in quantum cryptography [26] and

thus by realizing its importance, we have constructed the wit-

ness operator for the detection of BES. Secondly, it is known

that for higher dimensional systems, we don’t have any closed

formula for concurrence, just like we have for a two-qubit sys-

tem. Thus, the quantification of entanglement by estimating

the exact value of the concurrence is a formidable task. In

spite of these, few attempts have been made to obtain lower

bound of the concurrence for a qubit-qudit system [27, 28]

and to derive purely algebraic lower bound of the concurrence

[29]. Later, Chen et.al. [25] have derived the lower bound of

the concurrence for arbitrary d1 ⊗ d2 (d1 ≤ d2) dimensional

system and it is given by

C(ρ) ≥
√

2

d1(d1 − 1)

(

max(‖ρTA‖1, ‖ρR‖1)− 1
)

(1)

where C(ρ) denotes the concurrence of a mixed bipartite

quantum state ρ and other notations were defined earlier.

We have modified the above lower bound of concurrence and

obtained the modified lower bound by using the constructed

witness operator. We take few steps forward in this direction

of research by obtaining a new improved lower bound of con-

currence using the constructed witness operator.

The work is organised as follows: In section-II, we have dis-

cussed few theorems and results that have already been estab-

lished in the literature. Then with the help of those results,

we have derived few new results in this section. In section-III,

we have constructed witness operators that can detect NPTES

and PPTES. In section-IV, we have stated and proved a the-

orem which provides a new lower bound of the concurrence

based on the constructed witness operator in the previous sec-

tion. In section-V, we have discussed few examples of NPTES

and PPTES in which we have shown that the constructed wit-

ness operator not only detect those entangled states but also it

helps in achieving the better value of the lower bound of the

concurrence of the given NPTES and PPTES. In section-VI,

we end with concluding remarks.

II. PRELIMINARIES

In this section, we have stated theorems and results which

are discussed in the literature. Then using these results and

theorems, we derive a few new theorems and results which

will be used in the later section.

A. Previous Theorems and Results

Theorem-P1 [30]: Let Mn(C) be the set of all complex

matrices of order n and M ∈Mn(C), then

|Tr(M)|2 ≤ rank(M)

s
∑

i=1

|λi|2 (2)

where λi denotes the ith eigenvalue of the matrix M and s
denotes the number of non-zero eigenvalues.

Result-P1 [31]: Let Mn be the set of all n × n matrices.

For any A ∈Mn, we have

|Tr(A)| ≤
n
∑

i=1

Λi(A) = ‖A‖1 (3)

where Λi(A) denotes the ith singular value of the matrix A.

Result-P2 [30]: Let A ∈ Mn(C), and λj = aj + ιbj(j =
1, 2, ......n) be an eigenvalue of A. Then

n
∑

i=1

|λi|2 ≤ ‖A‖22 (4)

where ‖.‖2 denotes the Frobenius norm defined as ‖H‖22 =
Tr(HH†).

Result-P3 [32]: If a state described by the density operator

ρ in d1 ⊗ d2 dimensional system represents a positive partial

transpose (PPT) state then the following inequalities hold

det(Id2 + TrA(ρ)) ≤ det(Id1d2 + ρ) (5)

det(Id1 + TrB(ρ)) ≤ det(Id1d2 + ρ) (6)

where TrA(ρ) and TrB(ρ) represent the partial traces of the

state ρ with respect to the subsystems A and B, respectively,

while Id denotes the d× d identity matrix and det denotes the

matrix determinant operation.

Result-P4 [24]: If W represents the witness operator that

detects the entangled quantum state described by the density

operator ρ and C(ρ) denotes the concurrence of the state ρ
then the lower bound of concurrence is given by

C(ρ) ≥ −Tr[Wρ] (7)
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B. New Theorems and Results

Result-1: If ρR denotes the realigned matrix of the state

described by the density operator ρ in d1 ⊗ d2 dimensional

system, then,

‖ρR‖1 ≤
√

rank(ρR) ‖ρR‖2 (8)

where ‖.‖1 denotes the trace norm and ‖.‖2 denotes the Frobe-

nius norm.

Proof: Since ρR describe the realigned matrix of the density

operator ρ so Tr(ρR) may or may not be equal to unity. Thus,

replacing the complex matrix M by ρR in (2), we have

|Tr(ρR)|2 ≤ rank(ρR)

s
∑

i=1

|λi(ρR)|2 (9)

If we assume that ρR is hermitian with positive eigenvalues,

then

Tr(ρR) =
∑

i

λi =
∑

i

Λi = ‖ρR‖1 (10)

where λi and Λi denoting the eigenvalues and singular values

of ρR respectively.

Using (9) and (10), we get

‖ρR‖21 ≤ rank(ρR)

s
∑

i=1

|λi(ρR)|2

≤ rank(ρR) ‖ρR‖22

The last inequality follows from (4). Hence proved.

Let us define an operatorA of the form

A =
1

√

rank(ρR) ‖ρR‖2
ρR (11)

Using (8), it can be shown that ‖A‖1 ≤ 1.

Theorem-1: If the bipartite state described by the density

operator ρ in d1 ⊗ d2 dimensional system, is separable then

‖A‖1 ≤ 1
√

rank(ρR) ‖ρR‖2
(12)

Proof: Using the fact that if the state ρ is separable then

‖ρR‖1 ≤ 1, one can prove that the Theorem − 1 is indeed

true.

Corollary-1: If the inequality (12) is violated by a quantum

state ρ then the state ρ must be entangled, i.e., if the state ρ
satisfies

1
√

rank(ρR) ‖ρR‖2
< ‖A‖1 (13)

then the state ρ is entangled.

Theorem-2: Let ρR be the realigned matrix of the bipartite

state described by the density operator ρ in d1 ⊗ d2 dimen-

sional system. If the state ρ is separable then,

‖ρTBρR‖1 ≤ Λmax(ρ
TB ) (14)

where TB denotes the partial transposition with respect to

the system B and Λmax(ρ
TB ) denotes the maximum singu-

lar value of ρTB .

Proof: Let us consider the product of two matrices ρTB and

ρR and further suppose that Λi(ρ
TBρR) denoting the ith sin-

gular value of the product ρTBρR. Therefore, the upper bound

of trace norm of ρTBρR is given by

‖ρTBρR‖1 =
∑

Λi(ρ
TBρR)

≤
∑

Λi(ρ
TB ) Λi(ρ

R)

≤ Λmax(ρ
TB )

∑

Λi(ρ
R)

= Λmax(ρ
TB )‖ρR‖1 (15)

where the first inequality follows from [33].

If the state ρ is separable, then ‖ρR‖1 ≤ 1. Thus, the inequal-

ity (15) for the separable state reduces to

‖ρTBρR‖1 ≤ Λmax(ρ
TB ) (16)

Hence proved.

Corollary-2: If the state ρ is separable then,

|Tr[(ρR)TBρ]| ≤ Λmax(ρ
TB ) (17)

Proof: Let us start with |Tr[(ρR)TBρ]|. It is given by

|Tr[(ρR)TBρ]| = |Tr[ρRρTB ]| = |Tr[ρTBρR]|
≤ ‖ρTBρR‖1 ≤ Λmax(ρ

TB )

The first inequality follows from (3) and the last inequality

follows from Theorem− 2.

III. CONSTRUCTION OF WITNESS OPERATOR

In this section, we will construct different types of witness

operators that can detect (i) only NPTES (ii) Both NPTES and

PPTES.

A. Witness operator detecting only NPTES

It is well known that partial transposition operation can de-

tect NPTES but the problem lies in the fact that it is not a

physical operation and thus not possible to implement it in

real experiment. To resolve this issue, we take an approach of

constructing a witness operator that does not contain partial

transposition map for the detection of NPTES.

Let us consider a d1⊗d2 dimensional quantum state described

by the density operator ρ. Our task is to determine whether the

state described by the density operator ρ is NPTES.
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Theorem-3: A d1 ⊗ d2 dimensional quantum state ρ is

NPTES if there exist a witness operator W̃ such that

Tr(W̃ρ) < 0 (18)

where W̃ is given by

W̃ =
det(Id1d2 + (.))

λ
|ψ〉〈ψ|

−(det(Id2 + TrA(.)))Id1d2 (19)

(.) means a d1⊗ d2 dimensional bipartite state which is under

investigation, TrA(.) represents the partial trace with respect

to the subsystem A of the state under investigation, Id1d2 de-

noting the identity matrix in d1⊗d2 dimensional Hilbert space

and |ψ〉 be the normalized eigenvector corresponding to any

non-zero eigenvalue λ of ρ.

Proof: Let us consider any separable state σ in d1⊗d2 dimen-

sional system. The trace of the operator W̃ over a separable

state σ is given by

Tr(W̃σ) = Tr[(
det(Id1d2 + σ)

λ
|ψ〉〈ψ|

−det(Id2 + TrA(σ))Id1d2)σ]

= det(Id1d2 + σ)− det(Id2 + TrA(σ))

≥ 0 (20)

The last step follows from (5). Since σ is an arbitrary separa-

ble state so Tr(W̃σ) ≥ 0 for any separable state.

Next, let us consider a state described by the density operator

ρ12 defined as

ρ12 =









13
30 0 0 11

30
0 1

15 0 0
0 0 1

15 0
11
30 0 0 13

30









(21)

It can be easily shown that the state ρ12 is indeed an entangled

state.

The trace value of W̃ with respect to the state ρ12 is given by

Tr(W̃ρ12) = − 491

7500
< 0 (22)

Thus, the operator W̃ is a witness operator.

We note that if ρ denotes the PPT entangled state in d1⊗d2
(d1, d2 ≥ 3) dimensional system, then it can be easily shown

that Tr(W̃ρ) ≥ 0. This happens because (5) holds for any

PPTES also. Thus, it is not possible to detect any PPTES

using the witness operator W̃ . Therefore, the witness operator

W̃ detect only NPTES.

Let us now consider a family of 3⊗3 dimensional isotropic

state [34], which is defined by

ρiso(f) =
1− f

8
I9 +

9f − 1

8
|ψ+〉〈ψ+|, 0 ≤ f ≤ 1 (23)

where |ψ+〉 = 1√
3
(|00〉 + |11〉 + |22〉) and f =

〈ψ+|ρiso(f)|ψ+〉.

The state ρiso(f) is separable when f ≤ 1
3 and NPTES when

f > 1
3 .

We now calculate Tr(W̃ρiso(f)) to determine how efficiently

W̃ detect NPTES. Tr(W̃ρiso(f)) is given by

Tr(W̃ρiso(f)) =
(−9 + f)8(1 + f)

16777216
− 64

27
< 0, 0.591634 < f ≤ 1 (24)

Thus, the witness operator W̃ fails to detect a few members in

the family of isotropic NPTES. When the parameter f lies in

the region 1
3 < f ≤ 0.591634, the corresponding entangled

states are not detected by W̃ . Hence we can say that the

witness operator W̃ is not as much as efficient in comparison

to the other witnesses in the literature.

Here one may argue about the utility of constructing

W̃ to detect NPTES for which we already have the partial

transposition (PT) criterion. It is known that the partial

transposition is not a completely positive map and thus it

would be very difficult to implement it in the laboratory.

One approach to overcome this complication was given in

[35] where the method of structural physical approximation

of a partial transposition (SPA-PT) is adopted to detect

NPTES. We provide a complementary approach to address

this problem by constructing the witness operator W̃ , which

is independent of the PT operation. Our criterion is con-

structive and applicable to detect NPTES even in the higher

dimensional bipartite systems where the SPA method can be

strenuous to implement.

Now, our task is to construct another witness operator that

can be as efficient as W̃ . To achieve this, let us start with ρR,

which denotes the realigned matrix of the state under investi-

gation. Then the operatorW o can be defined as

W o =

(

1 +
1− ‖ρR‖1

√

rank(ρR) ‖ρR‖2

)

Id2 − (ρR)TB

Λmax(ρTB )
(25)

where TB is the partial transpose with respect to the second

subsystem B and Λmax(ρ
TB ) denotes the maximum singular

value of ρTB .

Theorem-4: The operatorW o is an entanglement witness op-

erator.

Proof: Let us consider any d1 ⊗ d2 dimensional bipartite sep-

arable state σ. Therefore, Tr(W oσ) is given by

Tr(W oσ) = 1− Tr[σTBσR]

Λmax(σTB )
+

1− ‖σR‖1
√

rank(σR)‖σR‖2
(26)

From (12) and (17) it follows that Tr(W oσ) ≥ 0 for all sepa-

rable states.

Now it remains to show that there exists at least one entangled

state ρ for which Tr(W oρ) < 0. For this, let us consider a

state of the form

̺12 =









11
30 0 0 7

30
0 2

15 0 0
0 0 2

15 0
7
30 0 0 11

30









(27)
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It can be easily verified that the state ̺12 is an entangled state.

The quantity Tr(W o̺12) is given by

Tr(W o̺12) = −0.0585731 < 0 (28)

Thus, the operator W o is indeed an entanglement witness

operator.

Let us now recall again the family of 3 ⊗ 3 isotropic states

defined in (23) and investigate whether the witness operator

W o detect more members of the family of isotropic states

than W̃ . To probe this, let us calculate the following:

Tr[(ρTB

iso ρ
R
iso)(f)] =

1

96
(−1 + 42f − 9f2)

Λmax(ρ
TB

iso(f)) =

{

1−3f
6 0 ≤ f ≤ 1

9
1+3f
12

1
9 ≤ f ≤ 1

rank(ρRiso(f)) =

{

1 f = 1
9

9 f 6= 1
9

‖ρRiso(f)‖1 =

{

2
3 − 3f 0 ≤ f ≤ 1

9

3f 1
9 ≤ f ≤ 1

‖ρRiso(f)‖2 =

√

1− 2f + 9f2

8

Using (26), we get

Tr(W oρiso(f))

=



















17−90f+9f2

16−48f + 2
√
2(1+9f)

9
√

1−2f+9f2
0 ≤ f < 1

9

8
3 f = 1

9

1
3

(

27(−1+f)2

8+24f − 2
√
2(−1+3f)√
1−2f+9f2

)

1
9 < f ≤ 1

(29)

Here, Tr(W oρiso(f)) < 0 for 0.413285 < f ≤ 1, which

improves the detection range obtained in (24). Thus, the wit-

ness operatorW o can be considered as more efficient than the

witness operator W̃ . We can now observe the following facts:

(i) W o may detect bound entangled states also.

(ii) ρR and (ρR)TB are both non-Hermitian matrices. But the

real eigenvalues of (ρR)TB makes our witness operator CPT

symmetric and capable of detecting entanglement [36–38]. In

most of the cases, we find that the eigenvalues of (ρR)TB are

real.

B. Witness operator detecting both NPTES and PPTES

In this section, our task is to construct a witness operator

which is efficient in detecting both NPTES and PPTES.

Let us now start with the operator W(n) which can be defined

as follows:

W(n) =
d1

d1 − 1











(kρ)
n

(

Id1d2 −
(ρR)TB

Λmax(ρTB )

)

+

(

1− ‖ρR‖1
√

rank(ρR) ‖ρR‖2

)

Id1d2











(30)

where n ∈ N, the set of natural numbers; and

kρ = det(Id1d2 + ρ)− det(Id2 + TrA(ρ)).
Theorem-5: The operatorW(n) is a witness operator that can

detect PPTES.

Proof: Let us consider a bipartite d1 ⊗ d2 (d1 ≤ d2) dimen-

sional separable state σ. Using (5), we can have kσ ≥ 0 for

any separable state σ.

Tr(W(n)σ) =
d1

d1 − 1











(kσ)
n

(

1− Tr[σTBσR]

Λmax(σTB )

)

+
1− ‖σR‖1

√

rank(σR)‖σR‖2











(31)

Using (26), it follows that Tr(W(n)σ) ≥ 0 for all bipartite

d1 ⊗ d2 dimensional separable state σ.

Let us now consider the bound entangled state given in [39]

ρBE =



























a 0 0 0 b 0 0 0 b
0 c 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
b 0 0 0 a 0 0 0 0
0 0 0 0 0 c 0 b 0
0 0 0 0 0 0 c 0 0
0 0 0 0 0 b 0 a 0
b 0 0 0 0 0 0 0 a



























(32)

where a = 1+
√
5

3+9
√
5

, b = −2
3+9

√
5

, c = −1+
√
5

3+9
√
5

. The values

of the parameters involved in the witness operator W(n) to

detect the state ρBE are given below.

dρBE
= 0.149 > 0, T r[ρTB

BEρ
R
BE ] =

1

363
(21− 8

√
5),

Λmax(ρ
TB

BE) =
1

33

√

29 + 12
√
5, rank(ρRBE) = 9,

‖ρRBE‖1 = 1.025, ‖ρRBE‖2 = 0.413 (33)

The expectation value of W(n) with respect to the state ρBE

is given by

Tr(W(n)ρBE) = 1.5(0.0203459− 0.962145× 0.149599n)

< 0 for n ≥ 3 (34)

Since the operator W(n) detects the PPTES described by the

density operator ρBE for each n ≥ 3 so W(n) is a witness

operator. Hence proved.

IV. LOWER BOUND OF THE CONCURRENCE

In this section, we have derived a new lower bound of con-

currence of a bipartite quantum state ρ in d1⊗d2 dimensional

system and show that our bound is better in most cases when

it is compared to the lower bound of the concurrence given by

[25]. We note that the lower bound given in (1) is not normal-

ized but can be normalized to unity. If Cmin(ρ) denotes the
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normalized value of this bound for the state ρ, then we have

C(ρ) ≥ Cmin(ρ)

=
1

(d1 − 1)
(max(‖ρTA‖1, ‖ρR‖1)− 1) (35)

We are now in a position to use the witness operator W(n)

defined in (30) in the result-P4 by Mintert [24] for getting

the improvement of the lower bound of the concurrence of an

arbitrary bipartite d1⊗d2 dimensional system. It may be noted

that not all witness operators improve the lower bound of the

concurrence given by (1).

Theorem-6: Let ρ be an entangled state in d1 ⊗ d2 (d1 ≤
d2) dimensional system detected by the witness operatorW(n)

defined in (30). Then there exist n1 ∈ N such that the lower

bound of concurrence of the state ρ is given by

C(ρ) ≥ ΦW(n)
(ρ), ∀n ≥ n1 (36)

where

ΦW(n)
(ρ) = −Tr[W(n)ρ] =

d1

d1 − 1
[(kρ)

n(
Tr[ρTBρR]

Λmax(ρTB )
− 1)

+
‖ρR‖1 − 1

√

rank(ρR)‖ρR‖2
] (37)

Proof: Let us first recall the witness operatorW(n) defined in

(30). Then the theorem follows by using the witness operator

W(n) in the result given in (7). Hence proved.

Lemma-1: For any bipartite state ρ in d1 ⊗ d2 dimensional

system, we have

|kρ| < 1 (38)

where kρ = det(Id1d2 + ρ)− det(Id2 + TrA(ρ)).
Proof: Let us start with the expression of Tr(Id1d2 + ρ). The

value of Tr(Id1d2 + ρ) is given by

Tr(Id1d2 + ρ) = Tr(Id1d2) + Tr(ρ) = d1d2 + 1 (39)

Moreover, the inequality det(Id1d2 + ρ) ≤
(

1+d1d2

d1d2

)d1d2

can

be derived as

1 + d1d2 = Tr(Id1d2 + ρ)

=

d1d2
∑

i=1

λi(Id1d2 + ρ)

≥ d1d2

(

d1d2
∏

i=1

λi(Id1d2 + ρ)

)

1
d1d2

= d1d2 (det(Id1d2 + ρ))
1

d1d2 (40)

i.e.,

det(Id1d2 + ρ) ≤
(

1 + d1d2

d1d2

)d1d2

(41)

It can be seen that R.H.S of (41) tends toward Euler’s number

e as d1, d2 tends to ∞.

Therefore, for arbitrary large value of d1 and d2, we have

det(Id1d2 + ρ) ≤ e (42)

Let us first calculate the bound of det(Id2 + TrA(ρ)) for

d2 = 2 and then generalize the result to arbitrary dimension

d2. The quantum state in 2-dimensional system, i.e., a qubit

is described by the density operator

̺(2) =
I2 + ~r.~σ

2
(43)

where ~r ∈ R3 with |~r|2 ≤ 1 is the Bloch vector for the state

̺(2); I2 is 2 × 2 identity matrix; and ~σ = (σx, σy , σz) where

σx, σy and σz are Pauli matrices [40].

After carrying out a simple calculations, we arrive at the result

given by

det(I2 + ̺(2)) ≥ 2 (44)

The equality holds in (44) for pure states.

Since pure states are rank one projectors, so we have det(Id2+
̺(d2)) = 2 for any pure state ̺(d2) in d2 dimensional system.

Thus, we can generalize the result (44) to an arbitrary qudit

described by the density operator ̺(d2), we obtain the follow-

ing

det(Id2 + ̺(d2)) ≥ 2 (45)

Using the results (41) and (45) in kρ, we get

kρ = det(Id1d2 + ρ)− det(Id2 + TrA(ρ))

≤ e − 2 < 1 (46)

Similarly, we can show that kρ > −1. Thus, we have

|kρ| < 1. Hence proved.

Note-1: For PPT states, we have 0 ≤ kρ < 1.

Corollary-3: For large value of n i.e. as n → ∞, the lower

bound of concurrence is given by

C(ρ) ≥ φ(ρ) (47)

where φ(ρ) = d1

d1−1

(

‖ρR‖1−1√
rank(ρR)‖ρR‖2

)

.

Proof: Since kρ < 1 so (kρ)
n → 0, as n → ∞. Thus, we

have

lim
n→∞

ΦW(n)
(ρ) = φ(ρ) (48)

Hence proved.

Note-2: The lower bound of concurrence given in Eq. (37)

is better than that given in Eq. (35), when n→ ∞.
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V. EXAMPLES

In this section, we will discuss some examples to illustrate

the utility of the witness operator W(n) in detecting NPTES

and PPTES. Furthermore, we will improve the lower bound

of the concurrence of given NPTES and PPTES detected by

the witness operator W(n). Also, we have shown that for the

given state ρ the lower bound of the concurrence ΦW(n)
(ρ)

defined in (37) tends towards φ(ρ) for sufficiently large value

of n. In this context, we have provided few examples in which

the following relation holds:

C(ρ) ≥ ΦW(n)
(ρ) ≥ Cmin(ρ), ∀n ≥ n1 (49)

Using Corollary − 3, we have the following relation:

C(ρ) ≥ φ(ρ) ≥ Cmin(ρ) (50)

A. Detection and Estimation of Lower Bound of Concurrence

of NPTES

Example-1: Let us again recall the 3 ⊗ 3 isotropic states

described by the density operator ρiso(f) defined in (23). The

witness operator W(n) detects 3 ⊗ 3 isotropic states for some

range of the parameters which has been shown in Table-I

given below:

3⊗ 3 Isotropic States described by ρiso(f)

n The range of the pa-

rameter f for which

Tr(W(n)ρiso(f)) < 0

ρiso(f) detected by the

witness operator W(n)

1 0.35 < f ≤ 1 NPTES detected by

W(1)

2 0.336 < f ≤ 1 NPTES detected by

W(2)

3 0.3338 < f ≤ 1 NPTES detected by

W(3)

4 0.3334 < f ≤ 1 NPTES detected by

W(4)

5 0.33334 < f ≤ 1 NPTES detected by

W(5)

TABLE I: Detection of isotropic state using W(n) in the range
1
3
< f ≤ 1

Table-I shows that the range of the parameter f to detect 3⊗3
negative partial transpose isotropic states (23) increases as n
increases.

We will now use the witness operator W(n) to estimate the

lower bound of the concurrence of ρiso(f). With an in-

crease in n, one can easily find the improvement in the lower

bound of concurrence estimated by the witness operatorW(n)

∀ n ∈ N, when compared to the lower bound of the concur-

rence given in (35). If we take sufficiently large value of n

then from Corollary − 3, we have

C(ρiso(f)) ≥ φ(ρiso(f)) =

√
2(−1 + 3f)

√

1− 2f + 9f2
,

1

3
< f ≤ 1 (51)

where C(ρiso(f)) denotes the concurrence of the isotropic

state.

In Figure-1, we have compared the lower bound φ(ρiso)
given in (51) with the lower boundCmin(ρiso) given in (35).

ϕ(ρiso�f))

Cmin(ρiso(f))

0.4 0.5 0.6 0.7 0.8 0.9 1.0
f

0.2

0.4

0.6

0.8

1.0

Lower bound of concurrence in the state ρiso(f)

FIG. 1: Isotropic states: The dotted curve represents Cmin(ρiso) and

the solid red curve represents the limiting value of our bound, i.e.,

φ(ρiso). Clearly, in the entangled region 1
3
< f ≤ 1, φ(ρiso) gives

a better estimate of the lower bound of concurrence as compared to

Cmin(ρiso).

Example-2: Let us consider a class of bipartite quantum

state in 3⊗ 3 dimensional system, which is defined as [41]

ρα =
2

7
|ψ+〉〈ψ+|+ α

7
σ+ +

5− α

7
σ−, 2 ≤ α ≤ 5 (52)

where |ψ+〉 = 1√
3
(|00〉+ |11〉+ |22〉) and

σ+ =
1

3
(|01〉〈01|+ |12〉〈12|+ |20〉〈20|) (53)

σ− =
1

3
(|10〉〈10|+ |21〉〈21|+ |02〉〈02|) (54)

The state ρα can be characterized with respect to the parame-

ter α in the interval [2, 5] as:

(i) ρα is a separable state when 2 ≤ α ≤ 3.

(ii) ρα represents PPTES when 3 < α ≤ 4.

(iii) ρα is NPTES when 4 < α ≤ 5.

In this example, we will consider the state ρα for 4 < α ≤ 5.

It can be easily seen that for each n, the witness operatorW(n)

detects all the NPTES belonging to the family of states de-

scribed by the density operator ρα, 4 < α ≤ 5. Further, we

can use the witness operator W(n) to improve the estimation

of lower bound of concurrence of the state ρα, 4 < α ≤ 5. In

this case, we find that except for n = 1, the witness operator
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W(n) improves the lower bound of the concurrence compared

to the lower bound given in (35) in the whole range of the pa-

rameter α, i.e., 4 < α ≤ 5. For n = 1, the witness operator

W(1) improves the lower bound in the interval 4.15 < α ≤ 5.

Figure-2 describes a comparison between the limiting value

of our bound, i.e., φ(ρα) with Cmin(ρα).

ϕ(ρα)

Cmin(ρα)

4.0 4.2 4.4 4.6 4.8 5.0
α

0.1

0.2

0.3

0.4

Lower bound of concurrence in the NPTES ρα

FIG. 2: Horodecki alpha states: The dotted curve represents

Cmin(ρα) and the solid red curve represents the limiting value of our

bound, i.e., φ(ρα). Clearly, in the NPT entangled region 4 < α ≤ 5,

φ(ρα) gives a better estimate of the lower bound of concurrence as

compared to Cmin(ρα).

B. Detection and Estimation of Lower Bound of Concurrence

of PPTES

We will now consider few examples of bound entangled states

detected by the witness operator Wn.

Example-1: A 3 ⊗ 3 BES constructed from the unex-

tendible product basis (UPB) is given by [42]

ρB =
1

4
[I9 −

5
∑

i=1

|ψi〉〈ψi|] (55)

where the states {|ψi〉}5i=1 form the UPB and are given by

|ψ1〉 =
1√
2
|0〉 ⊗ (|0〉 − |1〉)

|ψ2〉 =
1√
2
(|0〉 − |1〉)⊗ |2〉

|ψ3〉 =
1√
2
|2〉 ⊗ (|1〉 − |2〉)

|ψ4〉 =
1√
2
(|1〉 − |2〉)⊗ |0〉

|ψ5〉 =
1

3
(|0〉+ |1〉+ |2〉)⊗ (|0〉+ |1〉+ |2〉)

(56)

To start with, let us calculate the following quantities.

kρB
=

71

768
, T r[ρTB

B ρRB ] =
1

16
,Λmax(ρ

TB

B ) =
1

4
,

rank(ρRB ) = 6, ‖ρRB‖1 = 1.08741, ‖ρRB‖2 = 0.5 (57)

Using the above data given in (57), we can construct the wit-

ness operator W(n) and calculate its expectation value with

respect to the state ρB as

Tr(W(n)ρB) =
3

2



















(kρB
)n

(

1− Tr[ρTB

B ρRB ]

Λmax(ρ
TB

B )

)

+
1− ‖ρRB‖1

√

rank(ρRB )‖ρRB‖2



















=
3

2

(

3

4

(

71

768

)n

− 0.071372

)

< 0 ∀ n ∈ N (58)

Thus, W(n) detect the BES described by the density operator

ρB for all n ∈ N.

The lower bound of the concurrence of the state ρB is given

by

C(ρB) ≥ ΦW(n)
(ρB) = −Tr(W(n)ρB) ∀ n ∈ N (59)

In Table - II, we have compared the lower bound of concur-

rence of the state ρB . It shows that for n > 1, the function

ΦW(n)
gives a better estimate of the lower bound of concur-

rence as compared to (35), i.e.,

ΦW(n)
(ρB) > Cmin(ρB) = 0.04 ∀ n > 1 (60)

Lower bound of concurrence for the state ρB

n ΦW(n)
(ρB) Cmin(ρB)

1 0.00305406 0.04

2 0.097443 0.04

3 0.106169 0.04

4 0.106976 0.04

5 0.10705 0.04

TABLE II: Lower bound is compared with Cmin(ρB)

Also it can be observed that as we increase the value

of n, the value of the lower bound of concurrence is also

improved. So, it would be interesting to find out the

value of the lower bound of concurrence for indefinite

large n. We calculate the lower bound of concurrence of

ρB for large n and usingCorollary−3, it can be estimated as

C(ρB) ≥ φ(ρB) = 0.107058 (61)
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Example-2: Let us consider the two qutrit, non-full rank

BES given by [43]

ρi(γ) = γ|ψi〉〈ψi|+ (1− γ)ρB, 1 ≤ i ≤ 5 (62)

where ρB, |ψi〉 are defined in (55) and (56) and γ ∈ [0, 1].
The state ρi(γ) satisfy the range criteria. For any

i(1 ≤ i ≤ 5), the PPT states ρi(γ) are bound entan-

gled if and only if 0 ≤ γ < 1
5 . ρi(γ) represent separable

states for 1
5 ≤ γ ≤ 1.

After simple calculations, we find that our witness operator

Wn identify the states ρi(γ), 1 ≤ i ≤ 5 given in (62) as

bound entangled in the region 0 ≤ γ ≤ 0.0635994, for any

n ∈ N. Further, for sufficiently large value of n, the witness

operatorWn detect the state described by the density operator

ρi(γ), 1 ≤ i ≤ 5 as the matrix realignment criteria in the

same range of γ.

When 0 ≤ γ ≤ 0.0635994, our derived lower bound of the

concurrence of the state ρi(γ), 1 ≤ i ≤ 5 gives better lower

bound in comparison to the Albeverio et.al. lower bound of

concurrence. This has been shown in Figure-3.

0.00 0��� ���� 0.03 0.04 0.05 0.06
Λ

�	
�

0.04

0.06

0.08

���

����
Lower bound of concurrence in the s���� ρi(Λ)

ΦW(2)(ρi(Λ))

ΦW(3)
(ρi(Λ))

ϕ(ρi(Λ))

Cm��(ρi(Λ))

FIG. 3: Our lower bound ΦW(n)
(ρi(γ)), is represented by the solid

curves, in blue (n = 2), green(n = 3). One must observe that for

n > 3, the bound is slightly less than φ(ρi(γ)) and finally converges

to it, i.e., to the red curve, as n is increased. The dotted curve repre-

sents Cmin(ρi(γ)), i.e., the normalized lower bound concurrence of

the state ρi(γ) given by (35).

Example-3: Let us again recall a class of bipartite quantum

state ρα for 3 < α ≤ 4, which is given by [41]

ρα =
2

7
|ψ+〉〈ψ+|+ α

7
σ+ +

5− α

7
σ−, 3 < α ≤ 4 (63)

where |ψ+〉 = 1√
3
(|00〉+ |11〉+ |22〉) and

σ+ =
1

3
(|01〉〈01|+ |12〉〈12|+ |20〉〈20|) (64)

σ− =
1

3
(|10〉〈10|+ |21〉〈21|+ |02〉〈02|) (65)

The state ρα represents BES when 3 < α ≤ 4. One can check

that the marginals of ρα are maximally mixed and kρα
> 0

for 3 < α ≤ 4. We note that the BES of this family are

not detected by the witness operatorsW o, which is defined in

(25).

To detect the state ρα, let us construct the witness operator

Wn with the data given by

kρα
= −64

27
+

9

7

(

1 +
5− α

21

)3
(

1 +
α

21

)3

,

T r[ρTB

α ρRα ] =
2

21
, rank(ρRα ) = 9,

Λmax(ρ
TB

α ) =
1

21

√

33

2
− 5α+ 5α2 +

5

2

√

41− 20α+ 4α2,

‖ρRα‖1 =
1

21
(19 + 2

√

19− 15α+ 3α2),

‖ρRα‖2 =

√

73

441
+

1

882
(76− 60α+ 12α2) (66)

The range of the parameter α for which Tr(W(n)ρα) <
0, n = 1 to 5 is given in Table III. It shows that as the

value of n increases, more and more BES are detected by the

witness operatorW(n).

The state described by ρα for 3 < α ≤ 4

n The range of α for

which Tr(W(n)ρα) <

0

ρα detected by the wit-

ness operator W(n)

1 3.7 < α ≤ 4 BES detected by W(1)

2 3.11 < α ≤ 4 BES detected by W(2)

3 3.01 < α ≤ 4 BES detected by W(3)

4 3.0025 < α ≤ 4 BES detected by W(4)

5 3.0004 < α ≤ 4 BES detected by W(5)

TABLE III: Detection of BES with the witness operator Wn for dif-

ferent n and in the range 3 < α ≤ 4

The witness operatorWn not only detect the BES ρα but also

estimate the lower bound Φn(ρα) of the concurrence of ρα
when 3 < α ≤ 4. It can be easily shown that the value of

Φn(ρα) improves as we increase the value of n. Thus, for

large n, the lower bound of the concurrence φ(ρα) is given by

φ(ρα) =
−1 +

√
19− 15α+ 3α2

√
111− 30α+ 6α2

(67)

Again, the normalized lower bound Cmin(ρα) of the concur-

rence of ρα can be calculated by the prescription given in [11]

Cmin(ρα) =
1

21
(
√

3α2 − 15α+ 19− 1) (68)

We then compare the value of φ(ρα) given in (67) with the

Albeverio et.al. lower bound given in (68). The comparison is

shown in the Figure-4 and it can be concluded that C(ρα) ≥
φ(ρα) ≥ Cmin(ρα) where 3 < α ≤ 4.

Example-4: Let us consider another family of BES de-



10

ϕ(ρα)

Cmin(ρα)

3.0 3�� 3.4 3.6 3.8 4.0
α

0.05

����

 !"#

$%&'
Lower bound of concurrence in the B) *+,-. ρα

FIG. 4: The dotted curve represents Cmin(ρα) and the solid red

curve represents the limiting value of our bound, i.e., φ(ρα) in the

PPT entangled region 3 < α ≤ 4. Our bound varies from 0 (at

α = 3) to 0.176 (at α = 4) which gives a better estimate of the

lower bound of concurrence as compared to Cmin(ρα) which varies

from 0 (at α = 3) to 0.078 (at α = 4).

scribed by the density operator ρa, which is given by [44]

ρa =
1

8a+ 1

































a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1
2 (1 + a) 0 1

2

√
1− a2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0 1
2

√
1− a2 0 1

2 (1 + a)

































(69)

where 0 ≤ a ≤ 1. The state ρa is separable when a = 0 and

1.

It is known that the density matrix ρa represents a family of

BES for 0 < a < 1 [44]. Further, it may be noted that the

eigenvalues of the realigned matrix ρRa of the state ρa and

that of the partial transpose of the realigned matrix of ρa,

i.e.,(ρRa )
TB , are real and non-negative.

In Table-IV, we have shown that there exist different witness

operators from the family of witness operators Wn that can

detect BES from the family of states described by the density

operator ρa for different ranges of the parameter a.

Next, our task is to estimate the lower bound of the concur-

rence of the state ρa, 0 < a < 1. We first calculate the

lower bound ΦW(n)
(ρa) of the concurrence and then compare

it with the lower bound Cmin(ρa) given in (35). The com-

parison is shown in Figure-5 and we find that there exist a

critical value of n, say n1 such that for n ≥ n1, the quan-

tity ΦW(n)
(ρa) gives better lower bound of the concurrence

than Cmin(ρa). Also, from Corollary − 3, we know that

ΦW(n)
(ρa) → φ(ρa), as n → ∞, so we obtained the in-

equality for the state ρa, 0 < a < 1

C(ρa) ≥ φ(ρa) ≥ Cmin(ρa) (70)

The state ρa, 0 < a < 1

n The range of the pa-

rameter a for which

Tr(W(n)ρa) < 0

ρa detected by the wit-

ness operator W(n)

1 Does not exist ρa is not detected by

W(1)

2 0 < a < 0.016 BES detected by W(2)

3 0 < a < 0.62 BES detected by W(3)

4 0 < a < 0.951 BES detected by W(4)

5 0 < a < 0.9932 BES detected by W(5)

6 0 < a < 0.999 BES detected by W(6)

7 0 < a < 0.99987 BES detected by W(7)

8 0 < a < 0.99998 BES detected by W(8)

TABLE IV: Detection of BES in the range 0 < a < 1

0.0 /14 0.4 0.6 0.8 567
a

89:;<

=>?@A

0.003

0.004

Lower bound of concurrence in the CDEFG ρa

ΦWH3I JρaK

ΦWL4M NρaO

ΦWP5Q RρaS

ϕTρaU

CminVρaW

FIG. 5: Our lower bound ΦW(n)
(ρa), is represented by the solid

curves, in blue (n = 3), green(n = 4), brown (n = 5). One may

note here that for n > 5, the bound converges to the red curve which

represents φ(ρa). The dotted curve represents Cmin(ρa), i.e., the

normalized lower bound concurrence of ρa given by (35).

Example-5: Let us consider a 4 ⊗ 4 dimensional BES

ρ(p,q) given by [45]

ρ(p,q) = p

4
∑

i=1

|ωi〉〈ωi|+ q

6
∑

i=5

|ωi〉〈ωi| (71)

where p and q are non-negative real numbers and 4p+2q = 1.

The pure states {|ωi〉}6i=1 are defined as follows:

|ω1〉 =
1√
2
(|01〉+ |23〉)

|ω2〉 =
1√
2
(|10〉+ |32〉)

|ω3〉 =
1√
2
(|11〉+ |22〉)

|ω4〉 =
1√
2
(|00〉 − |33〉)

|ω5〉 =
1

2
(|03〉+ |12〉) + |21〉√

2

|ω6〉 =
1

2
(−|03〉+ |12〉) + |30〉√

2
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The state ρ(p,q) becomes invariant under partial transpo-

sition when p = q√
2

which implies that ρ(p,q) is a PPT

state for q =
√
2−1
2 ≡ q1 and p = 1−2q

4 ≡ p1. Since

‖(ρ(p1,q1))R‖1 = 1.08579, which is greater than 1, so by

matrix realignment criteria one can say that ρ(p1,q1) is a PPT

entangled state. Note that for this BES, the realigned matrix

(ρ(p1,q1))R is hermitian and so is ((ρ(p1,q1))R)TB . The wit-

ness operator W o defined in (25) fails to detect this state. A

simple calculation shows that ρ(p1,q1) is detected by our wit-

ness operatorW(n) for all n, i.e.,

Tr(W(n)ρ
(p1,q1)) = G < 0, ∀ n (72)

where G = 4
3









(

3

2
− 1√

2

)(

7

128
(−17 + 13

√
2)

)n

+
1

8
(−2 +

√
2)









.

Let us see now how efficiently, we estimate the lower bound of

concurrence with the witness operator Wn. The lower bound

ΦW(n)
(ρ(p1,q1)) of the concurrence of the state ρ(p1,q1) is es-

timated in Table-V.

4⊗ 4 bound entangled state ρ(p1,q1)

n ΦW(n)
(ρ) Cmin(ρ

(p1,q1))

1 0.01757 0.0285955

2 0.0915681 0.0285955

3 0.0971719 0.0285955

4 0.0975963 0.0285955

5 0.0976284 0.0285955

TABLE V: Comparison of Cmin with our lower bound of concur-

rence ΦW(n)
, for n = 1 to 5.

We then verified the following relation, for n ≥ 1

C(ρ(p1,q1)) ≥ ΦW(n)
(ρ(p1,q1)) ≥ Cmin(ρ

(p1,q1)) (73)

For sufficiently large value of n, the lower bound of the

concurrence of the state ρ(p1,q1) is 0.0976311, which is again

much better than Cmin(ρ).

VI. CONCLUSION

To summarize, we have constructed different witness op-

erators to detect NPTES and PPTES. Our main contribution

in this work is that the constructed witness operator is used

to improve the lower bound of the concurrence for any arbi-

trary entangled state in d1⊗d2(d1 ≤ d2) dimensional system.

In particular, our result will be useful to estimate the lower

bound of the concurrence of the BES in higher dimensional

systems. This study is important because the exact expression

of the concurrence for higher dimensional entangled states is

not known and thus one has to depend on the lower bound of

it. Also, the witness operator W(n) defined in (30) is proved

to be very useful in detecting not only the NPTES but also

in the detection of many BES. Here we have illustrated the

above facts with a few examples but one may use W(n) to de-

tect other BES and their lower bound of the concurrence can

also be estimated.
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