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Abstract Recent developments in the index theory of discrete-time quantum walks allow us

to assign a certain well-defined supersymmetric index to a pair of a unitary time-evolution

* and a Z2-grading operator � satisfying the chiral symmetry condition *∗ = �*�. In this

paper, this index theory will be extended to encompass non-unitary *. The existing literature

for unitary* makes use of the indispensable assumption that* is essentially gapped; that is,

we require that the essential spectrum of* contains neither−1 nor +1 to define the associated

index. It turns out that this assumption is no longer necessary, if the given time-evolution *

is non-unitary. As a concrete example, we shall consider a well-known non-unitary quantum

walk model on the one-dimensional integer lattice, introduced by Mochizuki-Kim-Obuse.

Keywords Chiral symmetry, Non-unitary quantum walks, Supersymmetry, Witten index,

Split-step quantum walks

1 Introduction

The theory of (discrete-time) quantum walks has attracted enormous attention over the

past few decades. Despite its apparent simplicity, vast applications of this ubiquitous no-
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tion can be found across multiple disciplines. For instance, the physical utility of quan-

tum walks is especially confirmed for quantum algorithms [Gro96,ABN+01], photosyn-

thesis [MRLAG08,PLM+10], and topological insulators [KRBD10,OK11,Kit12a,AO13].

The long-time limit of the velocity distribution of the quantum walker, known as the

the weak limit theorem [Kon02,GJS04,Suz16], has been a particularly active theme of

rigorous mathematical research on quantum walks in the early years of the 21st century.

Other mathematical studies have taken various points of view: localisation [IKK04,Kon10,

Seg11,CGML12,FFS17,FFS18], quantum walks on graphs [AAKV01,Amb03,Por16], non-

linear analysis [MSS+18b,MSS+18a,MSS+19], unitary equivalence classes [Ohn16,Ohn17,

Ohn18,KNO20], time operators [ST19a,FMS+20], and continuous limit [MS19].

The present article is a continuation of rigorous mathematical studies of index theory

for chirally symmetric quantum walks from the perspective of supersymmetric quantum

mechanics [CGS+16,CGG+18,CGS+18,Suz19,ST19b,Mat20,CGWW20]. Such a quantum

walk can be naturally identified with a pair of a time-evolution operator * : H → H and a

unitary self-adjoint operator � : H → H , satisfying the chiral symmetry condition;

*∗
= �*�, (1)

where � gives aZ2-grading of the underlying state Hilbert spaceH = ker(�−1) ⊕ker(�+1).
The existing literature mentioned above allows us to assign a certain well-defined Fredholm

index, denoted by ind (�,*), to each abstract chirally symmetric quantum walk (�,*). Note

that this assignation of the Fredholm index requires * to be both essentially unitary (i.e.

* is a unitary element in the Calkin �∗-algebra) and essentially gapped (i.e. the essential

spectrum of *, denoted by fess (*), contains neither −1 nor +1).

The present article extends this index theory to encompass all those time-evolutions *

which fail to be essentially unitary. As a concrete example, we shall explicitly construct such

a time-evolution * with the property that it is essentially gapless, yet the associated index is

well-defined. To put this into context, let us consider the following time-evolution operator

on the state Hilbert space H := ℓ2 (Z,C2) of square-summable C2-valued sequences;

*mko := (�Φ�2(�
−1
Φ�1, (2)

where the operators (, �,Φ, �1, �2 are defined respectively as the following block-operator

matrices with respect to the orthogonal decomposition H = ℓ2 (Z,C) ⊕ ℓ2 (Z,C);

( :=

(
! 0

0 !−1

)
, � :=

(
4W 0

0 4−W ( ·+1)

)
, Φ :=

(
48q 0

0 4−8q ( ·+1)

)
, � 9 :=

(
cos \ 9 8 sin \ 9

8 sin \ 9 cos \ 9

)
,

where ! is the unitary bilateral left-shift operator defined by !Ψ := Ψ(· + 1) for each

Ψ ∈ ℓ2 (Z,C), and where we assume that four R-valued sequences W = (W (G))G∈Z,
q = (q(G))G∈Z, \1 = (\1 (G))G∈Z, \2 = (\2(G))G∈Z, all of which are identified with the

corresponding multiplication operators on ℓ2 (Z,C), admit the following two-sided limits:

b (★) := lim
G→★

b (G) ∈ R, b ∈ {W, q, \1, \2}, ★ = ±∞. (3)

This model is a natural generalisation of the homogenous model considered in [MKO16,

§III.A] with the time-evolution (2) being consistent with the experimental setup in [RBM+12]

(see [MKO16, §I-II] for details). Note that *mko is non-unitary, unless W is identically zero.

We shall explicitly construct a Z2-grading operator �mko : H → H in a highly non-

trivial fashion, so that (�mko,*mko) forms a chirally symmetric quantum walk. Complete

classification of the two topological invariants ind (�mko,*mko) and fess(*mko) can be found
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in this paper. In particular, we show that fess(*mko) is a subset of the union of the unit circle

T and the real line R, given explicitly by the following formula;

fess (*mko) = f(−∞) ∪ f(+∞),

where the sets f(±∞) ⊆ T∪R depend only on the two asymptopic values \1 (±∞), \2(±∞).
As in Fig. 1, it is shown in this paper that for each ★ = ±∞, there exists a well-defined

subinterval [W− (★), W+(★)] of [0,∞], which enables us to classify f(★) into 6 different

cases in total, depending on the sign B(★) of − sin \1(★) sin \2 (★).

Case I

|W (★) | ≤ W− (★)

Re

Im

Case II

W− (★) < |W (★) | < W+ (★)

Re

Im

Case III

W+ (★) ≤ |W (★) |

Re

Im

Fig. 1 The set f (★) ⊆ T ∪ R is classified into Cases I, II, III as above according to the size of |W (★) |. If

B (★) = 1 (resp. if B (★) = −1), then the black regions (resp. gray regions) in each of the above three cases

depict the subset f (★) . Therefore, there are 6 distinct cases in total. In particular, f (★) is a connected subset

of T ∪ R containing either −1 or +1, and so Case II is of significant importance.

The present article is organised as follows. §2.1 is a preliminary. In §2.2 we state the main

theorems of this paper, proofs of which will be completely deferred to §3. In particular, it is

shown in Theorem B that the 2-step chirally symmetric quantum walk (�mko ,*mko) can be nat-

urally generalised to another <-step chirally symmetric quantum walk, denoted by (�<,*<)
in this paper, where < can be any fixed non-zero integer. This new model also unifies the one-

dimesional unitary quantum walks in [ABN+01,Kon02,Suz16,KRBD10,KBF+12,Kit12b,

FFS17,FFS18,FFS19,ST19b,Mat20,Tan20]. Complete classification of the two topological

invariants ind (�<,*<) and fess(*<) can be collectively found in Theorem C. With the aid

of Theorems B to C, we show in §2.3 that the non-unitary time-evolution *mko can have a

well-defined index, yet it is essentially gapless (see Example 7 for details). This construction

is based upon Case II in Fig. 1. In §3, we prove the main theorems in §2. In particular, we

shall make use of an abstract form of the one-dimensional bulk-boundary correspondence to

fully classify ind (�<,*<). The paper concludes with the summary and discussion in §4.

2 Main theorems and discussion

Proofs of the main theorems of the current section can be collectively found in §3.
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2.1 Preliminaries

By operators we shall always mean everywhere-defined bounded operators between Hilbert

spaces throughout this paper. An operator - is said to be Fredholm, if ker -, ker -∗ are

finite-dimensional and if - has a closed range. If - is Fredholm, then the Fredholm index

of - is defined by

ind - := dim ker - − dim ker -∗.

If the domain and range of - are identical, then the (Fredholm) essential spectrum of - is

defined by fess(-) := {I ∈ C | - − I is not Fredholm}. In particular, we call - essentially

gapped, if −1, +1 ∉ fess(-) following [CGG+18,CGS+18].

A chiral pair on H is any pair (�,*) of a unitary self-adjoint operator � on H and an

operator* on H satisfying the chiral symmetry condition (1). Note that � gives a Z2-grading

of the underlying Hilbert space H = ker(� − 1) ⊕ ker(� + 1), and that � = 1 ⊕ (−1) with

respect to this orthogonal decomposition, where 1 denotes the identity operator on a Hilbert

space throughout this paper. The operator * can be written as * = ' + 8&, where ',& are

the real and imaginary parts of * respectively. More precisely, ',& admit the following

block-operator matrix representations:

' =

(
'1 0

0 '2

)
ker(�−1) ⊕ker(�+1)

, & =

(
0 &∗

0

&0 0

)
ker(�−1) ⊕ker(�+1)

, (4)

where the first equality (resp. second equality) follows from [�, '] := �' − '� = 0 (resp.

from {�,&} := �& +&� = 0).

Definition 1. Let (�,*) be a chiral pair on a Hilbert space H , and let & be the imaginary

part of * given by the second equality in (4). Then the chiral pair (�,*) is said to be

Fredholm, if 0 ∉ fess(&) (or, equivalently, &0 is Fredholm). In this case, the Witten index

of the Fredholm chiral pair (�,*) is defined by ind (�,*) := ind&0.

We shall make use of the following unitary invariance property of the Witten index

throughout this paper;

Lemma 2 (unitary invariance). Let (�,*), (� ′,* ′) be two chiral pairs on two Hilbert

spaces H ,H ′ respectively. If (�,*), (� ′,* ′) are unitarily equivalent in the sense that

(� ′,* ′) = (n∗�n, n∗*n) for some unitary operator n : H ′ → H , then (�,*) is Fredholm

if and only if so is (� ′,* ′). In this case, we have ind (�,*) = ind (� ′,* ′).

2.2 Main theorems

We are now in a position to introduce the main model of the present article;

Definition A. Let < be a fixed non-zero integer, and let (�<,*<) be the pair of the following

block-operator matrices with respect to ℓ2 (Z,C2) = ℓ2 (Z) ⊕ ℓ2 (Z) :

�< :=

(
? @!<

!−<@∗ −?(· − <)

)
, (A1)

*< :=

(
? @!<

!−<@∗ −?(· − <)

) (
4−2W ( ·+1)0 4W−W ( ·+1)1∗

4W−W ( ·+1)1 −42W0

)
, (A2)
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where we assume that three convergent R-valued sequences W = (W (G))G∈Z, ? =

(?(G))G∈Z, 0 = (0(G))G∈Z and two convergent C-valued sequences @ = (@(G))G∈Z , 1 =

(1(G))G∈Z satisfy the following conditions:

?(G)2 + |@(G) |2 = 1, G ∈ Z, (A3)

0(G)2 + |1(G) |2 = 1, G ∈ Z, (A4)

b (±∞) := lim
G→±∞

b (G), b ∈ {W, ?, 0, @, 1}, (A5)

\ (±∞) :=

{
arg @(±∞), @(±∞) ≠ 0,

0, @(±∞) = 0,
\ ′(±∞) :=

{
arg 1(±∞), 1(±∞) ≠ 0,

0, 1(±∞) = 0,
(A6)

where argF of a non-zero complex number F is uniquely defined by F = 48 arg F and

argF ∈ [0, 2c).

The pair (�<,*<) introduced in Definition A, where �< is unitary self-adjoint by (A3),

turns out to be a chiral pair. Indeed, *< can be uniquely written as *< = �<�, where � is

self-adjoint, and so

*∗
< = (�<�)∗ = �∗�∗

< = ��< = �2
<��< = �<*<�<,

where the second last equality follows from �2
< = 1. The chiral pair (�<,*<) unifies all of

the following existing models on the one-dimensional integer lattice Z :

• If < = 1 and if W is identically 0, then *1 is the unitary evolution of a split-step

quantum walk model considered in [KRBD10,KBF+12,Kit12b,FFS17,FFS18,FFS19,

ST19b,Mat20,Tan20]. In particular, if we set ? = 0, then this model becomes the usual

one-dimensional quantum walk model considered in [ABN+01,Kon02,Suz16].

• If < = 2, then *2 turns out to be equivalent to the non-unitary evolution operator *mko

given by (2) in sense of the following theorem.

Theorem B. Let *mko be given by (2), where we assume that four convergent R-valued

sequences W, q, \1, \2 admit the two-sided limits of the form (3). Then there exists a unitary

self-adjoint operator �mko on ℓ2 (Z,C2), such that (�mko,*mko) forms a chiral pair. Moreover,

the chiral pair (�mko,*mko) is unitarily equivalent to the chiral pair (�2,*2), where the

sequences ?, @, 0, 1 are defined respectively by

? := − sin \1(· +1), @ := −8 cos \1 (· +1), 0 := sin \2, 1 := 8 cos \24
8 (q+q ( ·+1)) . (B1)

Complete classification of the two topological invariants ind (�<,*<) and fess(*<) can

be collectively found in the following theorem;

Theorem C. If (�<,*<) is the chiral pair in Definition A, then we have the following two

assertions:

(i) Classification of the Witten index. For each ★ = ±∞, we let

?W (★) :=
?(★)√

?(★)2 + |@(★) |2 cosh2 (2W (★))
. (C1)
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Then the chiral pair (�<,*<) is Fredholm if and only if |?W (★) | ≠ |0(★) | for each

★ = ±∞. In this case, we have the following index formula;

ind (�<,*<)
<

=




0, |?W (−∞)| < |0(−∞)|, |?W (+∞)| < |0(+∞)|,
sgn ?(+∞), |?W (−∞)| < |0(−∞)|, |?W (+∞)| > |0(+∞)|,
−sgn ?(−∞), |?W (−∞)| > |0(−∞)|, |?W (+∞)| < |0(+∞)|,
sgn ?(+∞) − sgn ?(−∞), |?W (−∞)| > |0(−∞)|, |?W (+∞)| > |0(+∞)|,

(C2)

where the sign function sgn : R→ {−1, 1} is defined by

sgn G :=




G

|G | , G ≠ 0,

1, G = 0.
(C3)

(ii) Classification of the essential spectrum. For each ★ = ±∞, we let

B(★) := sgn (?(★)0(★)), (C4)

Λ± (★) := |?(★)0(★) | cosh(2W (★)) ± |@(★)1(★) |, (C5)

f(★) :=
⋃

=∈{−1,+1}

{(
G +

√
G2 − 1

)= ��� B(★)G ∈ [Λ− (★),Λ+ (★)]
}
. (C6)

Then the essential spectrum of *< can be written as fess(*<) = f(−∞) ∪f(+∞). Fur-

thermore, for each ★ = ±∞ there exists a well-defined closed interval [W− (★), W+ (★)] ⊆
[0,∞], such that the set f(★) admits the following further classification:

• Case I. If |W (★) | ≤ W− (★), then [Λ− (★),Λ+ (★)] ⊆ [−1, 1], and so f(★) ⊆ T.
• Case II. If W− (★) < |W (★) | < W+ (★), then [Λ− (★), 1] ⊆ [−1, 1] and [1,Λ+ (★)] ⊆

[1,∞], and so f(★) is a connected subset of T ∪ R containing B(★).
• Case III. If W+(★) ≤ |W (★) |, then [Λ− (★),Λ+ (★)] ⊆ [1,∞), and so f(★) ⊆ R.

More explicitly, for each ★ = ±∞ the closed interval [W− (★), W+(★)] is given by

W±(★) :=
1

2
cosh−1

(
1 ± |@(★)1(★) |
|?(★)0(★) |

)
, (C7)

where cosh−1 denotes the inverse function of [0,∞] ∋ G ↦−→ cosh G ∈ [1,∞] with

1/0 := ∞ by convention.

Explicit formulas for f(★) ⊆ T ∪ R in Cases I, II, III of Theorem C (ii) will be given

shortly in §2.3. This will allow us to classify f(★) into the 6 different cases as in Fig. 1.

Remark 3. If W is identically zero and if < = 1, then *1 is the unitary time-evolution

of a split-step quantum walk, and the formula for ind (�1,*1) can be found in [ST19b,

Mat20,Tan20]. Similarly, under the same assumption, Theorem C (ii) coincides with [ST19b,

Theorem 30] or [Tan20, Theorem B (ii)].

2.3 Discussion

Let us start with the following lemma;
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Lemma 4. Let (�,*) be an abstract chiral pair on a Hilbert space H , and let & be the

imaginary part of *. If * is essentially unitary (i.e. *∗* − 1,**∗ − 1 are compact), then

fess(&) =
{
I − I∗

28

���� I ∈ fess(*)
}
. (5)

That is, if * is essentially unitary, then the chiral pair (�,*) is Fredholm if and only if* is

essentially gapped in the sense of §2.1.

Proof. The formula (5) can be easily proved by using the spectral mapping theorem and

the trigonometric polynomial ?(I) := (I − I∗)/(28). We omit the proof, since an analogous

argument can be found in [Tan20, Lemma 3.6 ]. �

As in the following theorem, given an abstract chiral pair (�,*), where * may not

necessarily be essentially unitary, the essential gappedness of* is no longer an indispensable

assumption to ensure the Fredholmness of the chiral pair (�,*);

Theorem 5. With the notation introduced in Theorem C, suppose that the following hold

true for each ★ = ±∞ :

|?W (★) | ≠ |0(★) |, W−(★) < |W (★) | < W+ (★). (6)

Then (�<,*<) is Fredholm, yet *< fails to be essentially gapped.

Proof. Let us first start with further classification of fess(*) given by Theorem C (ii). We

consider the following R-valued function 6 defined on (−∞, −1] ∪ [1,∞);

6(G) := G +
√
G2 − 1, G ∈ (−∞,−1] ∪ [1,∞).

Fig. 2 shows the graphs of 6, 1/6;

−1 1

−1

1

G

H
H = 6(G)
H = 1

6(G)

Fig. 2 The black graph corresponds to 6, and the gray graph corresponds to 6−1.

Evidently, 6(G)6(−G)−1 = −1 for |G | ≥ 1. It follows that for each ★ = ±∞ the set f(★)
admits the following further classification;
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• Case I. If |W (★) | ≤ W− (★), then

f(★) =
{
{I ∈ T | Re I ∈ [Λ− (★),Λ+ (★)]}, B(★) = 1,

{I ∈ T | Re I ∈ [−Λ+ (★),−Λ− (★)]}, B(★) = −1.

• Case II. If W−(★) < |W (★) | < W+(★), then

f(★) =
{
{I ∈ T | Re I ∈ [Λ− (★), 1]} ∪ [6(Λ+ (★))−1, 6(Λ+ (★))], B(★) = 1,

{I ∈ T | Re I ∈ [−1, −Λ− (★)]} ∪ [−6(Λ+ (★)),−6(Λ+ (★))−1], B(★) = −1.

• Case III. If W+(★) ≤ |W (★) |, then

f(★) =
{
[6(Λ+ (★))−1, 6(Λ− (★))−1] ∪ [6(Λ− (★)), 6(Λ+ (★))], B(★) = 1,

[−6(Λ+ (★)),−6(Λ− (★))] ∪ [−6(Λ− (★))−1,−6(Λ+ (★))−1], B(★) = −1.

That is, f(★) is classified into the 6 different cases as in Fig. 1. It immediately follows from

Theorem C and (6) that (�<,*<) is Fredholm, and that fess(*<) = f(−∞) ∪ f(+∞). In

particular, for each ★ = ±∞ the set f(★) is classified as Case II. That is, each f(★) is a

connected subset of T ∪ R containing either −1 or +1, and so *< fails to be essentially

gapped. The claim follows. �

The current section concludes with the following two numerical examples:

Example 6. Let (�<,*<) be the chiral pair in Theorem C. Let

?0 := 0.2, 00 := 0.1, W0 := 0.4.

If 0(±∞) := ±00 and ?(±∞) := ±?0, then (C7) becomes

W− (−∞) = W− (+∞) = 1

2
cosh−1

©­­
«

1 −
√

1 − ?2
0

√
1 − 02

0

|?000 |
ª®®
¬
= 0.350396,

W+ (−∞) = W+ (+∞) = 1

2
cosh−1

©­­
«

1 +
√

1 − ?2
0

√
1 − 02

0

|?000 |
ª®®
¬
= 2.64283.

If we let W (±∞) := W0, then W− (±∞) < |W0 | < W+ (±∞). It follows from (C6) that fess (*<) =
f(−∞) = f(+∞), since B(−∞) = B(+∞) = 1. More precisely, the set fess(*<) = f(±∞)
is classified as Case II:

Λ± := |?000 | cosh(2W0) ±
√

1 − ?2
0

√
1 − 02

0
,

fess(*<) := {I ∈ T | Re I ∈ [Λ−, 1]} ∪ [6(Λ+)−1, 6(Λ+)].

The black region in Cases II of Fig. 1 depicts the connected subset fess (*<) of T ∪ R
containing 1. It follows that *< is not essentially gapped. Furthermore, (C1) becomes

|?W (±∞)| = |?0 |√
?2

0
+ (1 − ?0) cosh2 (2W0)

= 0.150876 > |0(±∞)| = 0.1.

It follows that (�<,*<) is Fredholm, and ind (�<,*<) = <(+1 − (−1)) = 2< by the index

formula (C2). That is, we have constructed the Fredholm chiral pair (�<,*<), in such a way

that *< fails to be essentially gapped, yet ind (�<,*<) = 2< is well-defined.
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Example 7. Let *mko be the non-unitary evolution operator given by (2), where we assume

the existence of the two-sided limits (3). We define ?, @, 0, 1 according to (B1), and Theo-

rem B asserts (�mko,*mko) ≃ (�2,*2), where ≃ denotes unitary equivalence of chiral pairs.

As in Example 6, we choose \1 (±∞), \2(±∞), W (±∞) in such a way that

?(±∞) = ±0.2, 0(±∞) = ±0.1, W (±∞) = 0.4.

It follows that (�mko,*mko) ≃ (�2,*2) is Fredholm, and ind (�mko,*mko) = 4. Furthermore,

*mko is essentially gapless.

3 Proofs of the main theorems

3.1 Unitary invariance of the Witten index (Lemma 2)

We prove the unitary invariance of the Witten index (Lemma 2). Note that the special case

of this invariance principle for unitary * can be found in [Suz19, Corollary 3.6], the proof

of which makes use of a spectral mapping theorem for chirally symmetric unitary operators

[SS16,SS19]. We give the following direct proof instead;

Proof of Lemma 2. Let (�,*), (� ′,* ′) be two unitarily equivalent chiral pairs on a Hilbert

space H . That is, there exists a unitary operator n on H , such that (� ′,* ′) = (n∗�n, n∗*n).
Let H± := ker(� ∓ 1), and let H ′

± := ker(� ′ ∓ 1). We may assume that the operator n admits

the following block-operator matrix representation;

n =

(
n+ n−+
n+− n−

)
,

n+ : H ′
+ → H+, n−+ : H ′

− → H+,

n+− : H ′
+ → H−, n− : H ′

− → H−.

Recall that the operators *,* ′ admit the following block-operator matrix representations

respectively according to §2.1:

* =

(
'1 8&∗

0

8&0 '2

)
H+⊕H−

, * ′
=

(
'′

1
8(& ′

0
)∗

8& ′
0

'′
2

)
H′

+⊕H′−

.

Since 0 = n� ′ − �n, where � = 1 ⊕ (−1) and � ′ = 1 ⊕ (−1), we obtain

0 =

(
n+ n−+
n+− n−

) (
1 0

0 −1

)
−
(
1 0

0 −1

) (
n+ n−+
n+− n−

)
=

(
n+ −n−+
n+− −n−

)
+
(
−n+ −n−+
n+− n−

)
=

(
0 −2n−+

2n+− 0

)
.

This implies n = n+ ⊕ n− : H ′
+ ⊕ H ′

− → H+ ⊕ H−, and so

n∗*n = (n∗11 ⊕ n∗−)* (n+ ⊕ n−) =
(
n∗+'1n+ 8n∗+&

∗
0
n−

8n∗−&0n+ n∗−'2n−

)
=

(
'′

1
8(& ′

0
)∗

8& ′
0

'′
2

)
.

Since & ′
0
= n∗−&0n+, where n+, n− are unitary, we have that &0 is Fredholm if and only if so

is & ′
0
. In this case, ind&0 = ind& ′

0
. The claim follows. �
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3.2 Unitary transform of the Mochizuki-Kim-Obuse model (Theorem B)

Proof of Theorem B. We shall make use of the fact that the operator ( commutes with any

diagonal block-operator matrices in this proof. We have

*mko�
−1
1 = ((�Φ)�2((�−1

Φ)

= (

(
4W+8q 0

0 4−W ( ·+1)−8q ( ·+1)

) (
cos \2 8 sin \2

8 sin \2 cos \2

)
(

(
4−W+8q 0

0 4W ( ·+1)−8q ( ·+1)

)

= (

(
4W+8q 0

0 4−W ( ·+1)−8q ( ·+1)

) (
cos \2 8 sin \2

8 sin \2 cos \2

) (
4−W ( ·+1)+8q ( ·+1) 0

0 4W−8q

)
(

= (

(
cos \24

W−W ( ·+1)+8 (q+q ( ·+1)) 8 sin \24
2W

8 sin \24
−2W ( ·+1) cos \24

W−W ( ·+1)−8 (q+q ( ·+1))

)
(,

where the third equality follows from !±1Ψ = Ψ(· ± 1) for any Ψ ∈ ℓ2 (Z). If f2 =

(
0 −8
8 0

)
denotes the second Pauli matrix, then f2

2
= 1, and so

*mko = ((f2)f2

(
cos \24

W−W ( ·+1)+8 (q+q ( ·+1)) 8 sin \24
2W

8 sin \24
−2W ( ·+1) cos \24

W−W ( ·+1)−8 (q+q ( ·+1))

)
((f2)(f2�1)

= ((f2)
(

sin \24
−2W ( ·+1) −8 cos \24

W−W ( ·+1)−8 (q+q ( ·+1))

8 cos \24
W−W ( ·+1)+8 (q+q ( ·+1)) − sin \24

2W

)
((f2)(f2�1)

= ((f2)
(
04−2W ( ·+1) 1∗4W−W ( ·+1)

14W−W ( ·+1) −042W

)
((f2)(f2�1).

If we let [ := (f2�1)((f2), where f2�1 and (f2 are unitary involutions, then

[∗*mko[ = ((f2)(f2�1)((f2)
(
04−2W ( ·+1) 1∗4W−W ( ·+1)

14W−W ( ·+1) −042W

)
((f2)(f2�1)(f2�1)((f2)

= ((f2)(f2�1)((f2)
(
04−2W ( ·+1) 1∗4W−W ( ·+1)

14W−W ( ·+1) −042W

)
.

It remains to compute ((f2)(f2�1)((f2);

((f2)(f2�1)((f2) =
(

0 −8!
8!−1 0

) (
sin \1 −8 cos \1

8 cos \1 − sin \1

) (
0 −8!

8!−1 0

)
= �2.

If we let �mko := [�2[
∗, then [∗�mko[ = �2. The claim follows. �

3.3 Classification of the topological invariants (Theorem C)

3.3.1 Strictly local operators

To prove Theorem C, let us first introduce one preliminary concept beforehand. With the

obvious orthogonal decomposition ℓ2 (Z,C=) =
⊕=

9=1 ℓ
2 (Z,C) in mind, we shall consider

an operator of the form

� =

©­­­«

∑:
H=−: 011 (H, ·)!H . . .

∑:
H=−: 01= (H, ·)!H

...
. . .

...∑:
H=−: 0=1 (H, ·)!H . . .

∑:
H=−: 0== (H, ·)!H

ª®®®
¬
, (7)
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where : is a finite natural number, and where each 08 9 (H, ·) = (08 9 (H, G))G∈Z is an arbitrary

bounded C-valued sequence viewed as a multiplication operator on ℓ2 (Z,C) =
⊕

G∈Z C.
An operator the form (7) will be referred to as a (one-dimensional) strictly local operator

following [CGS+18, §1.2].

Theorem 8 ([Tan20, Theorem A]). Let � be a strictly local operator of the form (7) with

the property that the following two-sided limits exist:

08 9 (H,±∞) := lim
G→±∞

08 9 (H, G) ∈ C, 8, 9 = 1, . . . , =, −: ≤ H ≤ :. (8)

Let

�(±∞) :=

©­­­
«

∑:
H=−: 011 (H,±∞)!H . . .

∑:
H=−: 01= (H,±∞)!H

...
. . .

...∑:
H=−: 0=1 (H,±∞)!H . . .

∑:
H=−: 0== (H,±∞)!H

ª®®®¬
, (9)

�̂(I,±∞) :=

©­­­
«

∑:
H=−: 011 (H,±∞)IH . . .

∑:
H=−: 01= (H, ±∞)IH

...
. . .

...∑:
H=−: 0=1 (H,±∞)IH . . .

∑:
H=−: 0== (H, ±∞)IH

ª®®®
¬
, I ∈ T. (10)

Then the following assertions hold true:

(i) We have that � is Fredholm if and only if T ∋ I ↦−→ det �̂(I,★) ∈ C is nowhere vanishing

on T for each ★ = ±∞. In this case, the Fredholm index of � is given by

ind (�) = wn
(
det �̂(·,+∞)

)
− wn

(
det �̂(·,−∞)

)
, (11)

where wn
(
det �̂(·,★)

)
denotes the winding number of the continuous function T ∋ I ↦−→

det �̂(I,★) ∈ C with respect to the origin.

(ii) The essential spectrum of � is given by

fess(�) = fess (�(−∞)) ∪ fess(�(+∞)),

fess(�(★)) =
⋃
I∈T

f( �̂(I,★)), ★ = ±∞.

Theorem 8 can be viewed as an abstract form of the one-dimensional bulk-boundary

correspondence [CGG+18, Corollary 4.3] (see [Tan20, §2] for details).

3.3.2 Proof of Theorem C (i)

Notation 9. We shall make use of the notation introduce in Definition A. For notational

simplicity, we use the following notation throughout §3.3.2;

(�,*) := (�<,*<), � :=

(
U1 V∗

V U2

)
:=

(
4−2W ( ·+1)0 4W−W ( ·+1)1∗

4W−W ( ·+1)1 −42W0

)
.

With the above notation, the operator * can be written as * = ��.
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In order to compute ind (�,*) we shall closely follow [Tan20, §3.2]. Note first that the

underlying Hilbert space ℓ2 (Z,C2) admits the following two orthogonal decompositions:

ℓ2 (Z,C2) = ker(� − 1) ⊕ ker(� + 1) = ℓ2 (Z) ⊕ ℓ2 (Z),

where ker(� ∓ 1) ≠ ℓ2 (Z). On one hand, the imaginary part & of * admits an off-diagonal

block operator matrix representation with respect to the former decomposition as in the

second equality of (4), where the Fredholm index of &0 : ker(� − 1) → ker(� + 1) is

by definition ind (�,*). On the other hand, the same operator & can not be expressed as

an off-diagonal block-operator matrix with respect to the latter decomposition. The unitary

invariance of the Witten index (Lemma 2) motivates us to construct a unitary operator

n : ℓ2 (Z) → ℓ2 (Z), in such a way that the imaginary part n∗&n of the new chiral pair

(n∗�n, n∗*n) become off-diagonal with respect to ℓ2 (Z) ⊕ ℓ2 (Z).

Lemma 10. Let ',& be the real and imaginary parts of * respectively. For each G ∈ Z, let

\ (G) be any real number satisfying @(G) = |@(G) |48\ (G) , and let ?± (G) :=
√

1 ± ?(G) . Let

−28& n0
:= ?+4

8\ !<V?+ − ?−V
∗!−<4−8\ ?− − |@ | (U1 − U2(· + <)), (12)

2'n1
:= ?−4

8\ !<V?+ + ?+V
∗!−<4−8\ ?− + ?2

+U1 + ?2
−U2 (· + <), (13)

2'n2
:= ?+4

8\ !<V?− + ?−V
∗!−<4−8\ ?+ − ?2

−U1 − ?2
+U2(· + <). (14)

Then there exists a unitary operator n on ℓ2 (Z,C2), such that the following block-operator

matrix representations hold true with respect to ℓ2 (Z,C2) = ℓ2 (Z) ⊕ ℓ2 (Z) :

n∗�n =

(
1 0

0 −1

)
, n∗*n =

(
'n1

8&∗
n0

8& n0
'n2

)
, n∗'n =

(
'n1

0

0 'n2

)
, n∗&n =

(
0 &∗

n0

& n0
0

)
,

Moreover, the chiral pair (�,*) is Fredholm if and only if & n0
is Fredholm. In this case,

ind (�,*) = ind& n0
. (15)

As we shall see below, the derivation of the index formula (15) only requires the bound-

edness of the given sequences W, ?, 0, @, 1, and so (A5) turns out to be redundant. Note,

however, that this assumption (A5) is necessary to prove the index formula (C2).

Proof. Note first that � can be written as

� =

(
? @!<

!−<@∗ −?(· − <)

)
=

(
1 0

0 !−<

) (
? @

@∗ −?

) (
1 0

0 !<

)
,

where the middle matrix on the right hand side of the second equality admits the following

diagonalisation. For each G ∈ Z we have

n0 (G)∗
(
?(G) @(G)
@(G)∗ −?(G)

)
n0 (G) =

(
1 0

0 −1

)
, n0 (G) :=

1
√

2

(
1 0

0 4−8\ (G)

) (
?+ (G) −?− (G)
?− (G) ?+ (G)

)
. (16)

Since n0 :=
⊕

G∈Z n0 (G) is unitary, the following operator is also unitary;

n :=

(
1 0

0 !−<

)
n0 =

1
√

2

(
1 0

0 !−<4−8\

) (
?+ −?−
?− ?+

)
.
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It follows from the first equality that

n∗�n = n∗0

(
1 0

0 !<

) (
1 0

0 !−<

) (
? @

@∗ −?

) (
1 0

0 !<

) (
1 0

0 !−<

)
n0 = n∗0

(
? @

@∗ −?

)
n0 =

(
1 0

0 −1

)
,

where the last equality follows from (16).

Given a bounded operator - on ℓ2 (Z,C2), we introduce the shorthand -n := n∗-n.
With this convention in mind, we have [�n , 'n ] = 0 = {�n , & n }, where �n = 1 ⊕ (−1) with

respect to ℓ2 (Z,C2) = ℓ2 (Z) ⊕ ℓ2 (Z). It follows that we have the following representations:

'n =

(
'′
n1

0

0 '′
n2

)
, & n =

(
0 (& ′

n0
)∗

& ′
n0

0

)
, *n = 'n + 8& n =

(
'′
n1

8(& ′
n0
)∗

8& ′
n0

'′
n2

)
. (17)

It remains to show that the three operators & ′
n0
, '′

n1
, '′

n2
introduced above coincide with the

ones defined by the formulas (12)-(14). Note that

2�n = �n (2*n ) =
(
1 0

0 −1

) (
2'′

n1
28(& ′

n0
)∗

28& ′
n0

2'′
n2

)
=

(
2'′

n1
28(& ′

n0
)∗

−28& ′
n0

−2'′
n2

)
. (18)

It remains to compute 2�n . We have

2n∗
(
U1 0

0 U2

)
n =

(
?2
+U1 + ?2

−U2 (· + <) −|@ | (U1 − U2 (· + <))
−|@ | (U1 − U2(· + <)) ?2

−U1 + ?2
+U2(· + <)

)
,

2n∗
(
0 V∗

V 0

)
n =

(
?−48\ !<V?+ + ?+V∗!−<4−8\ ?− −?−48\ !<V?− + ?+V∗!−<4−8\ ?+
?+48\ !<V?+ − ?−V∗!−<4−8\ ?− −?+48\ !<V?− − ?−V∗!−<4−8\ ?+

)
.

It follows from the above two equalities that

2�n = 2n∗
(
U1 0

0 U2

)
n + 2n∗

(
0 V∗

V 0

)
n =

(
2'n1

28&∗
n0

−28& n0
−2'n2

)
(19)

By comparing (18) with (19), we see that (17) also holds true without the superscript ′.
Note that ℓ2 (Z,C2) = ℓ2 (Z) ⊕ ℓ2 (Z) can be identified with the orthogonal sum ℓ2 (Z) ⊕

{0} ⊕ {0} ⊕ ℓ2 (Z) through the following unitary transform;

ℓ2 (Z,C2) ∋ (Ψ1,Ψ2) ↦−→ (Ψ1, 0, 0,Ψ2) ∈ ℓ2 (Z) ⊕ {0} ⊕ {0} ⊕ ℓ2 (Z).

It is then easy to show that the operator & n admits the following block-operator matrix

representations:

& n =

(
0 &∗

n0

& n0
0

)
ℓ2 (Z) ⊕ℓ2 (Z)

=

©­­­«

0 0 0 & n0

0 0 0 0

0 0 0 0

& n0
0 0 0

ª®®®
¬ℓ2 (Z) ⊕{0}⊕{0}⊕ℓ2(Z)

, (20)

where 0 denotes the zero operator of the form 0 : {0} → {0}, and where ℓ2 (Z) ⊕ {0} =

ker(�n −1) and {0}⊕ℓ2 (Z) = ker(�n +1).On the other hand, the imaginary part& n associated

with (�n ,*n ) admits the following off-diagonal block-operator matrix representation with

respect to ℓ2 (Z,C2) = ker(�n − 1) ⊕ ker(�n + 1) as in (4);

& =

(
0 (& ′′

n0
)∗

& ′′
n0

0

)
ker(�n −1) ⊕ker(�n +1)

=

(
0 (& ′′

n0
)∗

& ′′
n0

0

)
(ℓ2 (Z) ⊕{0}) ⊕ ( {0}⊕ℓ2 (Z))

. (21)
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It follows from (20)-(21) that & ′′
n0

is an off-diagonal block-operator matrix of the form;

& n0
=

(
0 0

& ′′
n0

0

)
.

Since 0 is a Fredholm operator of zero index, we have that & ′′
n0

is Fredholm if and only if

& n0
is Fredholm. In this case, we have ind& ′′

n0
= ind& n0

+ ind 0 = ind& n0
+ 0 = ind& n0

.

The claim follows from Lemma 2. �

It remains to compute the Fredholm index of the strictly local operator & n0
given by

(12), where \ = (\ (G))G∈Z can be any R-valued sequence satisfying @(G) = |@(G) |48\ (G) for

each G ∈ Z. Note that Theorem 8 (i) is not immediately applicable to this operator & n0
, since

it is not necessarily true that \ is convergent. More precisely, for each ★ = ±∞, if @(★) ≠ 0,

then we can explicitly construct \ in such a way that \ (★) = limG→★ \ (G) holds true. On the

other hand, if @(★) = 0, then the same conclusion cannot be drawn in general. In order to

overcome this hindrance, we shall closely follow [Tan20, Lemma 3.4];

Lemma 11. There exist two R-valued sequences \+ = (\+(G))G∈Z, \− = (\− (G))G∈Z, such

that
4−8\+ (−28& n0

)48\− = ?+?+ (· + <)V(· + <)48 (\−\++\− ( ·+<)) !<

−?−?− (· − <)V∗4−8 (\ ( ·−<)−\− ( ·−<)+\+)!−<

−|@ | (U1 − U2(· + <))48 (\−−\+) ,
(22)

where the three coefficients of the above strictly local operator have the following limits for

each ★ = ±∞ :

lim
G→★

(
?+ (G)?+ (G + <)V(G + <)48 (\ (G)−\+ (G)+\− (G+<))

)
= (1 + ?(★))1(★)48\ (★) , (23)

lim
G→★

(
?− (G)?− (G − <)V(G)∗4−8 (\ (G−<)−\− (G−<)+\+ (G))

)
= (1 − ?(★))1(★)∗4−8\ (★) , (24)

lim
G→★

(
|@(G) | (U1 (G) − U2 (G + <))48 (\− (G)−\+ (G))

)
= 2|@(★) |0(★) cosh(2W (★)). (25)

Proof. For each G ∈ Z we let

★(G) :=

{
+∞, G ≥ 0,

−∞, G < 0,
\±(G) :=

{
\ (G), ?(★(G)) = ±1,

0, ?(★(G)) ≠ ±1.

Note that (22) immediately follows from (12). We let

Θ1 := \ − \+ + \−(· + <), Θ2 := \ (· − <) − \−(· − <) + \+, Θ3 := \− − \+.

It suffices to prove the following equalities:

lim
G→★

(
?+ (G)?+ (G + <)48Θ1 (G)

)
= (1 + ?(★))48\ (★) , (26)

lim
G→★

(
?− (G)?− (G − <)4−8Θ2 (G)

)
= (1 − ?(★))4−8\ (★) , (27)

lim
G→★

(
|@(G) |48Θ3 (G)

)
= |@(★) |. (28)

Let★ = ±∞, and let G be any integer satisfying |G | > |< |. If |?(★) | < 1, then \+(G) = \−(G) =
0. In this case, (26)-(28) follow from the fact that as G → ★ we have Θ 9 (G) → \ (★) for

each 9 = 1, 2, and Θ3 (G) → 0. On the other hand, if |?(★) | = 1, then @(★) = 0, and so (28)
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becomes trivial. We need to check the following cases separately: ?(★) = −1 and ?(★) = +1.

If ?(★) = −1, then (26) holds trivially, and (27) follows from \−(G − <) = \ (G − <) and

\+(G) = 0 = \ (★), where the last equality follows from (A6). Similarly, if ?(★) = +1, then

(27) holds trivially, and (26) follows from \+(G) = \ (G) and \−(G + <) = 0 = \ (★). �

Since the Fredholm index is invariant under multiplication by invertible operators,

ind (4−8\+& n0
48\− ) = ind& n0

= ind (�,*).

We are now in a position to apply Theorem 8 (i) to � := 4−8\+& n0
48\− . Since the two-sided

limits of the coefficients of −28�n are given respectively by (23)-(25), we introduce the

following notation according to (10);

2(★) := |@(★) |0(★) cosh(2W (★)), (29)

−28 5 (I, ★) := (?(★) + 1)1(★)48\ (★) I< + (?(★) − 1)1(★)∗4−8\ (★) I−< − 22(★), (30)

where ★ = ±∞ and I ∈ T. It follows from Theorem 8 (i) that � = 4−8\+& n0
48\− is Fredholm

if and only if 5 (·,★) is nowhere vanishing on T for each ★ = ±∞. In this case, we have

ind (�,*) = ind � = wn( 5 (·,+∞)) − wn( 5 (·,−∞)), (31)

where the last equality is a special case of (11). It remains to compute the winding number

of 5 (·,★).

Lemma 12. Let �, � be as in Theorem C, and let ★ = ±∞. Let 5 (·,★) be defined by (30)-

(29), and let ?W (★) be defined by (C1). Then the image of T ∋ I ↦−→ 5 (I,★) ∈ C does not

contain the origin if and only if |?W (★) | ≠ |0(★) |. In this case, we have

wn( 5 (·, ★)) =
{
< · sgn ?(★), |?W (★) | > |0(★) |,
0, |?W (★) | < |0(★) |.

(32)

Proof. Let us first prove that the image of T ∋ I ↦−→ 5 (I,★) ∈ C does not contain the origin

if and only if |?(★)1(★) | ≠ |2(★) |, and

wn( 5 (·,★)) =
{
< · sgn ?(★), |?(★)1(★) | > |2(★) |,
0, |?(★)1(★) | < |2(★) |.

(33)

Let us consider the following function on R;

2� (B) := (|?(★)1(★) | + |1(★) |)48B + (|?(★)1(★) | − |1(★) |)4−8B

= 2|?(★)1(★) | cos B + 82|1(★) | sin B, B ∈ R.

Since ?(★) = sgn ?(★) |?(★) | and 1(★) = 48\
′ (★) |1(★) |, for each C ∈ [0, 2c] we have

−28 5 (48C , ★) + 22(★) = (?(★) + 1)1(★)48\ (★) 48<C + (?(★) − 1)1(★)∗4−8\ (★)4−8<C

= sgn ?(★) · 2� (sgn ?(★)(\ (★) + \ ′(★) + <C)).

It follows that −8 5 (48C , ★) = sgn ?(★) · � (sgn ?(★)(\ (★) + \ ′(★) + <C)) − 2(★) for each

C ∈ [0, 2c], where the constant −8 does not play any significant role in this proof. If

?(★)1(★) = 0, then the image of the function [0, 2c] ∋ C ↦−→ −8 5 (48C , ★) ∈ C coincides

with that of the vertical line segment [−1, 1] ∋ C ↦−→ −2(★) + 8C |1(★) | ∈ C passing
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through −2(★). That is, the image of 5 (·,★) does not contain the origin if and only if

|2(★) | ≠ 0 = |?(★)1(★) |, and in this case wn( 5 (·, ★)) = 0. This is a special case of (33).

On the other hand, if ?(★)1(★) ≠ 0, then the image of the curve [0, 2c] ∋ C ↦−→
−8 5 (48C ,★) ∈ C is the ellipse in Fig. 3 with < · sgn ?(★) being its winding number with

respect to the center −2(★) on the real axis;

−2 (★) − |? (★)1 (★) | −2 (★) + |? (★)1 (★) |−2 (★)
Re

Fig. 3 The above figure shows the image of the curve [0, 2c ] ∋ C ↦−→ −8 5 (48C , ★) ∈ C.

If |?(★)1(★) | > |2(★) |, then the origin is inside the interior of the ellipse, and so

wn( 5 (·, ★)) = wn(−8 5 (·, ★)) = sgn ?(★). If |?(★)1(★) | < |2(★) |, then the origin is inside

the exterior of the ellipse, and so wn( 5 (·,★)) = 0. Clearly, the ellipse −8 5 goes through the

origin if and only if |?(★)1(★) | = |2(★) |.
It remains to check that (32) coincides with (33). If the notation ≶ simultane-

ously denotes >,=, <, then |?(★)1(★) | ≶ |2(★) | if and only if ?(★)2 (1 − 0(★)2) ≶
|@(★) |20(★)2 cosh2 (2W (★)) if and only if ?(★)2 ≶ 0(★)2 (?(★)2 + |@(★) |2 cosh2 (2W (★)).
Rearranging the last expression gives |?W (★) | ≶ |0(★) |. The claim follows. �

Proof of Theorem C (i). The index formula (C2) immediately follows from (31) and (32). �

It might be possible to give another proof for the index formula (C2) by making use of the

recent developments of the scattering-theoretic techniques for discrete-time quantum walks

[Suz16,RST17,RST18,MSS+18b,Mor19,Wad20]. This possibility is briefly mentioned in

[ST19b, §6].

3.3.3 Proof of Theorem C (ii)

Proof of Theorem C (ii). Note first that*< is a strictly local operator of the following form;

*< =

(
?4−2W ( ·+1)0 + @!<4W−W ( ·+1)1 ?4W−W ( ·+1)1∗ − @!<42W0

!−<@∗4−2W ( ·+1)0 − ?(· − <)4W−W ( ·+1)1 !−<@∗4W−W ( ·+1)1∗ + ?(· − <)42W0

)
.

It follows from Theorem 8 (ii) that

fess (*<) = fess(*< (−∞)) ∪ fess(*< (+∞)),

fess (*< (★)) =
⋃
I∈T

f
(
*̂< (I,★)

)
, ★ = ±∞,
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where for each ★ = ±∞ and each I ∈ T the 2 × 2 matrices *< (★) and *̂< (I,★) are defined

respectively by:

*< (★) :=

(
@(★)1(★)!< + ?(★)0(★)4−2W (★) −(@(★)0(★)42W (★) !< − ?(★)1(★)∗)
@(★)∗0(★)4−2W (★)!−< − ?(★)1(★) @(★)∗1(★)∗!−< + ?(★)0(★)42W (★)

)
,

*̂< (I,★) :=

(
@(★)1(★)I< + ?(★)0(★)4−2W (★) −(@(★)0(★)42W (★) I< − ?(★)1(★)∗)
@(★)∗0(★)4−2W (★) I−< − ?(★)1(★) @(★)∗1(★)∗I−< + ?(★)0(★)42W (★)

)
.

Let ★ = ±∞ be fixed. It remains to compute f′(★) :=
⋃

C ∈[0,2c ] f
(
*̂< (48C , ★)

)
. We let

*̂< (48C , ★) =:

(
-1 (48C ) −.1 (48C )
.2 (48C ) -2 (48C )

)
, C ∈ [0, 2c].

We get the following characteristic equation;

det(*̂< (48C , ★) − _) = _2 − (-1 (48C ) + -2 (48C ))_ + -1 (48C )-2 (48C ) + .1 (48C ).2 (48C ). (34)

Since the produce @(★)1(★) can be written as @(★)1(★) = |@(★)1(★) |48 (\ (★)+\′ (★)) by (A6),

we obtain the following two equalities:

-1 (48C ) + -2 (48C ) = 2|@(★)1(★) | cos(\ (★) + \ ′(★) + <C) + 2?(★)0(★) cosh(2W (★)),
-1 (48C )-2 (48C ) + .1 (48C ).2 (48C ) = 1.

Then the characteristic equation (34) becomes

_2 − 2(?(★)0(★) cosh(2W (★)) + |@(★)1(★) | cos(\ (★) + \ ′(★) + <C))_ + 1 = 0. (35)

This equation motivates us to introduce the following notation;

Λ(★, B) := ?(★)0(★) cosh(2W (★)) + |@(★)1(★) |B, − 1 ≤ B ≤ 1,

_± (★, B) := Λ(★, B) ±
√
Λ(★, B)2 − 1, − 1 ≤ B ≤ 1,

Indeed, (35) becomes _2 − 2Λ(★, cos(\ (★) + \ ′(★) +<C))_ + 1 = 0 with the above notation,

and so f
(
*̂< (48C , ★)

)
is a finite set consisting only of _± (★, cos(\ (★) + \ ′(★) +<C)) for each

C ∈ [0, 2c]. We have

f′(★) =
⋃

C ∈[0,2c ]
f
(
*̂< (48C , ★)

)
=

⋃
B∈[−1,1]

{_± (★, B)} =
⋃

B∈[−1,1]
{_+ (★, B)±1},

where the second equality follows from the fact that [0, 2c] ∋ C ↦−→ cos(\ (★) + \ ′(★) +
<C) ∈ [−1, 1] is surjective and the last equality follows from _+ (★, C)_− (★, C) = 1 for each

C ∈ [0, 2c]. It follows that f′(★) coincides with the set f(★) given by (C6). Note first that

[Λ− (★),Λ+ (★)] ⊆ [−1,∞) follows from

−1 ≤ −|@(★)1(★) | ≤ |0(★)1(★) | cosh(2W (★)) − |@(★)1(★) | = Λ− (★) ≤ Λ+ (★).

If ?(★)0(★) = 0, then Λ+ (★) = |@(★)1(★) | ≤ 1. This is a special case of Case I, since

W−(★) = W+(★) = ∞ according to (C7). It remains to consider the case ?(★)0(★) ≠ 0. We

shall make use of the fact that the hyperbolic cosine is an even function throughout. It follows

from (C7) that

|?(★)0(★) | cosh(2W± (★)) = 1 ± |@(★)1(★) |. (36)
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Case I. If |W (★) | ≤ W− (★), then

Λ+ (★) ≤ |?(★)0(★) | cosh(2W− (★)) + |@(★)1(★) | = 1,

where the first inequality follows from cosh(2W (★)) ≤ cosh(2W− (★)) and the last equality

follows from (36). Thus [Λ− (★),Λ+ (★)] ⊆ [−1, 1].
Case II. If W− (★) < |W (★) | < W+(★), then it follows from (36) that Λ− (★) < 1 < Λ+ (★).

It follows that the interval [Λ− (★),Λ+ (★)] ⊆ [−1,∞) can be written as the following union;

[Λ− (★),Λ+ (★)] = [Λ− (★), 1] ∪ [1,Λ+ (★)].

Case III. If W+(★) ≤ |W (★) |. Then [Λ− (★),Λ+ (★)] ⊆ [1,∞) follows from

1 = |?(★)0(★) | cosh(2W+ (★)) − |@(★)1(★) | ≤ Λ− (★),

where the first equality follows from (36) and the last inequality follows from cosh(2W+ (★)) ≤
cosh(2W (★)). �

In the setting of 2-phase quantum walks, a typical computation of the essential spectrum

makes use of the discrete Fourier transform and Weyl’s criterion for the essential spectrum

(see, for example, [FFS17, Lemma 3.3]). Weyl’s criterion is applicable to, for example,

non-compact perturbations (see, for example, [SS17]), but its usage is restricted to normal

operators. This is why Weyl’s criterion is not suitable for Theorem C (ii).

4 Conclusion

4.1 Summary

The following is a brief summary of the present article. A chiral pair on a Hilbert space

H is by definition any pair (�,*) of a unitary self-adjoint operator � : H → H and a

bounded operator * : H → H satisfying the chiral symmetry condition (1). It is shown

in §2.1 that we can assign to each abstract chiral pair (�,*) the well-defined Witten index,

denoted by ind (�,*) in this paper. Note that this assignation of the Fredholm index is

a natural generalisation of the existing index theory [CGS+16,CGG+18,CGS+18,Suz19,

ST19b,Mat20] for essentially unitary *, where ind (�,*) is referred to as the symmetry

index in the first three papers.

A motivating example for this paper is the non-unitary time-evolution *mko defined by

(2), where we assume the existence of the two-sided limits as in (3). Recall that this evolution

operator is consistent with the experimental setup in [RBM+12]. It is shown in Theorem B

that the operator *mko forms a chiral pair with respect to the unitary self-adjoint operator

�mko := (f2�1(f2)�2 (f2�1(f2)∗, where f2 denotes the second Pauli matrix, and that the

chiral pair (�mko,*mko) can be naturally generalised to another chiral pair (�<,*<), where

< can be any fixed integer. This new model (�<,*<) also unifies several one-dimensional

unitary quantum walk models as in §2.2. Complete classification of the two associated

topological invariants ind (�<,*<) and fess(*<) can be collectively found in Theorem C.

Our classification of ind (�<,*<) makes use of an abstract form of the one-dimensional bulk-

boundary correspondence, the precise statement of which can be found in Theorem 8 (i).

Finally, it is shown in Lemma 4 that given an abstract chiral pair (�,*) with * being

essentially unitary, we have that ind (�,*) is a well-defined Fredholm index if and only if*

is essentially gapped in the sense that −1, +1 ∉ fess (*). It turns out that this characterisation
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does not hold true in general, if * fails to be essentially unitary. To put this into context, we

consider the non-unitary evolution *mko. It is shown in Example 7 that we can choose the

asymptotic values \1(±∞), \2 (±∞), W (±∞), in such a way that *mko is essentially gapless,

yet ind (�,*) is a well-defined non-zero integer.

4.2 Discussion

The main results of the current paper may stimulate further developments in the rigorous

mathematical studies of non-unitary discrete-time quantum walks. In particular, each of the

following specific topics is the subject of another paper in preparation.

4.2.1 Further spectral analysis of the Mochizuki-Kim-Obuse model

Complete classification of fess(*mko) is given in this paper. In particular, we show that

fess(*mko) is a subset of T ∪ R, and that it depends only on the asymptotic values

\1(±∞), \2(±∞), W (±∞). Note, however, that it is not known to the authors whether or

not the entire spectrum of *mko is also a subset of T ∪ R. Detailed spectral analysis of the

evolution-operator *mko may turn out to be difficult, partly because the discrete spectrum

of such a non-normal operator is in general laborious to characterise (see, for example,

[BC19, §III]). Note also that we expect the discrete spectrum to be non-stable under compact

perturbations unlike fess(*mko).

4.2.2 Topologically protected bound states

Let (�,*) be a chiral pair. If * is unitary, then the non-zero vectors in ker(* ∓ 1) can

be referred to as topologically protected bound states [KRBD10,KBF+12,Suz19,ST19b,

Mat20]. It is well-known that the Witten index ind (�,*) gives a lower bound for the

number of topologically protected bound states in the following precise sense (see, for

example, [Suz19, Theorem 3.4 (ii)]);

|ind (�,*) | ≤ dim ker(* − 1) + dim ker(* + 1), (37)

where the chiral pair (�,*) is assumed to be Fredholm. It follows that if ind (�,*) is non-

zero, then * has at least one topologically protected bound state. Whether or not an estimate

analogous to (37) holds true for non-unitary * is an open problem.
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