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Abstract
The possibility of interaction-free measurements and counterfactual computations is
a striking feature of quantum mechanics pointed out around 20 years ago. We have
designed simple quantum circuits that realize both phenomena in real 5-qubit, 15-qubit
and 20-qubit IBM quantum computers. In particular, counterfactual computation in
its simplest form (Jozsa protocol) cannot be directly implemented in present quantum
computers, requiring the design of a modified quantum circuit. The results are in gen-
eral close to the theoretical expectations. For the larger circuits (with numerous gates
and consequently larger errors), we implement a simple error mitigation procedure
which improve appreciably the performance.

1 Introduction

A fascinating feature of quantum mechanics is the possibility of realizing interaction-
freemeasurements, inwhichnon-trivial information about a system is obtainedwithout
disturbing it. They are also called counterfactual, to highlight the fact that one is
exploring “whatwould have happened if…”,without actually happening. This concept
was first introduced by Elitzur and Vaidam [1] and experimentally demonstrated by
Kwiat et al. [2].

Specifically, the original idea of the gedanken experiment was to select a bomb
(without destroying it) from a supply of bombs (some of which are duds) that would
explode when detonated by a photon impacting its sensor (the duds have no sensor),
an impossible task on classical grounds. To that end, Elitzur and Vaidam conceived
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Fig. 1 Elitzur and Vaidman
bomb tester.

a devise consisting of a Mach–Zehnder interferometer, placing the bomb in one of
the arms, Fig. 1. Then a single photon is emitted (from point A in Fig. 1), entering a
superposition after passing through the first beam splitter. In the absence of bomb, or
if the bomb is a dud, the two paths of the photon interfere at the last semi-transparent
mirror in a constructive (destructive) way along the direction towards detector C (D).
Thus, the photon ends up at C. However, if the bomb sensor works, it acts as a mea-
suring device. Half of the times the photon will collapse at the bomb, which would
explode. The other half the photon collapses at the upper arm. Since the superposi-
tion is destroyed, the surviving photon will end up at detectors C and D with equal
probability. In other words, if the bomb works (does not work), there is a 25% (0%)
probability that the photon arrives at detector D. In that case, the bomb is selected
without any damage.

Later, Jozsa, andMitchison and Jozsa [3,4] applied this idea to show the theoretical
possibility of counterfactual computations, i.e. instances in which a (simple) com-
putation is realized with the computer switched off. They offer a particularly simple
example of this. Suppose that the computer (more realistically, a logic gate) imple-
ments a 1-bit to 1-bit function, fr (unknown to us), which acts on the bit 0 as fr (0) = r
(with r = 0 or 1), and we wish to determine the value of r without actually switching
on the gate. The relevant part of the system is described by two qubits, |ab〉. The
first one acts as the switch that controls the computer: a = 0 (1) for the computer
switched off (on). The second one is the register qubit for the input/output. Before
the calculation the system is at the initial state |10〉 (|00〉) if the computer is turned
on (off). Then, after the time needed for the calculation the state becomes |1r〉 if the
computer was switched on, or it remains unchanged, |00〉, if it was switched off.

The protocol for a counterfactual computation devised by Jozsa [3] gives the possi-
bility to obtain the result of the calculation when this is r = 1 without ever switching
on the computer:

1. Start with initial state

|ψin〉 = |00〉 , (1)

i.e. with the “computer” switched off and the input at 0.
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2. Perform a unitary transformation in the switch qubit, rotating it an angle θ = π
2N .

The new state becomes

|ψ1〉 = cos θ |00〉 + sin θ |10〉 , (2)

i.e. the switch is in an off–on superposition.
3. Let the system to evolve a time long enough for the calculation to be performed in

the computer. The state becomes

|ψ ′
1〉 = cos θ |00〉 + sin θ |1r〉 (3)

Note that for r = 0, |ψ ′
1〉 = |ψ1〉.

4. Measure the second qubit in the computational basis. If r = 0, the result of the
measurement is “0” with probability 1, and the state remains unchanged, i.e. |ψ1〉.
If r = 1, there is a cos2 θ (sin2 θ ) chance that the result is 0 (1); then, the state of
the system collapses into |00〉 (|11〉).
Note that, for r = 1, if the result of the previous measurement were 1 the computer
has been switched on, and themethod has failed (thoughwe have learnt that r = 1).
If it was 0, the computer remains switched off.

5. Repeat steps 2–4 N times in total. If r = 1, there is a global probability (cos2 θ)N

that the final state is |00〉; if r = 0, at each iteration the state rotates an angle θ , so
at the end of the process it becomes cos(Nθ)|00〉 + sin(Nθ)|10〉 = |10〉.

6. Measure the first qubit. If r = 0, the measurement will yield 1 with probability 1.
If r = 1, it will yield 0.

Therefore, if r = 1 there is a global probability (cos2 θ)N , which tends to 1 for large
N , to determine the result of the computation with the computer switched off, i.e. in a
counterfactualway. In contrast, if r = 0, the computer has been switched on.Mitchison
and Jozsa have argued that in any quantum protocol the sum of the probabilities to
get both r = 0 and r = 1 in a counterfactual way cannot be larger than 1; so, this
example, in the large N limit, saturates the theoretical bound1.

Note that the Jozsa algorithm is remarkably simple and clear, but it cannot be
directly implemented in a real quantum computer. The reason is that, after measuring
the second qubit in step 4, the qubit must be we reused it in the next steps, something
not feasible at the moment.

The purpose of this work is to design simple quantum circuits that perform
interaction-free measurements and counterfactual computations (in particular, the
Jozsa algorithm), and can be implemented in real quantum computers. We show this
by running the circuits in the quantum computers of IBM Quantum Experience.

Several other experimental studies of counterfactual computations exist in the lit-
erature, including not only counterfactual theoretical computations [8] similar to the
one addressed in this work, but also more practical applications as tests for presence
or absence of objects [9], or even the possibility for imaging objects [10], as well as
quantum information transfer without transmission of physical particles [11,12] and

1 The Mitchison and Jozsa bound has been discussed in refs. [5–7].
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applications to electron microscopy [13,14]. It is worth noting that all the above stud-
ies are performed with dedicated experimental set-ups, while our work makes use of
general-purpose quantum computers instead.

The quantum computers used in this work are: “ibmqx2”, “vigo” and “ourense”,
with 5 qubits each, as well as “melbourne” (16 qubits) and “johannesburg” (20 qubits).
They all have different performances and degrees of inter-qubit connectivity, the latter
being determined by their different architectures. Among the above 5-qubit comput-
ers, ibmqx2 is the one offering more connectivity; however, in terms of performance
of gates the best one is ourense, as measured for example according to the average
single-qubit error rate, ε1q , which was around 3 · 10−4 at the time we did the compu-
tation (almost twice as good as the rest). On the other hand, ourense shows a worse
performance concerning readouts, see the discussion in Sect. 4. Regarding the larger
backends, johannesburg is better than melbourne in terms of both connectivity and
performance, having ε1q ∼ 4 · 10−4, around four times better than melbourne. This
fact will translate, in general, in probability outcomes closer to the theoretical value
for johannesburg, with respect to melbourne.

2 Interaction-freemeasurements in a quantum computer

In ref. [15], Das et al. have designed a quantum circuit to somehow mimic the archi-
tecture of the Elitzur and Vaidman bomb tester idea (for earlier work in the subject
see Refs. [16,17]), representing the photon direction by a pair of qubits and using
combinations of gates to represent the beam splitters and mirrors involved in the
Mach–Zehnder interferometer, in addition to those to mimic the bomb. Although the
circuit may be a fair representation of the quantum bomb tester, the proliferation of
gates is expected to induce large deviations from the theoretical result when the circuit
is ran in a real quantum computer2.

On the other hand, it is in fact quite easy to implement theElitzur andVaidman bomb
tester idea by means of the simple quantum circuit of Fig. 2. The bomb is represented
by a CNOT gate (which plays the role of the sensor) followed by a measurement
unit, which represents the bomb explosion when the result is 1. The control qubit, q0,
corresponds to the switch of (the sensor of) the bomb: |0〉 switched off, |1〉 switched
on, as it actually happens in a CNOT gate. The incoming photon is represented by the
target qubit, q1, in the state |0〉. If the sensor can “detect the photon”, i.e. the CNOT
gate is working properly, the state of q1 changes to |1〉, producing 1 in the measuring
unit (explosion).

Let us assume first that the bomb is a dud, i.e. the CNOT gate is fake and does not
act in any way, independently of the state of the switch. Then, the first U2(0,0) gate
prepares the switch state in an on–off superposition (1/

√
2)(|0〉 + |1〉). (A Hadamard

gate would do the same job.) It plays a role similar to the beam splitter in the Mach–
Zehnder interferometer. For its part, the state of q1 does not change at any stage, as the
CNOT gate does not work; so, the measurement of q1 gives always 0 (no explosion).

2 We have verified this in the ibmqx2 5-bit quantum computer [18]. Namely, about 14% of the outputs
(instead of the theoretical 0%) correspond to a state that has no interpretation in that context.
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Bomb
c

Fig. 2 Bomb tester circuit

The action of the second U2(0,0) gate is to drive the control qubit into the |1〉 state. Its
role is analogous to the second beam splitter in the Mach–Zehnder interferometer. At
the end, the measurement of q0 will always give 1. All this is reflected in the “theory”
line under the dud condition in Table 1, where the output is expected to be ’10’ in
100% of the cases.

Let us assume now that the bomb is not a dud. Then, the CNOT gate works prop-
erly and creates an entangled state, (1/

√
2)(|00〉 + |11〉), setting the bomb state in a

superposition: exploding and non-exploding. If the measurement of q1 yields 1 (50%
of times), the “bomb explodes” and the CNOT gate has been actually switched on.
If the result is 0 (50% of times), the bomb has not been activated and the switch
state, q0, also collapses at |0〉 (turned off). Then the second U2(0,0) gate drives q0 to
(1/

√
2)(|0〉 + |1〉). Thus, the measurement of q0 will give 0 and 1 with equal prob-

ability. In total, 25% of the times both the measurements of q1 and q0 yield 0. In
those cases, the bomb has not been activated, but the result differs from that of a dud,
which always gives 1 at q0. So a live bomb (CNOT gate) is selected without exploding
(activating) it in the test.

Table 1 shows the actual outcomes when the bomb tester circuits illustrated in Fig. 2
are run in several IBMquantum computers [18]. All of them show a good performance,
except ibmq_ourense and ibmq_melbourne. The results for the corresponding dud
circuits, also shown in the table, are close to the theoretical expectations. In all cases,
we have redesigned the circuit to take profit of the qubits and connections with higher
reliability. Every circuit has been run ten times at 8192 shots, in order to obtain
the corresponding mean and the (unbiased) sample standard deviation, which are the
values quoted inTable 1.These uncertainties capture not only the statistical fluctuations
inherent to the quantum nature of the measurement, but also some of the systematic
uncertainties associated with the specific performance of each quantum computer. The
latter turn out to be sizeable and depend notably upon the timing of the execution.

We have used the same procedure throughout the paper.

3 Counterfactual computations in a real quantum computer

Let us now build quantum circuits which implement simple counterfactual computa-
tions.

Note first that the circuit of Fig. 2 can be indeed regarded as a circuit of that kind.
Namely, the part of the circuit denoted as “bomb” can be viewed as an (unknown
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Table 1 Theoretical and actual mean probability outcomes (in %) of the bomb tester circuit of Fig. 2 and
the corresponding dud circuit run in several IBM quantum computers after ten runs of 8192 shots

00 10 01 11

Bomb Theory 25 25 25 25

ibmqx2 24.8±0.6 27.9 ± 1.4 22.50 ± 0.5 24.4 ± 0.4

Vigo 27.0±0.9 26.4 ± 0.5 26.8 ± 0.7 20.1 ± 0.3

Ourense 31.0±0.7 21.4 ± 0.5 28.5 ± 0.5 19.0 ± 0.7

Melbourne 27.9± 0.4 27.6 ± 0.6 22.7 ± 0.6 21.9 ± 0.9

Johannesburg 26.1±0.6 24.4 ± 0.4 25.3 ± 0.4 24.3 ± 0.4

Dud Theory 0 100 0 0

ibmqx2 2.6 ± 0.2 97.0±0.2 0.05 ± 0.02 0.4 ± 0.1

Vigo 4.6 ± 0.2 94.9±0.2 0.05 ± 0.03 0.5 ± 0.1

Ourense 2.7 ± 0.2 95.2±0.3 0.06 ± 0.03 2.0 ± 0.2

Melbourne 4.4 ± 0.3 95.0±0.3 0.06 ± 0.06 0.6 ± 0.2

Johannesburg 2.7 ± 0.2 95.8±1.1 0.14 ± 0.14 1.4 ± 1

Bold values shows that the output state which allows us to identify whether we are dealing with a Bomb
(without exploding) or with a Dud
The names vigo, ourense, etc. are a shortening for ibmq_vigo, ibmq_ourense, etc. The first line indicates
the possible outputs for the measurement of q0 and q1. The output 00 denotes the presence of an alive
bomb, without exploding it, whereas 10 is the only possible output if the bomb is a dud

to us) device that, when it is switched on (q0 at |1〉), performs the computation on
the input “0” (loaded in q1) yielding |10〉 → |1r〉 with r = 1. Then, there is a 25%
chance that in one run we determine that the output is indeed r = 1, without actually
switching on the device (measurements at q0 and q1 yielding 0). In addition, there is
50% chance (when the measurement of q1 gives 1) that the gate becomes turned on
and 25% chance (when q0 and q1 yield 1 and 0, respectively) that we cannot conclude
anything . This matches the performance of the Jozsa counterfactual computation [3]
(see steps 1–6 in section 1) for N = 2, but with fewer operations and measurements.

Let us now construct quantum circuits which accomplish the Jozsa procedure for
arbitrary N . Recall that the method works for the case r = 1, which is the one we are
going to implement. In that case, the switch and register states are perfectly represented
by the control and target qubits of a CNOT gate.

Remember that the Jozsa procedure requires to perform intermediate measure-
ments on q1, after which, if the measurement gives 0, the new state of the qubit is
reused as input; otherwise, the procedure halts. In principle, this can be realized by
the quantum circuit shown in Fig. 3, consisting of 2 qubits and N + 1 classical bits
or “cbits” which save the results of the intermediate measurements. (The circuit of
the figure corresponds to N = 3.) The U3(π/N , 0, 0) gate in the circuit performs the
θ−rotation, see Eq.(2), while the CNOT gate is the (supposedly unknown) device that
performs the calculation. Note that these gates are controlled by the classical bits and
are only activated if the previous measurement on q1 yielded 0. This requirement is
implemented by means of the IF operation, which is supported by the IBM quantum
computer simulator. Hence, in theory, whenever one intermediate measurement on q1
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c3

c2

c1

c0

Fig. 3 Circuit for the counterfactual computation proposed by Jozsa [3,4] and described in points 1-6 of
section I (with N = 3). The steps in the blue box are the ones to be repeated N times.

gives 1, all the subsequent ones must yield 1 as well. These events are to be discarded.
On the other hand, when all the cbits remain at 0, including the one associated with the
q0 measurement, this signals that the result of the computation is r = 1. As discussed
in section 1, this will occur with a probability (cos2 θ)N , with θ = π

2N . In contrast,
if the result of the computation were r = 0 (which corresponds to the same circuit
replacing the CNOT operations by the identity), then all the cbits would remain at
0 with probability 1, except the one associated with the measurement of q0, which
should become 1, an impossible output for r = 1.

Of course, when these circuits are run in the IBM quantum simulator, the results are
in perfect agreement with the expectations. Unfortunately, the IF operation is not yet
supported by the real IBMquantumcomputers. Still,we can create an equivalent circuit
by using N −1 auxiliary qubits (ancillas). Figure 4 shows such circuit for N = 3. The
procedure consists of replacing the q1 qubit, immediately after itsmeasurement, with a
new qubit prepared at |0〉 3. Since themeasurement destroys the possible entanglement
between q0 and q1, this is completely equivalent to reusing q1 when its measurement
yielded 0, and thus, it was reset at |0〉. At the end of the procedure, the shots where
all the cbits are at 0 are the successful ones. Again, this happens with a probability
(cos2 θ)N , with θ = π

2N . This procedure can also be viewed as a method where we
use N items of the device to be tested, all of them remaining switched off during the
operation.

Tables 2 and 3 show the theoretical and actual probabilities of success for the
circuit of Fig. 4 and several values of N , when run in various IBM quantum computers
with different architectures: ibmqx2, ibmq_vigo, ibmq_ourense, ibmq_melbourne and
ibmq_johannesburg [18]. The latter two, with 15 and 20 qubits, respectively, are the
only ones which can cope with the N > 4 circuits, since N + 1 qubits are required in
each case.Again, in all instanceswe have designed the circuit to take profit of the qubits
and connections with higher reliability. In addition, for each circuit, instead of using
the automatic transpiling provided by IBM, we have redesigned a “pre-transpiled”
circuit where all the connections among qubits actually exist in the corresponding
computer’s architecture. In this way, we not only improve the performance, but, more

3 This is equivalent to reset the q1 qubit at |0〉. However, that operation is not yet supported by the IBM
quantum computer.
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c3

c2

c1

c0

Fig. 4 Circuit for the counterfactual computation proposed by Jozsa, equivalent to that shown in Fig.3, but
using ancillas. This circuit can be run in actual quantum computers. The figure corresponds to N = 3, but
it can be trivially extrapolated to any N by repeating the steps in the blue box N times.

importantly, we also eliminate the instability in the results caused by the randomness
associated with the IBM’s automatic transpiling procedure.

4 Discussion and error mitigation

The results for N ≤ 4 shown in Table 2 are in agreement with theoretical expectations
within O(10%), which is fairly reasonable. As a general trend, for increasing N the
departure from the theoretical predictions also increases, as it is logically expected
from the accumulation of gates. In the limiting N = 2 case, all q-computers deliver
a result compatible with the theoretical one within ∼ 2 standard deviations, except
ibmq_ourense which shows a systematic excess.

The performance of the various computers is mainly determined by the errors in the
readouts, the errors in the performance of 1-qubit and 2-qubit gates, and the number
of gates. The latter grows with increasing N , not only because the theoretical circuit
gets bigger, but also as a consequence of the limited connectivity of the q-computers,
which requires the insertion of additional CNOTs to implement swaps. This problem
starts at N = 4 (N = 5 for ibmqx2) and increases geometrically with N . In this way,
the lack of accuracy of the CNOT gates (which is more severe than the one of 1-qubit
gates) becomes strongly amplified. Finally the errors in the readouts are important and
contribute substantially to the final error, especially for large N . Typically, the error
in the readout of a 0 is smaller than that of a 1. This is fortunate since, as explained
above, the successful shots for us are those with all-zero output. This is illustrated in
Table 4, which shows the measured probability of the all-one output in the various
q-computers for N ≤ 4 and the same circuits as in Table 2 . The theoretical probability,
sin2 π

2N (cos2 π
2N )N−1, is also indicated.

At the end of the day the combination of all these sources of error results in the
different performances of the various q-computers.
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Table 2 Theoretical and actual
mean probability outcomes (in
%) of the all-zero output for the
circuit of Fig. 4 and N ≤ 4, run
in several IBM quantum
computers

Theory N = 2 N = 3 N = 4
25.0 42.2 53.1

ibmqx2 24.3 ± 0.3 38.0 ± 0.5 47.8 ± 0.5

Vigo 24.8 ± 0.4 46.3 ± 1.4 52.0 ± 0.7

Ourense 32.4 ± 0.5 48.1 ± 0.4 53.3 ± 1.3

Melbourne 24.9 ± 0.3 35.2 ± 3.3 40.4 ± 4.2

Johannesburg 25.6 ± 0.6 38.5 ± 1.2 46.4 ± 0.6

Table 3 Theoretical and actual mean probability outcomes (in %) of the all-zero output for the circuit of
Fig. 4 and several values of N > 4, run in two different IBM quantum computers

Theory Melbourne Johannesburg

uncorr. corr. uncorr. corr.

N = 5 60.5 48.1 ± 0.8 50.2 ± 1.0 49.8 ± 0.5 56.1 ± 1.0

N = 6 66.0 49.6 ± 1.5 51.9 ± 1.6 47.2 ± 1.4 56.7 ± 3.1

N = 7 70.1 40.6 ± 2.5 44.6 ± 3.5 45.3 ± 3.0 54.5 ± 4.1

N = 8 73.3 30.4 ± 0.8 34.7 ± 1.0 45.3 ± 1.3 55.3 ± 1.9

N = 9 75.9 26.6 ± 0.5 31.3 ± 0.7 37.2 ± 3.8 55.6 ± 6.7

The “uncorr” (“corr”) columns correspond to the results before (after) implementing the simple error
correction procedure described in the text

For N > 4,we see fromTable 3, “uncorr.” columns, that the performance getsworse
than for N ≤ 4, as expected. In general, ibmq_johannesburg shows better results than
ibmq_melbourne. This is due to its richer connectivity, which allows to introduce
less additional swaps, and its better performance of individual gates, as mentioned
in Sect. 1. We have implemented here a simple error mitigation procedure, dealing
exclusively with the errors in the measurements. Namely, for each circuit we extract
the readout error simply by running in a row the same circuit with all gates removed
(hereafter referred to as the “calibration circuit”) and counting the final percentage
of 0...0 outputs, which in theory should be 100%. Then we apply the inverse of this
factor to the original result, obtaining the final corrected value quoted in the “corr.”
columns of Table 3. Note that this procedure is appropriate in this case since for N > 4
the theoretical probability to obtain an output with all 0s except one 1, e.g. 10...0, is
very small, namely (sin π

2N )4(cos π
2N )2(N−2). Hence, the total number of erroneous

counts in which that ’1’ is flipped, and thus, we read 00...0 is negligible. (The flip of
two or more 1s is even more unlikely.) Thus, all the relevant leaking of probability
due to errors in the measurement goes essentially from the 0...0 output to the others
and not the other way around and it is well estimated by the calibration circuit 4. The
uncertainties quoted in the “corr.” columns of Table 3 correspond to the combination
of those associated with the counterfactual and calibration circuits, according to the
standard uncertainty propagation techniques. After this error correction, the results

4 Alternatively, one can use the readout errors for the different qubits provided by the IBM Quantum
Experience platform everyday [18]. The result is similar albeit less accurate.
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Table 4 Same as Table 2, but for
the all-one output

Theory N = 2 N = 3 N = 4
25.0 14.1 9.1

ibmqx2 26.1 ± 0.4 14.2 ± 0.4 8.4 ± 0.6

Vigo 20.0 ± 0.5 10.3 ± 1.5 5.3 ± 0.2

Ourense 17.5 ± 0.6 7.9 ± 0.5 3.1 ± 0.6

Melbourne 16.4 ± 1.5 5.7 ± 0.7 3.6 ± 0.5

Johannesburg 20.3 ± 0.6 9.7 ± 0.4 5.1 ± 0.3

improve appreciably, at least for ibmq_johannesburg, even though for N > 7 they are
distant from the theoretical expectations.

5 Conclusions

A fascinating feature of quantum mechanics is the possibility of realizing interaction-
free (also called counterfactual) measurements, in which non-trivial information about
a system is obtained without disturbing it. The concept has been also applied to show
the theoretical possibility of counterfactual computations, inwhich a (typically simple)
computation is realized with the computer switched off.

In this paper, we have shown how to implement both effects in a real quantum
computer by using simple quantum circuits. More specifically, following the spirit
of the Elitzur–Vaidam experiment [1], the simple quantum circuit of Fig. 2 allows to
select a “live bomb” (represented by a live CNOT gate) without exploding (activating)
it with a 25% probability. We have run the circuit in several IBM quantum computers,
obtaining results close to the theoretical expectations.

Concerning counterfactual computations, we have designed quantum circuits that
implement the Jozsa protocol [3,4] for a simple counterfactual computation. This
protocol gives the possibility to obtain the result of a simple 1-bit to 1-bit computation,
namely f (0) = 1, without actually switching on the computer that performs it, with a
(cos2 θ)N probability, where N is the number of iterations in the protocol. As discussed
in the paper, the Jozsa protocol cannot be directly implemented in present quantum
computers, as it requires reusing of qubits after they are measured. So, for each value
of N we have designed a circuit (illustrated in Fig. 4 for N = 3) that implements such
protocol and can be ran in real IBM q-computers.

For N ≤ 4, the results are close to theoretical expectations in most of the q-
computers probed. As N increases, the departure from the theoretical predictions also
increases due to the accumulation of gates. For N > 5, we have implemented a simple
procedure whichmitigates the error due to themeasurement and provides a perceptible
improvement of the results.
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