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It is well known that three-qubit system has two kinds of inequivalent genuine entangled classes under
stochastic local operation and classical communication (SLOCC). These classes are called as GHZ class and
W class. GHZ class proved to be a very useful class for different quantum information processing tasks such
as quantum teleportation, controlled quantum teleportation etc. In this work, we distribute pure three-qubit
states from GHZ class into different subclasses denoted by S1, S2, S3, S4 and show that the three-qubit states
either belong to S2 or S3 or S4 may be more efficient than the three-qubit state belong to S1. Thus, it is nec-
essary to discriminate the states belong to Si, i = 2, 3, 4 and the state belong to S1. To achieve this task, we
have constructed different witness operators that can classify the subclasses Si, i = 2, 3, 4 from S1. We have
shown that the constructed witness operator can be decomposed into Pauli matrices and hence can be realized
experimentally.

PACS numbers: 03.67.Hk, 03.67.-a

I. INTRODUCTION

Entanglement is a purely quantum mechanical phenomenon
that plays a vital role in the advancement of quantum informa-
tion theory. The two basic problems of quantum information
theory are: (i) detection of n-qubit entangled states and (ii)
classification of n-qubit entangled states. For n = 2 i.e. for
two-qubit quantum states, the only possibilities for the exis-
tence of quantum states are either as separable or entangled
states. But as we increase the number of qubits, the complex-
ity of the system will also increase. In these complex sys-
tems, the entangled states can be further classified as sepa-
rable, biseparable, triseparable, genuine etc. If the entangled
state is a genuine entangled state then it is entangled with re-
spect to any partition.
Lot of research had already been done on the classification of
entanglement. The problem on classification of entanglement
started with the classification of three qubit pure states and it
has been studied in the seminal work by Dur et.al. [2]. They
have shown that three qubit pure states can be classified into
six inequivalent classes under SLOCC: One separable state,
three biseparable states and two genuinely entangled states.
The two SLOCC inequivalent genuine entangled classes are
GHZ class and W class. In the literature, it has been shown
that there exist observables that can be used to distinguish
the above mentioned six inequivalent classes of three-qubit
pure states [3]. The experiment using NMR quantum informa-
tion processor has been carried out to classify six inequivalent
classes under SLOCC [4]. Acin et. al [5] have constructed
witness operator to classify mixed three-qubit states. Sabin et.
al. [6] have studied the classification of pure as well as mixed
three-qubit entanglement based on reduced two-qubit entan-
glement. Monogamy score can also be used to classify pure
tripartite system [7]. The classification of different classes of
four qubit pure states has been studied in [8–10]. The number
of different classes of n-qubit system increases when we in-
creases the number of qubits. The discrimination of different
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classes of multi-qubit system has been studied in [11–14].
In this work, we are focusing on the classification of the sub-
classes of GHZ class. To define different subclasses of GHZ
class, let us consider the five parameter canonical form of
three-qubit pure state |ψ〉ABC shared between three distant
partners A, B and C, which is given by [15]

|ψ〉ABC = λ0|000〉+ λ1e
iθ|100〉+ λ2|101〉+ λ3|110〉

+ λ4|111〉 (1)

with 0 ≤ λi ≤ 1(i = 0, 1, 2, 3, 4) and 0 ≤ θ ≤ π.
The normalization condition of the state (1) is given by

λ20 + λ21 + λ22 + λ23 + λ24 = 1. (2)

The three-tangle τψ for a pure three-qubit state |ψ〉ABC can
be defined as [16]

τψ = C2
A(BC) − C

2
AB − C2

AC (3)

where CAB , CAC represent the partial concurrences between
the pairs (A,B), (A,C) respectively and CA(BC) denote the
entanglement of qubit A with the joint state of qubits B and
C. It can be interpreted as residual entanglement[16], which
is not captured by two-qubit entanglement.
For a pure three-qubit state |ψ〉ABC , The tangle τψ can be
calculated as[3]

τψ = 4λ20λ
2
4 (4)

The tangle τψ 6= 0 for GHZ class and τψ = 0 for W class of
states. To define the subclasses of GHZ class, we assume that
the state parameters λ0 and λ4 are not equal to zero. In this
work, we will study the classification problem for the particu-
lar class of states in which the phase factor θ = 0. But similar
calculations can be performed by taking θ 6= 0 also.
We are now in a position to divide the three-qubit pure GHZ
class of states (1) into four subclasses as:

Subclass-I :
S1 = {|ψS〉},where
|ψS〉 = λ0|000〉+ λ4|111〉 (5)
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Subclass-II :
S2 = {|ψλ1

〉, |ψλ2
〉, |ψλ3

〉},where
|ψλ1
〉 = λ0|000〉+ λ1|100〉+ λ4|111〉,

|ψλ2〉 = λ0|000〉+ λ2|101〉+ λ4|111〉,
|ψλ3〉 = λ0|000〉+ λ3|110〉+ λ4|111〉} (6)

Subclass-III :
S3 = {|ψλ1,λ2

〉, |ψλ1,λ3
〉, |ψλ2,λ3

〉},where
|ψλ1,λ2

〉 = λ0|000〉+ λ1|100〉+ λ2|101〉+ λ4|111〉,
|ψλ1,λ3

〉 = λ0|000〉+ λ1|100〉+ λ3|110〉+ λ4|111〉,
|ψλ2,λ3

〉 = λ0|000〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (7)

Subclass-IV (S4) :

S4 = {|ψλ1,λ2,λ3
〉},where

|ψλ1,λ2,λ3〉 = λ0|000〉+ λ1|100〉+ λ2|101〉+ λ3|110〉+
λ4|111〉 (8)

Different subclasses of GHZ class of states are distributed
in four different sets S1, S2, S3, S4. Classification of these
subclasses can be diagrammatically shown in Figure-I. In the
Figure-I, the outermost circle represents GHZ states belong-
ing to subclass-IV, the second outermost circle represent the
GHZ states belonging to subclass-III, the third outermost cir-
cle represents the GHZ states belonging to subclass-II and the
innermost circle represents the standard GHZ class of states
belonging to subclass-I. We should note here that these sub-
classes are not inequivalent under SLOCC. To transform a
state from one subclass to another, we need to perform lo-
cal quantum operations that depend on the state which is to be
transformed. So it is necessary to know the state or at least the
subclass in which the state belongs. In this work, we would
detect the subclass in which the state belongs.
The motivation of the work is as follows: Firstly, let us con-

FIG. 1: Classification of different subclasses of GHZ class of states
described by the four sets S1, S2, S3, S4

sider the teleportation scheme introduced by Lee et.al. [17].

According to this teleportation scheme, a single-qubit mea-
surement has been performed either on the qubit A or qubit
B or qubit C of the pure three-qubit state. After the measure-
ment, the pure three-qubit state reduces to a two-qubit state at
the output. Then the resulting two-qubit state can be used as a
resource state for quantum teleportation. The efficiency of the
resource state is provided by the teleportation fidelity.
In particular, if the single-qubit measurement is performed on
either qubit A or qubit B or qubit C of the state |ψS〉 ∈ S1

then the corresponding maximal teleportation fidelities are
given by [17]

F
(|ψS〉)
A = F

(|ψS〉)
B = F

(|ψS〉)
C =

2(1 + λ0λ4)

3
(9)

In a similar fashion, if the single-qubit measurement is per-
formed on the state |ψλ′

1
〉 ∈ S2 then the corresponding maxi-

mal teleportation fidelities are given by [17]

F
(|ψ

λ
′
1
〉)

A =
2(1 + λ

′

4

√
(λ

′
0)

2 + (λ
′
1)

2)

3

F
(|ψ

λ
′
1
〉)

B = F
(|ψ

λ
′
1
〉)

C =
2(1 + λ

′

0λ
′

4)

3
(10)

Again, if the single-qubit measurement is performed on the
state |ψλ′′

1
〉 ∈ S3 then the corresponding maximal teleporta-

tion fidelities are

F
(|ψ

λ
′′
1,2
〉)

A =
2(1 + λ

′′

4

√
(λ

′′
0 )

2 + (λ
′′
1 )

2)

3

F
(|ψ

λ
′′
1,2
〉)

B =
2(1 + λ

′′

0

√
(λ

′′
2 )

2 + (λ
′′
4 )

2)

3

F
(|ψ

λ
′′
1,2
〉)

C =
2(1 + λ

′′

0λ
′′

4 )

3
(11)

and if the single-qubit measurement is performed on the state
|ψλ′′′

1
〉 ∈ S4 then the corresponding maximal teleportation

fidelities are

F
(|ψ

λ
′′′
1,2,3
〉)

A =
2(1 +

√
y)

3

F
(|ψ

λ
′′′
1,2,3
〉)

B =
2(1 + λ

′′′

0

√
(λ

′′′
2 )2 + (λ

′′′
4 )2)

3

F
(|ψ

λ
′′′
1,2,3
〉)

C =
2(1 + λ

′′′

0

√
(λ

′′′
3 )2 + (λ

′′′
4 )2)

3
(12)

where

y = (λ
′′′

0 )2(λ
′′′

4 )2 + (λ
′′′

1 )2(λ
′′′

4 )2 + (λ
′′′

2 )2(λ
′′′

3 )2 − 4λ
′′′

1 λ
′′′

2 λ
′′′

3 λ
′′′

4(13)

It can be easily seen that there exist state parameters
λ

′′′

0 , λ
′′′

1 , λ
′′′

2 , λ
′′′

3 , λ
′′′

4 , λ
′′

0 , λ
′′

1 , λ
′′

2 , λ
′′

4 , λ
′

0, λ
′

1, λ
′

4, λ0 and λ4
such that the inequalities

F
(|ψ

λ
′′
1,2
〉)

A ≥ F
(|ψ

λ
′
1
〉)

A , F
(|ψ

λ
′′′
1,2,3
〉)

A ≥ F
(|ψ

λ
′′
1,2
〉)

A

F
(|ψ

λ
′′′
1,2,3
〉)

A ≥ F
(|ψ

λ
′
1
〉)

A , F
(|ψ

λ
′
1
〉)

A ≥ F (|ψS〉)
A

F
(|ψ

λ
′′
1,2
〉)

A ≥ F
(|ψS〉)
A , F

(|ψ
λ
′′′
1,2,3
〉)

A ≥ F (|ψS〉)
A (14)
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holds. In this way we can compare the teleportation fidelities
of the GHZ states belonging to different subclasses. We can
conclude from (14) that the pure three-qubit state |ψλ′

1
〉 ∈ S2

is more efficient than |ψS〉 ∈ S1 in the teleportation scheme
[17]. In the same way, we can say that the states belonging to
subclass S3 are more efficient than the states belonging to S2

or S1. Also, it can be observed that the states belonging to any
of the defined subclasses are GHZ states. Thus it is necessary
to discriminate the pure three-qubit states belong to different
subclasses of GHZ class.
Secondly, we can compare the entanglement and the tangle in
these subclasses.
(i) We can compare the entanglement between the reduced
two qubit mixed states obtained after tracing out either sub-
system A or subsystem B or subsystem C in the following
way:
If we have GHZ state belonging to subclass S1, then after trac-
ing out one qubit, the concurrence of the resulting two qubit
system will become zero, that is, CAB = CAC = CBC = 0.
Thus, after tracing out one subsystem, the remaining two
qubit state will become a separable state. Now, if we con-
sider GHZ state belonging to subclass S2, then we have ex-
actly one of the concurrences either CAB or CAC or CBC
of the mixed reduced system is non-zero. Thus, if we re-
quire any two qubit entangled state in some quantum infor-
mation processing protocol, then we can obtain it by tracing
out one qubit from three qubit GHZ state belong to subclass
S2. For example if we need any two qubit shared entangled
state between Alice and Bob, then we can use three qubit GHZ
state(|ψABC〉 = λ0|000〉+ λ3|110〉+ λ4|111〉), lying in sub-
class S2.It is possible, since, the concurrence of the reduced
state ρAB = TrC(|ψ〉ABC〈ψ|) is not equal to zero. But this
type of situation will not arise in the case of three qubit GHZ
state belong to subclass S1. Not only the subclass S2, but we
can use other subclasses such as S3 and S4 to get the entan-
gled mixed two qubit state.
(ii) We can see changes in tangle in these subclasses as fol-
lows:
For a GHZ state belonging to S1, we have only two parame-
ters λ0 and λ4. But for the GHZ state belonging to S2 have
parameters λ

′

0, λ
′

1 and λ
′

4. Due to normalization condition, the
values of parameters gets distributed.Thus, using normaliza-
tion condition we get, λ0λ4 > λ

′

0λ
′

4. Since, tangle is defined
as τ = 4λ20λ

2
4, tangle of the three qubit GHZ state belonging

to S1 will be more then the tangle of the GHZ state belonging
to S2. Again, if we compare tangle of the three qubit GHZ
state belonging to subclass S3 will be more than the tangle of
the GHZ state belonging to S2.

In this way, we can conclude that

τ (2) ≥ τ (3) ≥ τ (4) ≥ τ (5) (15)

where, τ (2) is the tangle of the GHZ state belonging to
sublclass S1, τ (3) is the tangle of the GHZ state belonging
to subclass S2, τ (4) is the tangle of the GHZ state belonging
to subclass S3 and τ (5) is the tangle of the GHZ state belong-
ing to subclass S4. These are the few things that motivated us
to classify different subclasses of GHZ states.

This paper is organized as follows: In Sec. II, we have re-
visited the correlation tensor for the canonical form of three-
qubit pure state which will be needed in the later section. In
Sec. III, we have constructed witness operator that can detect
different subclasses of three -qubit pure GHZ class of states.
In Sec. IV, we have verified our result with some examples.
We conclude in Sec. V.

II. DERIVATION OF THE INEQUALITY REQUIRED FOR
THE CONSTRUCTION OF CLASSIFICATION WITNESS

OPERATOR

In this section, we will construct the Hermitian matrices
from the component of the correlation tensor and then use its
minimum and maximum eigenvalues to derive the required in-
equality for the construction of classification witness operator.
To start with, let us consider any arbitrary three qubit state de-
scribed by the density operator ρ. The correlation coefficient
of the state ρ can be obtained as

tijk = Tr(ρ(σi ⊗ σj ⊗ σk)), (i, j, k = x, y, z) (16)

Then the correlation tensor ~T can be defined as ~T =
(Tx, Ty, Tz), where

Tx =

txxx txyx txzx
txxy txyy txzy
txxz txyz txzz

 (17)

and

Ty =

tyxx tyyx tyzx
tyxy tyyy tyzy
tyxz tyyz tyzz

 (18)

and

Tz =

tzxx tzyx tzzx
tzxy tzyy tzzy
tzxz tzyz tzzz

 (19)

A. Correlation tensor for the canonical form of three-qubit
pure state

Let us consider the three-qubit pure state described by the
density operator ρψ

ρψ = |ψ〉ABC〈ψ| (20)

where |ψ〉ABC is given by (1).
The components Tx, Ty and Tz of the correlation tensor ~T for
the state ρψ is given by

Tx =

2λ0λ4 0 2λ0λ2
0 −2λ0λ4 0

2λ0λ3 0 2λ0λ1cosθ

 (21)
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Ty =

 0 −2λ0λ4 0
−2λ0λ4 0 −2λ0λ2

0 −2λ0λ3 2λ0λ1sinθ

 (22)

Tz =

tzxx tzyx tzzx
tzxy tzyy tzzy
tzxz tzyz tzzz

 (23)

where tzxx = −2(λ2λ3 + λ1λ4cosθ),tzyx = 2λ1λ4sinθ,
tzzx = 2(λ3λ4 − λ1λ2cosθ),tzxy = 2λ1λ4sinθ, tzyy =
2(λ1λ4cosθ − λ2λ3),tzzy = 2λ1λ2sinθ, tzxz = 2(λ2λ4 −
λ1λ3cosθ), tzyz = 2λ1λ3sinθ, tzzz = λ20−λ21+λ22+λ23−λ24.
The Hermitian matrices can be constructed from Tx and Ty as

TTx Tx =

ax 0 bx
0 cx 0
bx 0 dx

 (24)

where ax = 4λ20(λ
2
4 + λ23), bx = 4λ20(λ2λ4 + λ1λ3cosθ),

cx = 4λ20λ
2
4, dx = 4λ20(λ

2
2 + λ21cos

2θ).
and

TTy Ty =

ay 0 by
0 cy dy
by dy ey

 (25)

where ay = 4λ20λ
2
4, by = 4λ20λ2λ4, cy = 4λ20(λ

2
4 + λ23),

dy = −4λ20λ1λ3sinθ, ey = 4λ20(λ
2
2 + λ21sin

2θ).
The superscript T refers to the simple matrix transposition op-
eration.

B. Inequality for the construction of classification witness
operator

Let us recall the canonical form of three-qubit state |ψ〉ABC
given in (1). The invariants with respect to the state |ψ〉ABC
under local unitary transformations are given by [19]

λ0λ4 =

√
τψ

2

λ0λ2 =
CAC
2

λ0λ3 =
CAB
2

|λ2λ3 − eiϕλ1λ4| =
CBC
2

(26)

Here τψ denote the three-tangle of the state |ψ〉ABC whereas
CAB , CAC and CBC represent the partial concurrences be-
tween the pairs (A,B), (A,C) and (B,C) respectively.
Furthermore, the invariants of three-qubit states under local
unitary transformations has been studied in [20] and the in-
variants are given by

I1 = 〈ψ|ψ〉
I2 = tr(ρ2C) = 2(λ1λ2 + λ3λ4)

2

I3 = tr(ρ2B) = 2(λ1λ3 + λ2λ4)
2

I4 = tr(ρ2A) = 2λ20λ
2
1

I5 =
1

4
τ2ψ = 4λ40λ

4
4 (27)

where ρA = TrBC(|ψ〉ABC〈ψ|), ρB = TrAC(|ψ〉ABC〈ψ|),
ρC = TrAB(|ψ〉ABC〈ψ|) denote reduced density matrices of
a single qubit.
Further, recalling the Hermitian matrices TTx Tx and TTy Ty
from (24) and (25), we calculate the traces of the Hermitian
matrices as

Tr(Tx
TTx) = 8λ0

2λ4
2 + 4λ0

2λ3
2 + 4λ0

2λ2
2

+ 4λ0
2λ1

2cos2θ (28)

and

Tr(Ty
TTy) = 8λ0

2λ4
2 + 4λ0

2λ3
2 + 4λ0

2λ2
2

+ 4λ0
2λ1

2sin2θ (29)

Adding (28) and (29), we get

Tr[(Tx
TTx) + (Ty

TTy)] = 16λ0
2λ4

2 + 8λ0
2λ3

2

+ 8λ0
2λ2

2 + 4λ0
2λ1

2 (30)

The expression for Tr[(Tx
TTx) + (Ty

TTy)] can be re-
expressed in terms of three-tangle and partial concurrences
as

Tr[(Tx
TTx) + (Ty

TTy)] = 4τψ + 2CAB
2 + 2CAC

2

+ 4λ0
2λ1

2 (31)

In terms of expectation of the operators, the expression (31)
can further be written as

Tr[(Tx
TTx) + (Ty

TTy)] = (〈O1〉ψABC )2 +
1

2
(〈O3〉ψABC )2

+
1

2
(〈O2〉ψABC )2 + 4λ0

2λ1
2 (32)

where

O1 = 2(σx ⊗ σx ⊗ σx)
O2 = 2(σx ⊗ σz ⊗ σx)
O3 = 2(σx ⊗ σx ⊗ σz) (33)

The expection values of there operator may be written in terms
of invariants as[3],

〈O1〉 = 4λ0λ4 = 2
√
τψ

〈O2〉 = 4λ0λ2 =
CAC
2

〈O3〉 = 4λ0λ3 =
CAB
2

(34)

The upper bound (U) and the lower bound (L) of
Tr[(Tx

TTx) + (Ty
TTy)] is given by

L ≤ Tr[(TxTTx) + (Ty
TTy)] ≤ U (35)

where L = µmax(Tx
TTx) + µmin(Ty

TTy) and U =

(4λ0λ4+2
√
2λ0λ3+2

√
2λ0λ2+2λ0λ1)

2. The lower bound
L can be obtained using Weyl’s result [21]. µmax(Tx

TTx)
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and µmin(TyTTy) denote the maximum and minimum eigen-
value of TTx Tx and TTy Ty respectively.
Thus, equation (35) can be re-written as

[µmax(Tx
TTx) + µmin(Ty

TTy)]
1
2 ≤

4λ0λ4 + 2
√
2λ0λ3 + 2

√
2λ0λ2 + 2λ0λ1 (36)

If 0 ≤ µmax(TxTTx)+µmin(TyTTy) ≤ 1 then the inequality
(36) reduces to

µmax(Tx
TTx) + µmin(Ty

TTy) ≤
4λ0λ4 + 2

√
2λ0λ3 + 2

√
2λ0λ2 + 2λ0λ1 (37)

The derived inequality (37) will be useful in constructing
the Hermitian operators for the classification of states lies
within the subclasses of GHZ class.

III. CONSTRUCTION OF CLASSIFICATION WITNESS
OPERATOR

Let |χ〉 and |ω〉 be any states belong to subclass-I (S1) and
subclass-i (Si) (i=II,III,IV) respectively. The Hermitian oper-
ator H is said to be classification witness operator if

(a)Tr(H|χ〉〈χ|) ≥ 0,∀ |χ〉 ∈ S1

(b)Tr(H|ω〉〈ω|) < 0, for at least one |ω〉 ∈ Si,
(i = II, III, IV ) (38)

If the above condition holds then the classification witness
operator H classifies the states between (i) subclass-I and
subclass-II (ii) subclass-I and subclass-III (iii) subclass-I and
subclass-IV.
In this section, we will discuss the procedure of construct-
ing the different classification witness operators that can clas-
sify the states residing in (i) subclass-I and subclass-II (ii)
subclass-I and subclass-III (iii) subclass-I and subclass-IV.

A. Classification witness operator for the classification of
states contained in subclass-I and subclass-II

We are now in a position to construct the classification wit-
ness operator that can classify the states resides in subclass-I
and subclass-II.

1. Classification of states confined in subclass-II with state
parameters λ0, λ1 and λ4 and subclass-I

The GHZ class of state within subclass-II with state param-
eters λ0, λ1 and λ4 is given by

|ψλ1
〉 = λ0|000〉+ λ1|100〉+ λ4|111〉 (39)

with the normalization condition λ20 + λ21 + λ24 = 1.
In particular, for λ1 = 0, the state |ψλ1

〉 reduces to |ψλ1=0〉 ∈
S1 where

|ψλ1=0〉 = λ0|000〉+ λ4|111〉, λ20 + λ24 = 1 (40)

The Hermitian matrices TTx Tx and TTy Ty for the state ρλ1
=

|ψλ1
〉〈ψλ1

| is given by

TTx Tx =

4λ20λ
2
4 0 0

0 4λ20λ
2
4 0

0 0 4λ20λ
2
1

 (41)

TTy Ty =

4λ20λ
2
4 0 0

0 4λ20λ
2
4 0

0 0 0

 (42)

The expression for Tr[(TxTTx) + (Ty
TTy)] is given by

Tr[(Tx
TTx) + (Ty

TTy)] = 16λ0
2λ4

2 + 4λ0
2λ1

2 (43)

The maximum eigenvalue of TTx Tx is given by

µmax(Tx
TTx) = max{4λ20λ21, 4λ20λ24} (44)

The minimum eigenvalue of TTy Ty is given by

µmin(Ty
TTy) = 0 (45)

It can be easily observed that in this case 0 ≤ µmax(TxTTx)+
µmin(Ty

TTy) ≤ 1 holds.
Since µmax(TxTTx) depends on the value of the two parame-
ters λ1 and λ4 so we will investigate two cases independently.
Case-I: λ4 > λ1
If λ4 > λ1 then µmax(TxTTx) = 4λ20λ

2
4.

The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O1 as

−2λ0λ1 ≤ 〈O1〉ψλ1 −
〈〈O1〉ψλ1 〉

2

4
(46)

If λ1 = 0 then the R.H.S of the inequality (46) is always
positive. Further, it can be observed that since 0 ≤ 〈O1〉ψλ1 ≤
1 so the R.H.S of the inequality (46) still positive even for
λ1 6= 0. Thus the R.H.S of the inequality is positive for every
state belong to S2. Hence, for λ4 > λ1, it is not possible to
make a distinction between the class of states |ψλ1〉 ∈ S2 and
|ψλ1=0〉 ∈ S1 using the inequality (46).
Case-II: λ4 < λ1
If λ4 < λ1 then µmax(TxTTx) = 4λ20λ

2
1.

The inequality (37) can be re-written as

−2λ0λ1 ≤ 〈O1〉ψλ1 − 4λ20λ
2
1 (47)

We can now define an Hermitian operator H1 as

H1 = O1 −
1

4
〈O4〉2ψλ1 I (48)

where,

O4 = 2(σx ⊗ I ⊗ I) (49)

The expectation value of the operator O4, in terms of invari-
ants may be written as,

〈O4〉 = 4λ0λ1 = 4

√
I4√
2

(50)
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Therefore, the inequality (47) can be re-formulated as

−2λ0λ1 ≤ 〈H1〉ψλ1 (51)

If λ1 = 0 then 〈H1〉ψλ1 ≥ 0 for all states |ψλ1=0〉 ∈ S1.
For λ1 6= 0, we can calculate 〈H1〉ψλ1 = Tr(H1ρλ1

) which
is given by

Tr(H1ρλ1) = 4λ0(λ4 − λ0λ12) (52)

It can be easily shown that there exist state parameters
λ0, λ1, λ4 for which λ4 − λ0λ12 < 0 and thus Tr(H1ρλ1

) <
0. For instance, if we take λ0 = 0.4, λ1 = 0.911043 and
λ4 = 0.1, Then Tr(H1ρλ1

) = −0.3712, which is negative.
Thus the Hermitian operator H1 discriminate the class
|ψλ1
〉 ∈ S2 from |ψλ1=0〉 ∈ S1.

2. Classification of states confined in subclass-II with state
parameters λ0, λi(i = 2, 3) and λ4 and subclass-I

The GHZ class of state within subclass-II with state param-
eters (λ0, λ2, λ4) and (λ0, λ3, λ4) are given by

|ψλ2
〉 = λ0|000〉+ λ2|101〉+ λ4|111〉 (53)

with λ20 + λ22 + λ24 = 1 and

|ψλ3
〉 = λ0|000〉+ λ3|110〉+ λ4|111〉 (54)

with λ20 + λ23 + λ24 = 1.
The Hermitian matrices TTx Tx and TTy Ty for the state ρλ2

=
|ψλ2
〉〈ψλ2

| and the state ρλ3
= |ψλ3

〉〈ψλ3
| are given in

appendix-1.
For the state either described by the density operator

ρλ2
= |ψλ2

〉〈ψλ2
| or ρλ3

= |ψλ3
〉〈ψλ3

|, the expression of
Tr[(Tx

TTx) + (Ty
TTy)] is given by

Tr[(Tx
TTx) + (Ty

TTy)] = 16λ20λ
2
4 + 8λ20λ

2
i , (55)

(i = 2, 3)

The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O1 and O4 as

−2
√
2λ0λi ≤ 〈O1〉ψλi −

1

4
〈O1〉2ψλi −

1

4
〈Oi〉2ψλi , (56)

(i = 2, 3)

We can now define classification witness operators Hi, (i =
2, 3) as

Hi = O1 −
1

4
[〈Oi〉2ψλi + 〈O1〉2ψλi ]I (57)

Therefore, the inequality (57) can be re-formulated as

−2
√
2λ0λi ≤ 〈Hi〉ψλi , i = 2, 3 (58)

If λi = 0, (i = 2, 3) then 〈Hi〉ψλi ≥ 0 for all states
|ψλi=0〉(i = 2, 3) ∈ S1.

For λi 6= 0, (i = 2, 3), we can calculate Tr(Hiρλi)(i = 2, 3)
which is given by

Tr(Hiρλi) = 4λ0λ4(1− λ0λ4)− 4λ0
2λi

2, i = 2, 3(59)

It can be easily shown that there exist state parameters
λ0, λi(i = 2, 3), λ4 for which Tr(Hiρλi) < 0. For in-
stance, if we take λ0 = 0.4,λi=0.894427(i = 2, 3) and
λ4 = 0.2, we get Tr[Hiρλi ] = −0.2176. Therefore, the
classifcation witness operator Hi(i = 2, 3) classify the class
of states ψλi(i = 2, 3) ∈ S2 given in (53) from the class
|ψλi=0〉(i = 2, 3) ∈ S1.

B. Classification witness operator for the classification of
states contained in subclass-I and subclass-III

In this subsection, we will construct classification witness
operator to discriminate subclass-I from subclasses of GHZ
class spanned by four basis states.

1. Classification of states confined in subclass-III with state
parameters λ0, λ2, λ3 and λ4 and subclass-I

The GHZ class of state within subclass-III with state pa-
rameters λ0, λ2, λ3 and λ4 is given by

|ψλ2,λ3
〉 = λ0|000〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (60)

with λ20 + λ22 + λ23 + λ24 = 1.
The Hermitian matrices TTx Tx and TTy Ty for the state
ρλ2,λ3

= |ψλ2,λ3
〉〈ψλ2,λ3

| is given in appendix-2.
The expression for Tr[(TxTTx) + (Ty

TTy)] is given by

Tr[(Tx
TTx) + (Ty

TTy)] = 16λ20λ
2
4 + 8λ20λ

2
2

+8λ20λ
2
3 (61)

Case-I: If µmax(TxTTx) = u = 4λ20λ
2
4 and µmin(TyTTy) =

0. The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O1 as

−2
√
2λ0(λ2 + λ3) ≤ 〈O1〉ψλ2,λ3 −

〈〈O1〉ψλ2,λ3 〉
2

4
(62)

If −2
√
2λ0(λ2 + λ3) = 0, then RHS of inquality (62) is

always positive for every state |ψ〉. Thus, in this case, it
is not possible to discriminate between the class of states
|ψλ2=0,λ3=0〉 ∈ S1 and the class of states |ψλ2,λ3

〉 ∈ S3.

Case-II: If µmax(TxTTx) = v1 and µmin(TyTTy) = 0
then the inequality (37) reduces to

−2
√
2λ0(λ2 + λ3) ≤ 〈O1〉ψ

λ2,λ3
− P1 (63)

where,

P1 = 2λ20(1− λ20 +
√
−4λ22λ23 + (1− λ20)2)

= 2〈O5〉ψλ2,λ3 (1− 〈O5〉ψλ2,λ3

+

√
−1

4
〈O6〉2ψλ2,λ3 + (1− 〈O5〉ψλ2,λ3 )

2) (64)
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where,

O5 =
1

8
(I + σz ⊗ I + σz ⊗ I + σz)

O6 = 2(I ⊗ σy ⊗ σy) (65)

The expectation values of the operators O5 and O6, in terms
of invariants may be written as,

〈O5〉 = λ20 =
CACCAB
2CBC

− 1

CBC

√
2I4I5
τψ

〈O6〉 = 4(λ2λ3 − λ1λ4) = 2CBC (66)

We can now define an Hermitian operator H5 as

H4 = O1 − P1I (67)

Therefore, the inequality (63) can be re-formulated as

−2
√
2λ0(λ2 + λ3) ≤ 〈H4〉ψλ2,λ3 (68)

If λ2 + λ3 = 0 then 〈H4〉ψλ2,λ3 ≥ 0 for all states
|ψλ2=0,λ3=0〉.
For −2

√
2λ0(λ2 + λ3) 6= 0, we can calculate Tr(H4ρλ2,λ3

),
which is given by

Tr(H4ρλ2,λ3
) = 4λ0λ4 − 2λ0

2(1− λ02 +
√
T1) (69)

where,

T1 = λ2
4 − 2λ2

2λ3
2 + 2λ2

2λ4
2 + (λ3

2 + λ4
2)2 (70)

It can be easily shown that there exist state parameters
(λ0, λ2, λ3, λ4) for which Tr(H4ρλ2,λ3

) < 0. For instance, if
we take λ0 = 0.35, λ2 = 0.3, λ3 = 0.864581 and λ4 = 0.2,
we get Tr[H4ρλ2,λ3

] = −0.108386. Therefore, the classifi-
cation operatorH4 classify the class of states ρλ2,λ3

∈ S3 and
the class of states ρλ2=0,λ3=0 ∈ S1.

2. Classification of states confined in subclass-III with state
parameters λ0, λ1, λi(i = 2, 3) and λ4 and subclass-I

The GHZ class of state within subclass-III with state pa-
rameters (λ0, λ1, λ2, λ4) and (λ0, λ1, λ3, λ4) are given by

|ψλ1,λ2〉 = λ0|000〉+ λ1|100〉+ λ2|101〉+ λ4|111〉 (71)

with λ20 + λ21 + λ22 + λ24 = 1.

|ψλ1,λ3〉 = λ0|000〉+ λ1|100〉+ λ3|110〉+ λ4|111〉 (72)

with λ20 + λ21 + λ23 + λ24 = 1.
The Hermitian matrices TTx Tx and TTy Ty for the
state ρλ1,λ2

= |ψλ1,λ2
〉〈ψλ1,λ2

| and the state
ρλ1,3

= |ψλ1,3
〉〈ψλ1,3

| are given in appendix-3.

The expression for Tr[(TxTTx) + (Ty
TTy)] is given by

Tr[(Tx
TTx) + (Ty

TTy)] = 16λ20λ
2
4 + 8λ20λ

2
i +

4λ20λ
2
1, (i = 2, 3) (73)

Case-I: If µmax(TxTTx) = 4λ20λ
2
4 and µmin(TyTTy) = 0.

The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O1 as

−2λ0(
√
2λi + λ1) ≤ 〈O1〉ψλ1,λi −

(〈O1〉ψλ1,λi )
2

4
, i = 2, 3(74)

If
√
2λi + λ1 = 0(i = 2, 3), then RHS of inquality (118)

is always positive. Thus, the R.H.S of the inequality is pos-
itive for every state |ψ〉. But since 0 ≤ 〈O1〉ψλ1,λi ≤ 1
so the R.H.S of the inequality (118) still positive even for√
2λi+ λ1 6= 0, (i = 2, 3). Thus it is not possible to differen-

tiate between the class of states |ψλ1=0,λi=0〉 ∈ S1(i = 2, 3)
and |ψλ1,λi〉 ∈ S3(i = 2, 3), using the inequality (118) for
this case.
Case-II: If µmax(Tx

TTx) = 2λ20(λ
2
1 + λ2i + λ24 +√

(λ21 + λ2i + λ24)
2 − 4λ21λ

2
4), i=2,3 and µmin(TyTTy) = 0

Then the inequality (37) can be re-written as

−2λ0(
√
2λi + λ1) ≤ 〈O1〉ψλ1,λi − Pi, i = 2, 3 (75)

where, for i=2,3

Pi = 2λ20(λ
2
1 + λ2i + λ24

+
√
(λ21 + λ2i + λ24)

2 − 4λ21λ
2
4) (76)

Pi(i = 2, 3) can also be re-expressed in terms of the expecta-
tion values of the operators O1, O4 and Oi(i = 2, 3) as

Pi = q +

√
q2 − 1

16
〈O1〉2ψλ1,λi 〈O4〉2ψλ1,λi (77)

where q = 1
8 [〈O1〉2ψλ1,λi + 〈Oi〉

2
ψλ1,λi

+ 〈O4〉2ψλ1,λi ] We can
now define an Hermitian operator Hk, k = 5, 6 as

Hk = O1 − PiI, k = 5, 6, i = 2, 3, i = k (78)

Therefore, the inequality (119) can be re-formulated as

−2λ0(
√
2λi + λ1) ≤ 〈Hk〉ψλ1,λi , i = 2, 3, k = 5, 6 (79)

If
√
2λi + λ1 = 0, i = 2, 3 then 〈Hk〉ψλ1,λi ≥ 0, k = 5, 6 for

all states |ψλ1=0,λi=0〉 ∈ S1(i = 2, 3).
For

√
2λi + λ1 6= 0, i = 2, 3, we can calculate

Tr(Hkρλ1,λi), (i = 2, 3, k = 5, 6), which is given by

Tr(Hkρλ1,λi) = 4λ0λ4 − 2λ0
2(λ21 + λ2i + λ24 +

√
Ti),(80)

i = 2, 3, k = 5, 6

where

Ti = λ1
4 + 2λ1

2(λi
2 − λ42) + (λi

2 + λ4
2)2, i = 2, 3 (81)

It can be easily shown that there exist state parameters
(λ0, λ1, λi, λ4), (i = 2, 3) for which Tr(Hkρλ1,λi) < 0
for k=5,6. For instance, if we take λ0 = 0.5, λ1 =
0.83666, λi = 0.2, (i = 2, 3) and λ4 = 0.1, we get
Tr[Hkρλ1,λi ] = −0.540548, (k = 5, 6). Thus, the Hermi-
tian operator Hk, k={5,6} serves as a classification witness
operator and classify the class of states described by the den-
sity operator ρλ1,λi , (i = 2, 3) ∈ S3 and the class of states
ρλ1=0,λi=0, (i = 2, 3) ∈ S1.
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C. Classification of states confined in subclass-IV with state
parameters (λ0, λ1,λ2 λ3, λ4) and subclass-I

The GHZ class of state within subclass-IV with state pa-
rameters (λ0, λ1, λ2, λ3, λ4) is given by

|ψλ1,λ2,λ3〉 = λ0|000〉+ λ1|100〉+ λ2|101〉+ λ3|110〉
+ λ4|111〉 (82)

with λ20 + λ21 + λ22 + λ23 + λ24 = 1.
The Hermitian matrices TTx Tx and TTy Ty for the state
ρλ1,λ2,λ3

= |ψλ1,λ2,λ3
〉〈ψλ1,λ2,λ3

| is given in appendix-4.
The expression for Tr[(TxTTx) + (Ty

TTy)] is given by

Tr[(Tx
TTx) + (Ty

TTy)] = 16λ20λ
2
4 + 8λ20λ

2
3 + 8λ20λ

2
2

+4λ20λ
2
1 (83)

Case-I: If µmax(TxTTx) = u = 4λ20λ
2
4 and µmin(TyTTy) =

0. The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O1 as

−2λ0(
√
2λ2 +

√
2λ3 + λ1) ≤ 〈O1〉ψλ1,λ2,λ3

−
〈〈O1〉ψλ1,λ2,λ3 〉

2

4
(84)

If
√
2λ2 +

√
2λ3 + λ1 = 0, then RHS of inquality (84)

is always positive irrespective of the values of the state
parameter (λ1, λ2, λ3) . Thus it is not possible to differentiate
between the class of states |ψλ1,λ2,λ3〉 ∈ S4 and the class of
states |ψλ1=0,λ2=0,λ3=0〉 ∈ S1.

Case-II: µmax(Tx
TTx) = 2λ0

2(1 − λ20 +√
−4(λ2λ3 − λ1λ4)2 + (1− λ20)2) and µmin(TyTTy) = 0

Then the inequality (37) can be re-written as

−2λ0(
√
2λ2 +

√
2λ3 + λ1) ≤ 〈O1〉ψλ1,λ2,λ3 − P4 (85)

where,

P4 = 2λ0
2(1− λ20

+
√
−4(λ2λ3 − λ1λ4)2 + (1− λ20)2)

= 2〈O5〉ψλ1,λ2,λ3 (1− 〈O5〉ψλ1,λ2,λ3

+

√
−
〈O6〉2ψλ1,λ2,λ3

4
+ (1− 〈O5〉ψλ1,λ2,λ3 )

2) (86)

We can now define an Hermitian operator H7 as

H7 = O1 − P4I (87)

Therefore, the inequality (85) can be re-formulated as

−2λ0(
√
2λ2 +

√
2λ3 + λ1) ≤ 〈H7〉ψλ1,λ2,λ3 (88)

If−2λ0(
√
2λ2+

√
2λ3+λ1) = 0 then 〈H7〉ψλ1,λ2,λ3 ≥ 0 for

all states |ψλ1=0,λ2=0,λ3=0〉 ∈ S1.

For −2λ0(
√
2λ2 +

√
2λ3 + λ1) 6= 0, we can calculate

Tr(H7ρλ1,λ2,λ3
) which is given by

Tr(H7ρλ1,λ2,λ3) = 4λ0λ4 − 2λ0
2(λ1

2 + λ2
2 + λ3

2 + λ4
2

+
√
T4) (89)

where,

T4 = λ1
4 + λ2

4 + λ3
4 + λ4

4 + 8λ1λ2λ3λ4 − 2λ2
2λ3

2 +

2λ2
2λ4

2 + 2λ1
2λ2

2 + 2λ1
2λ3

2 − 2λ1
2λ4

2

+2λ3
2λ4

2 (90)

It can be easily shown that there exist state parameters
(λ0, λ1, λ2, λ3, λ4) for which Tr(H7ρλ1,λ2,λ3

) < 0. For in-
stance, if we take λ0 = 0.6, λ1 = 0.785812, λ2 = 0.1,
λ3 = 0.05 and λ4 = 0.1, we get Tr[H7ρλ123

] = −0.303798.
Thus, the classification witness operator H7 classify the class
of states described by the density operator ρλ1,λ2,λ3

∈ S4 and
the class of states described by ρλ1=0,λ2=0,λ3=0 ∈ S1

IV. EXAMPLES

In this section, we have provided few examples of three-
qubit states for which we construct classification witness op-
erators.
Example-1: The three-qubit maximal slice state is given by
[18],

|MS〉 = 1√
2
(|000〉+ c|110〉+ d|111〉), c2 + d2 = 1 (91)

Let us consider the classification witness operators H1, H2

and H3. The classification witness operator H3 for (91) is
now reduces to

WMS = O1 − I (92)

The expectation value of WMS with respect to the state |MS〉
can be evaluated as

Tr(WMSρMS) = (2d− 1) (93)

Therefore, we can verify that Tr(WMS |MS〉〈MS|) < 0 for
the state parameter d < 1

2 . Further, it is easy to verify that the
expectation value of the witness operator H3 is positive for
all state belong to subclass-I. Since the given state is detected
by the classification witness operator H3 so state (91) belongs
to subclass-II. To investigate the form of the given state lying
within subclass-II, we need to further classify it from the other
classes of states belong to subclass-II. We can check that in the
same range of the state parameter d i.e. for d < 1

2 , the value
of Tr(H1ρMS) and Tr(H2ρMS) are non-negative. Thus, we
can say that the classification witness operators H3 discrimi-
nate the maximal slice state from subclass-I and also it detects
the state in the form (54).
Example-2: Let us consider another three-qubit state defined
as

|φ〉 = √p|G〉 −
√

1− p|K〉 (94)
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TABLE I: Range of the parameter p for which the classification wit-
ness operatorH4 classify the given GHZ state within the subclass-III

State parameter p Tr[H5ρ] Tr[H4ρ] Tr[H6ρ]

(a, c)
(0.8, 0.3) (.291,.3) > 0 < 0 > 0

(0.9, 0.4) (.548,.57) > 0 < 0 > 0

(0.91, 0.8) (.4,.51) > 0 < 0 > 0

(0.85, 0.35) (.43,.45) > 0 < 0 > 0

(0.88, 0.8) (.25,.385) > 0 < 0 > 0

(0.78, 0.3) (.208,.22) > 0 < 0 > 0

(0.95, 0.4) (.69,.7) > 0 < 0 > 0

(0.83, 0.45) (.26,.31) > 0 < 0 > 0

where,

|G〉 = a|000〉+ b|111〉, a2 + b2 = 1

|K〉 = c|110〉+ d|101〉, c2 + d2 = 1 (95)

Now our task is to construct classification witness operator
that may distinguish it from the state belong to subclass-I and
also detect the form of the given state that belong to a par-
ticular class within subclass-III. To accomplish our task, let
us consider classification witness operators H4, H5 and H6

given in (67) and (78). We find that the expectation value
of the witness operator H4 is positive for all state belong to
subclass-I but it gives negative value for some states belong
to subclass-III. Hence the state (94) belongs to subclass-III.
Moreover, we have investigated this classification problem
within the subclass-III by constructing a table below. It shows
that the expectation value of classification witness operator
H4 is negative for some range of the state parameter p while
the expectation value of other classification witness operators
H5 and H6 gives positive values for the same range of the
state parameters. This means that the given state (94) belong
to subclass-III and it takes the form (60). In this table we have
found the range of p where the witness operator H4 detects
the GHZ state given in the example whereas H5 and H6 do
not detect the given GHZ state.

V. CONCLUSION

To summarize, we have defined systematically different
subclasses of pure three-qubit GHZ class. The subclass-I de-
noted by S1 contain the states of the form λ0|000〉+ λ1|111〉.
In particular, if λ0 = λ1 = 1√

2
then the three-qubit state re-

duces to standard GHZ state and it is known that this state is
very useful in various quantum information processing task.
In this work, it has been shown that there exist states either
belong to subclass-II denoted by S2 or subclass-III denoted
by S3 or subclass-IV denoted by S4, that may be more use-
ful in some teleportation scheme in comparison to the states
belong to S1. This observation gives the motivation to dis-
criminate the states belong to Si, i = 2, 3, 4 from the family

of states belong to S1. We have prescribed the method for
the construction of the witness operator to study the classifi-
cation of the states belong to Si, i = 2, 3, 4. Later, we have
supported our work with few examples.
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VII. APPENDIX

A. Appendix-1

The Hermitian matrices TTx Tx and TTy Ty for the state
ρλ2

= |ψλ2
〉〈ψλ2

| are given by

TTx Tx = TTy Ty =

 4λ20λ
2
4 0 4λ20λ2λ4

0 4λ20λ
2
4 0

4λ0
2λ2λ4 0 4λ20λ

2
2

 (96)

The Hermitian matrices TTx Tx and TTy Ty for the state ρλ3
=

|ψλ3
〉〈ψλ3

| is given by

TTx Tx =

4λ20(λ
2
3 + λ24) 0 0

0 4λ20λ
2
4 0

0 0 0

 (97)

TTy Ty =

4λ20λ
2
4 0 0

0 4λ20(λ
2
3 + λ24) 0

0 0 0

 (98)

The maximum eigenvalue of TTx Tx for the state |ψλi〉(i =
2, 3) is given by

µmax(Tx
TTx) = 4λ20(λ

2
i + λ24), i = 2, 3 (99)

The minimum eigenvalue of TTy Ty for the state |ψλi〉(i =
2, 3) is given by

µmin(Ty
TTy) = 0 (100)

B. Appendix-2

The Hermitian matrices TTx Tx and TTy Ty for the state
ρλ2,λ3

= |ψλ2,λ3
〉〈ψλ2,λ3

| is given by,

TTx Tx =

4λ20(λ
2
3 + λ24) 0 4λ20λ2λ4
0 4λ20λ

2
4 0

4λ20λ2λ4 0 4λ20λ
2
2

 (101)
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TTy Ty =

 4λ20λ
2
4 0 4λ20λ2λ4

0 4λ20(λ
2
3 + λ24) 0

4λ20λ2λ4 0 4λ20λ
2
2

 (102)

The maximum eigenvalue of TTx Tx is given by

µmax(Tx
TTx) = max{u, v1} (103)

where u = 4λ20λ
2
4 and v1 = 2λ20(1 − λ20 +√

−4λ22λ23 + (1− λ20)2).
The minimum eigenvalue of TTy Ty is given by

µmin(Ty
TTy) = 0 (104)

C. Appendix-3

The Hermitian matrices TTx Tx and TTy Ty for the state
ρλ1,λ2

= |ψλ1,λ2
〉〈ψλ1,λ2

| is given by

TTx Tx =

 4λ20λ
2
4 0 4λ20λ2λ4

0 4λ20λ
2
4 0

4λ20λ2λ4 0 4λ20(λ
2
1 + λ22)

 (105)

TTy Ty =

 4λ20λ
2
4 0 4λ20λ2λ4

0 4λ20λ
2
4 0

4λ20λ2λ4 0 4λ20λ
2
2

 (106)

The Hermitian matrices TTx Tx and TTy Ty for the state ρλ1,3 =
|ψλ1,3〉〈ψλ1,3 | is given by

TTx Tx =

4λ20(λ
2
3 + λ24) 0 4λ20λ1λ3
0 4λ20λ

2
4 0

4λ20λ1λ3 0 4λ20λ
2
1

 (107)

TTy Ty =

4λ20λ
2
4 0 0

0 4λ20(λ
2
3 + λ24) 0

0 0 0

 (108)

The maximum eigenvalue of TTx Tx is given by

µmax(Tx
TTx) = max{u, vi}, i = 2, 3 (109)

where vi = 2λ20(λ
2
1 + λ2i + λ24 +√

(λ21 + λ2i + λ24)
2 − 4λ21λ

2
4), i=2,3.

The minimum eigenvalue of TTy Ty is given by

µmin(Ty
TTy) = 0 (110)

D. Appendix-4

The Hermitian matrices TTx Tx and TTy Ty for the state
ρλ1,λ2,λ3

= |ψλ1,λ2,λ3
〉〈ψλ1,λ2,λ3

| is given by

TTx Tx =

 4λ20(λ
2
3 + λ24) 0 4λ20(λ1λ3 + λ2λ4)

0 4λ20λ
2
4 0

4λ20(λ1λ3 + λ2λ4) 0 4λ20(λ
2
1 + λ22)

(111)

TTy Ty =

 4λ20λ
2
4 0 4λ20λ2λ4

0 4λ20(λ
2
3 + λ24) 0

4λ20λ2λ4 0 4λ20λ
2
2

 (112)

The maximum eigenvalue of TTx Tx is given by

µmax(Tx
TTx) = max{u, v4} (113)

where v4 = 2λ0
2(k +

√
−4(λ2λ3 − λ1λ4)2 + k2),

k = 1− λ20.
The minimum eigenvalue of TTy Ty is given by

µmin(Ty
TTy) = 0 (114)

E. Appendix-5

Classification witness operator for the classification of
states contained in subclass-II and subclass-III

The GHZ class of state within subclass-III with state
parameters (λ0, λ1, λ2, λ4) is given by

|ψλ1,λ2
〉 = λ0|000〉+ λ1|100〉+ λ2|101〉+ λ4|111〉 (115)

with λ20 + λ21 + λ22 + λ24 = 1.
The Hermitian matrices TTx Tx and TTy Ty for the state
ρλ1,λ2 = |ψλ1,λ2〉〈ψλ1,λ2 | are given in appendix-3.
The expression for Tr[(TxTTx) + (Ty

TTy)] is given by

Tr[(Tx
TTx) + (Ty

TTy)] = 16λ20λ
2
4 + 8λ20λ

2
2 +

4λ20λ
2
1 (116)

Case-I: If µmax(TxTTx) = 4λ20λ
2
4 and µmin(TyTTy) = 0.

The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O1 as

−2λ0(
√
2λ2 + λ1) ≤ 〈O1〉ψλ1,λ2 −

(〈O1〉ψλ1,λ2 )
2

4
(117)

If λ2 = 0, then above inequality becomes,

−2λ0λ1 ≤ 〈O1〉ψλ1,λ2 −
(〈O1〉ψλ1,λ2 )

2

4
(118)

The R.H.S of the inequality is positive for every state |ψ〉.
Thus it is not possible to differentiate between the class of
states |ψλ1,λ2=0〉 ∈ S2 and |ψλ1,λ2

〉 ∈ S3, using the inequal-
ity (118) for this case.
Case-II: If µmax(Tx

TTx) = 2λ20(λ
2
1 + λ2i + λ24 +
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(λ21 + λ2i + λ24)

2 − 4λ21λ
2
4) and µmin(Ty

TTy) = 0 Then
the inequality (37) can be re-written as

−2λ0(
√
2λ2 + λ1) ≤ 〈O1〉ψλ1,λi − P2 (119)

We can now define an Hermitian operator H8, as

H8 = O1 − P2I +
O4

2
(120)

Therefore, the inequality (119) can be re-formulated as

−2
√
2λ0λ2 ≤ 〈H8〉ψλ1,λ2 (121)

If λ2 = 0 then 〈H8〉ψλ1,λ2 ≥ 0, for all states |ψλ1=0,λ2=0〉 ∈
S1 and |ψλ1,λ2=0〉 ∈ S2.
For λ2 6= 0, then there exist state parameters (λ0, λ1, λ2, λ4)
for which Tr(H8ρλ1,λ2) < 0. For instance, if we take
λ0 = 0.01, λ1 = 0.948631, λ2 = 0.3 and λ4 = 0.1, we
get Tr[H8ρλ1,λ2 ] = −0.129027. Thus, the Hermitian oper-
ator H8 serves as a classification witness operator and clas-
sify GHZ class of states described by the density operator
ρλ1,λ2

∈ S3 and the GHZ of states ρλ1=0,λ2=0 ∈ S1 or
ρλ1,λi=0, (i = 2, 3) ∈ S2.
Simillarly, we can construct witness operator that can classify
GHZ states belonging to subclass-III and subclass-IV.
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