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Classification witness operator for the classification of different subclasses of three-qubit GHZ class
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It is well known that three-qubit system has two kinds of inequivalent genuine entangled classes under
stochastic local operation and classical communication (SLOCC). These classes are called as GHZ class and
W class. GHZ class proved to be a very useful class for different quantum information processing tasks such
as quantum teleportation, controlled quantum teleportation etc. In this work, we distribute pure three-qubit
states from GHZ class into different subclasses denoted by S1, S2, Ss, S4 and show that the three-qubit states
either belong to Sz or Ss or Sy may be more efficient than the three-qubit state belong to Si. Thus, it is nec-
essary to discriminate the states belong to S;,7 = 2, 3,4 and the state belong to S;. To achieve this task, we
have constructed different witness operators that can classify the subclasses S;,¢ = 2, 3,4 from S;. We have
shown that the constructed witness operator can be decomposed into Pauli matrices and hence can be realized

experimentally.

PACS numbers: 03.67.Hk, 03.67.-a

I. INTRODUCTION

Entanglement is a purely quantum mechanical phenomenon
that plays a vital role in the advancement of quantum informa-
tion theory. The two basic problems of quantum information
theory are: (i) detection of n-qubit entangled states and (ii)
classification of n-qubit entangled states. For n = 2 i.e. for
two-qubit quantum states, the only possibilities for the exis-
tence of quantum states are either as separable or entangled
states. But as we increase the number of qubits, the complex-
ity of the system will also increase. In these complex sys-
tems, the entangled states can be further classified as sepa-
rable, biseparable, triseparable, genuine etc. If the entangled
state is a genuine entangled state then it is entangled with re-
spect to any partition.

Lot of research had already been done on the classification of
entanglement. The problem on classification of entanglement
started with the classification of three qubit pure states and it
has been studied in the seminal work by Dur et.al. [2]. They
have shown that three qubit pure states can be classified into
six inequivalent classes under SLOCC: One separable state,
three biseparable states and two genuinely entangled states.
The two SLOCC inequivalent genuine entangled classes are
GHZ class and W class. In the literature, it has been shown
that there exist observables that can be used to distinguish
the above mentioned six inequivalent classes of three-qubit
pure states [3]]. The experiment using NMR quantum informa-
tion processor has been carried out to classify six inequivalent
classes under SLOCC [4]. Acin et. al [5] have constructed
witness operator to classify mixed three-qubit states. Sabin et.
al. [6] have studied the classification of pure as well as mixed
three-qubit entanglement based on reduced two-qubit entan-
glement. Monogamy score can also be used to classify pure
tripartite system [7]]. The classification of different classes of
four qubit pure states has been studied in [8H10]. The number
of different classes of n-qubit system increases when we in-
creases the number of qubits. The discrimination of different
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classes of multi-qubit system has been studied in [11H14].

In this work, we are focusing on the classification of the sub-
classes of GHZ class. To define different subclasses of GHZ
class, let us consider the five parameter canonical form of
three-qubit pure state |1)) 4pc shared between three distant
partners A, B and C, which is given by [[15]]

V) aBc = Ao|000) + A1e?]100) + X2|101) + A3]110)
+ Ag111) (1)

with0 < \; <1(:=0,1,2,3,4) and 0 < 0 < 7.
The normalization condition of the state (I)) is given by

MNAXN 22N =1, 2)

The three-tangle 7, for a pure three-qubit state |¢)) 4pc can
be defined as [16]

Ty = Cf—l(BC) — Cip — Cic (3)

where C'4 g, C sc represent the partial concurrences between
the pairs (A, B), (A, C) respectively and C4(pc¢y denote the
entanglement of qubit A with the joint state of qubits B and
C. It can be interpreted as residual entanglement[/16], which
is not captured by two-qubit entanglement.

For a pure three-qubit state 1)) apc, The tangle 7, can be
calculated as[3]]

T = 4XN5A] 4)

The tangle 7, # 0 for GHZ class and 7, = 0 for W class of
states. To define the subclasses of GHZ class, we assume that
the state parameters \g and A4 are not equal to zero. In this
work, we will study the classification problem for the particu-
lar class of states in which the phase factor § = 0. But similar
calculations can be performed by taking 6 # 0 also.

We are now in a position to divide the three-qubit pure GHZ
class of states (I into four subclasses as:

Subclass-I :

S1 = {|vs)}, where
[9s) = Aol000) + A4[111) &)
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Subclass-1II :

S2 = {Ua)s [¥ns); [¥xs )}, where

[¥a,) = A0|000) + A1[100) + Aq|111),

[¥x,) = A0]000) + A2|101) + A4 |111),

[¥xs) = 20[000) + A3[110) + Aa[111)}  (6)

Subclass-I11 :

S3 = {1¥r; 2205 [¥a1 2305 [¥az.0s) }> Where

‘w)\h&) = )\0|000> + )\1|100> + )\2|101> + )\4|111>,
W}M,)\s> = X\|000) + )\1|100> + /\3|110> + )\4|111>,
‘1/))\2’)\3> = Ap|000) + A2|101) 4+ A3|110) 4+ A\4|111) (7)

Subclass-IV (Sy) :

Sa = {|t)x, 22,24 }, Where

[21.02.33) = A0[000) + 1 [100) + A2[101) + A3110) +
Ag|111) )

Different subclasses of GHZ class of states are distributed
in four different sets Sy, S, S3, S4. Classification of these
subclasses can be diagrammatically shown in Figure-1. In the
Figure-1, the outermost circle represents GHZ states belong-
ing to subclass-I1V, the second outermost circle represent the
GHZ states belonging to subclass-III, the third outermost cir-
cle represents the GHZ states belonging to subclass-II and the
innermost circle represents the standard GHZ class of states
belonging to subclass-I. We should note here that these sub-
classes are not inequivalent under SLOCC. To transform a
state from one subclass to another, we need to perform lo-
cal quantum operations that depend on the state which is to be
transformed. So it is necessary to know the state or at least the
subclass in which the state belongs. In this work, we would
detect the subclass in which the state belongs.

The motivation of the work is as follows: Firstly, let us con-

[¥21,22,23)

FIG. 1: Classification of different subclasses of GHZ class of states
described by the four sets S1, .52, S3, 54

sider the teleportation scheme introduced by Lee et.al. [17].

According to this teleportation scheme, a single-qubit mea-
surement has been performed either on the qubit A or qubit
B or qubit C of the pure three-qubit state. After the measure-
ment, the pure three-qubit state reduces to a two-qubit state at
the output. Then the resulting two-qubit state can be used as a
resource state for quantum teleportation. The efficiency of the
resource state is provided by the teleportation fidelity.
In particular, if the single-qubit measurement is performed on
either qubit A or qubit B or qubit C' of the state |¢)g) € S
then the corresponding maximal teleportation fidelities are
given by [17]

Fvs) _ ples) _ plvs) w ©)
In a similar fashion, if the single-qubit measurement is per-
formed on the state | N } € S5 then the corresponding maxi-
mal teleportation fidelities are given by [17]

(Iv,))

F, _ 20+ V)2 ()2

3
(e ) 214 AgAy)
Fo M= St

Again, if the single-qubit measurement is performed on the
state [¢),) € S3 then the corresponding maximal teleporta-
1

2

5 = (10)

tion fidelities are

AU 20+ NV ()

A - 3

) 2014 A0 /)2 + (A)2)

B - 3

(g ) 2(1 4+ AN,

paD % (11)

and if the single-qubit measurement is performed on the state
|thy») € Sy then the corresponding maximal teleportation
1

fidelities are

(W*;,,’za» 2(1 -+ \/g)
(W}A/1”2.3>) 2(1 )\/0” (>\,2”)2 ()\21”)2)
F ,2, —

3
a0 21+ 2 V(52 + (V])?)
F, ' = 3

(12)

where

1" " " "

It can be easily seen that there exist state parameters
1" 1" " " 2

Ao s AL A s A s Ags AL Ags Ars Ags AL, Aps Ao and g
such that the inequalities

Fjw’\,l/ﬂ)) > Fjw)\/lﬂ’ Fliw)‘/l/éﬁn > Fjw)‘/l/ﬂ))
(s ) ((ND) N
Y A,2,3 > FA A 7FA A ZFIE;WS»
(I D) (N7
FA )‘1,2 Z FIE“¢S>)7FA )‘1,2,3 2 F[gl/’g)) (14)

e et

y= (Ao 2O )2+ (A )22+ (A5 )25 )2 — 40 A5 A5 Af(13)



holds. In this way we can compare the teleportation fidelities
of the GHZ states belonging to different subclasses. We can
conclude from that the pure three-qubit state |1,/ ) € Sy

is more efficient than |¢pg) € S in the teleportation scheme
[17]. In the same way, we can say that the states belonging to
subclass S3 are more efficient than the states belonging to So
or 5. Also, it can be observed that the states belonging to any
of the defined subclasses are GHZ states. Thus it is necessary
to discriminate the pure three-qubit states belong to different
subclasses of GHZ class.
Secondly, we can compare the entanglement and the tangle in
these subclasses.
(i) We can compare the entanglement between the reduced
two qubit mixed states obtained after tracing out either sub-
system A or subsystem B or subsystem C in the following
way:
If we have GHZ state belonging to subclass S, then after trac-
ing out one qubit, the concurrence of the resulting two qubit
system will become zero, that is, Cyp = C4c = Cpc = 0.
Thus, after tracing out one subsystem, the remaining two
qubit state will become a separable state. Now, if we con-
sider GHZ state belonging to subclass So, then we have ex-
actly one of the concurrences either C'yp or Cyc or Cpo
of the mixed reduced system is non-zero. Thus, if we re-
quire any two qubit entangled state in some quantum infor-
mation processing protocol, then we can obtain it by tracing
out one qubit from three qubit GHZ state belong to subclass
So. For example if we need any two qubit shared entangled
state between Alice and Bob, then we can use three qubit GHZ
state(|Yapc) = Ao|000) + A3|110) + A4|111)), lying in sub-
class So.It is possible, since, the concurrence of the reduced
state pap = Tro(|Y) apc(y]) is not equal to zero. But this
type of situation will not arise in the case of three qubit GHZ
state belong to subclass S;. Not only the subclass So, but we
can use other subclasses such as S3 and Sy to get the entan-
gled mixed two qubit state.
(i) We can see changes in tangle in these subclasses as fol-
lows:
For a GHZ state belonging to S7, we have only two parame-
ters Ao and A4. But for the GHZ state belonging to So have
parameters )\6, )\/1 and )\;. Due to normalization condition, the
values of parameters gets distributed.Thus, using normaliza-
tion condition we get, AgAy > )\5)\;. Since, tangle is defined
as 7 = 4A\3\3, tangle of the three qubit GHZ state belonging
to S1 will be more then the tangle of the GHZ state belonging
to Sy. Again, if we compare tangle of the three qubit GHZ
state belonging to subclass S3 will be more than the tangle of
the GHZ state belonging to So.

In this way, we can conclude that

+(2) > +3 > &) > +(5) (15)

where, 7(?) is the tangle of the GHZ state belonging to
sublclass S, 7(3) is the tangle of the GHZ state belonging
to subclass Sy, 7(4) is the tangle of the GHZ state belonging
to subclass Ss and 7(%) is the tangle of the GHZ state belong-
ing to subclass S4. These are the few things that motivated us
to classify different subclasses of GHZ states.

This paper is organized as follows: In Sec. II, we have re-
visited the correlation tensor for the canonical form of three-
qubit pure state which will be needed in the later section. In
Sec. III, we have constructed witness operator that can detect
different subclasses of three -qubit pure GHZ class of states.
In Sec. IV, we have verified our result with some examples.
We conclude in Sec. V.

II. DERIVATION OF THE INEQUALITY REQUIRED FOR
THE CONSTRUCTION OF CLASSIFICATION WITNESS
OPERATOR

In this section, we will construct the Hermitian matrices
from the component of the correlation tensor and then use its
minimum and maximum eigenvalues to derive the required in-
equality for the construction of classification witness operator.
To start with, let us consider any arbitrary three qubit state de-
scribed by the density operator p. The correlation coefficient
of the state p can be obtained as

tijk = Tr(p(o; @ 0 @ o)), (i, 4,k = x,y,2)  (16)

Then the correlation tensor 7' can be defined as 7 =
(Ty, Ty, T), where

t{L’CL‘Z tCEyZ t{L’ZZ

and
tyzz tyyr Tyzz
Ty=|tyay tyyy tyzy (18)
ty:cz tyyz tyzz
and

toza tzym trza
Tz = tza:y tzyy tzzy (19)

tZIZ zZYz zZzZZz

A. Correlation tensor for the canonical form of three-qubit
pure state

Let us consider the three-qubit pure state described by the
density operator p.

py = |¥) aBc (VY] (20)

where [¢) 4 ¢ is given by (I).
The components T, T, and T, of the correlation tensor 1" for
the state p,, is given by

2X0A\4 0 2X0A2
T,=( 0 —2X\\ 0 Q21
2)\0)\3 0 2)\0)\10089



0 —2X0 A4 0
T,=|-2xM 0 “22o)a (22)
0 *2)\0/\3 2)\0)\1.%710
toza tzyz toza
Tz = tzzy tzyy tzzy (23)
tezz zyz trzz
where t.,. = —2(XaAs + AAgcost),t.ye = 2X1 Aasind,

tzz$ = 2(/\3/\4 - /\1/\26089),tz1-y = 2/\1/\4sin9, tzyy =
2()\1)\40059 — )\2A3),tzzy = 2)\1/\25in9, tzzz = 2(/\2)\4 —
A1Azc0s0), by, = 2M1 Agsind, t,,, = A=A+ A3 +03- )
The Hermitian matrices can be constructed from T, and T}, as

a; 0 by
0 ¢, O (24)
by 0 dg

TgTz =

where a, = 4X3(\3 + A3), by = 4A3(A2ds + A1 Ascos0),
Co = ANZNT, dp = AN3(DN3 + Micos?0).

and

ay, 0 by

0 ¢y dy (25)
by dy ey

where a, = 4X\3)\%, by, = 4X2\o)4, ¢ = 4AN3(A] + A2),
dy = —4XEA1 A3sind, e, = ANE(A3 + Aisin?0).

The superscript T refers to the simple matrix transposition op-
eration.

T
TI'T, =

B. Inequality for the construction of classification witness
operator

Let us recall the canonical form of three-qubit state |1)) 4o
given in (1). The invariants with respect to the state [¢)) apc
under local unitary transformations are given by [19]

Aody = VT
2
C
C
ok = =7
‘)\2)\3 - ei“°/\1)\4| = % (26)

Here 7, denote the three-tangle of the state |¢)) 4pc Whereas
Cap, Cac and Cpe represent the partial concurrences be-
tween the pairs (A, B), (4, C) and (B, C') respectively.
Furthermore, the invariants of three-qubit states under local
unitary transformations has been studied in [20] and the in-
variants are given by

I = (YY)

I, = t?“(p%) = 2()\1)\2 + )\3)\4)2
I3 = tr(p%) = 2(M A3 + doAy)?
I = tr(ph) = 23507

—_

Is = —77 = 403A) 27)

>~

4

where pa = Trpc([¥)apc(¥|), pp = Trac(|¥)apc(¥]),
pc = Trap(|Y) apc(y|) denote reduced density matrices of
a single qubit.

Further, recalling the Hermitian matrices TIT T, and TyT T,
from (24) and (23), we calculate the traces of the Hermitian
matrices as

8Xo2 A + 4No2\3? + 4N\,
+ 4Xo*A 2c0s%0 (28)

Tr(T, " T,)

and
Tr(T,TT,) = 8\o*Xa® + 407 N3% + 402 \?
+ 44X\ 2sin?0 (29)
Adding (28) and (29), we get
Tr((T."Ty) + (T, T,))] = 16X0° A + 800 A\3”
+ 8Xo% A% + 402N 2 (30)

The expression for Tr[(T,”T,) + (T,"T,)] can be re-
expressed in terms of three-tangle and partial concurrences
as

Tr((T,"Ty) + (T, T,)] = 47y +2Cap> +2Cac?
+ 4N ” 31)

In terms of expectation of the operators, the expression (31))
can further be written as

TT[(TtTTT) + (TyTTy)} - (<01>1/1ABC)2 + %(<O3>¢U‘\BC)2

1
+ <02>1/1ABC)2 + 4)‘02)\12 (32)

5
where

01 = 2(0, R0, ®0y)
Oy = 2(0, R0, R0oy)
O3 = 2(0,®0,®0;) (33)

The expection values of there operator may be written in terms
of invariants as[3],

(O1) = Aoy = 2/75

(Os) = XAy = %
C
(O3) = 4XoAg = —;‘B (34)

The upper bound (U) and the lower bound (L) of
Tr((T,"Ty) + (T,” T,)] is given by

L<Tr(T,"T,) +(T," T, <U (35)
where L = fimae(Te T) + fimin(T,"T,) and U =

(40 s +2v2X0A3 +2v/2X0 A2 +2X0 A1 )2, The lower bound
L can be obtained using Weyl’s result [21]]. umaz(TxTTx)



and min (TyTTy) denote the maximum and minimum eigen-
value of T} T, and T;] T, respectively.
Thus, equation (33)) can be re-written as

[Mmaz (TrTToc) + /imm(TyTTy)]E <
Ao + 2V2X003 + 2V2X0 M2 + 200N (36)

10 < ptmae (T T) + timin (T, T,)) < 1 then the inequality
reduces to

,Ufma.r (T’I'TT’I') + /Mmln (TyTﬂJ) S
ANods + 2V2X00 03 + 2V 220002 + 200N (37)

The derived inequality (37) will be useful in constructing
the Hermitian operators for the classification of states lies
within the subclasses of GHZ class.

III.  CONSTRUCTION OF CLASSIFICATION WITNESS
OPERATOR

Let |x) and |w) be any states belong to subclass-I (S1) and
subclass-i (5;) (i=ILIILIV) respectively. The Hermitian oper-
ator H is said to be classification witness operator if

(@)Tr(H[x){x]) = 0,¥ |x) € 51
(b)Tr(H|w){w|) < 0, for at least one |w) € S;
(i = II,III,1V) (38)

If the above condition holds then the classification witness
operator H classifies the states between (i) subclass-I and
subclass-II (ii) subclass-I and subclass-III (iii) subclass-I and
subclass-1V.

In this section, we will discuss the procedure of construct-
ing the different classification witness operators that can clas-
sify the states residing in (i) subclass-I and subclass-II (ii)
subclass-I and subclass-III (iii) subclass-I and subclass-IV.

A. Classification witness operator for the classification of
states contained in subclass-I and subclass-I1

We are now in a position to construct the classification wit-
ness operator that can classify the states resides in subclass-I
and subclass-II.

1. Classification of states confined in subclass-1I with state
parameters Ao, A1 and Ay and subclass-1

The GHZ class of state within subclass-II with state param-
eters A\g, A1 and \4 is given by
[a,) = A0]000) + A1|100) + A4|111) 39)

with the normalization condition AZ + A7 + A\ = 1.
In particular, for A\; = 0, the state [¢y, ) reduces to 1)), —o) €
S1 where

[¥a,=0) = A0|000) + Ag[111), A2 + 23 =1 (40)

The Hermitian matrices T/ T, and T, T, for the state p, =
[tx, ) (¥, | is given by

4X2)2 0 0

r'T, = 0 4X\)\2 0 (41)
0 0 4X3\3
40207 0 0
T, T, = 0 4X2)\2 0 (42)
0 0 0

The expression for Tr[(T,," T,,) + (T,," T,)] is given by
Tr((T,"Ty) + (T, Ty)] = 16X0°As” 4+ 4X” M * (43)
The maximum eigenvalue of 7.1 T}, is given by
prmas (To" Ty) = maz{4AAT, 4N3A} (44)

The minimum eigenvalue of TyT T, is given by
Hmin (TyTT’y) =0 (45)

It can be easily observed that in this case 0 < fimaz (TxTTm)Jr
timin (T, T,) < 1 holds.

Since fmaz (TmTTw) depends on the value of the two parame-
ters A\; and A4 so we will investigate two cases independently.
Case-I: \y > )\

If Ay > Ap then pnae (T Tp) = 40303,

The inequality then can be re-expressed in terms of the
expectation value of the operators O; as

<<01>¢A1 >2
4

If A\; = 0 then the R.H.S of the inequality is always
positive. Further, it can be observed that since 0 < (Ol>z/u1 <
1 so the R.H.S of the inequality (46) still positive even for
A1 # 0. Thus the R.H.S of the inequality is positive for every
state belong to S5. Hence, for Ay > A1, it is not possible to
make a distinction between the class of states |¢)y,) € S2 and
[¥x,=0) € S1 using the inequality (46).

Case-II: \y < )\

If Ay < A1 then ppman (T Tp) = 4X3N3.

The inequality can be re-written as

—2/\0)\1 < <01>¢,A1 — (46)

—2X0A1 < (O1)y,, — 4A3AT (47)
We can now define an Hermitian operator H; as
1
Hy =0 - 1<O4>§,MI (48)
where,
04 =20, IR1I) 49)

The expectation value of the operator Oy, in terms of invari-
ants may be written as,

I
(O4) = 4XgA; = 4 % (50)



Therefore, the inequality can be re-formulated as
—2XA1 < (Hi)y,, (51

If Ay = 0 then <H1>¢’A1 > 0 for all states |ty —0) € 5.
For A\; # 0, we can calculate (Hi)y,, = Tr(Hipy,) which
is given by

Tr(Hipy,) = 4ho(As — AoAi?) (52)

It can be easily shown that there exist state parameters
Ao, A1, Ag for which Ay — Ao\ ? < 0 and thus Tr(Hypy,) <
0. For instance, if we take Ay = 0.4, Ay = 0.911043 and
A4 = 0.1, Then T'r(Hipy,) = —0.3712, which is negative.
Thus the Hermitian operator H; discriminate the class
|1/)A1> € Sy from |1/),\1:0> € 5.

2. Classification of states confined in subclass-II with state
parameters Ao, \i(i = 2, 3) and A4 and subclass-1

The GHZ class of state within subclass-II with state param-
eters (Mg, A2, Ag) and (Ag, A3, A4) are given by

tha,) = Ao|000) + Ap|101) + Ag[111) (53)
with A2 + A3 + )3 = 1 and

[¥xs) = X0]000) 4+ A3|110) + A\g|111) (54)
with A2 + A2+ A2 = 1.

The Hermitian matrices 7 T}, and T}' T}, for the state py, =

|¢A2><’¢)\2‘ and the state Prs = |’¢)\3><¢)\3| are given in
appendix-1.
For the state either described by the density operator

Pro = |w>\2><'¢)/\2‘ Or P = |1/)A3><¢/\3|» the expression of
Tr[(T."Ty) + (T,"T,)] is given by

Tr((T,"T,) + (T, T,)] = 16A2A\2 +8A2)2,  (55)
(i=2,3)

The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O and Oy as

1 1
*2\/5)\0)\1' < <Ol>¢,\i - 1<01>12Zu1 B Z<O’>12M1’ (56)
(i =2,3)

We can now define classification witness operators H;, (i =
2,3) as

Hi = 0y = 11003, + (03, 11 (57)
Therefore, the inequality can be re-formulated as

—2v2X N < (H)y,, i =2,3 (58)

2,3) then (H,;)y

N 2 0 for all states

For \; # 0, (i = 2, 3), we can calculate T'r(H;py,)(i = 2, 3)
which is given by

Tr(Hipy,) = 4Xoda(1 — Xods) — 4Xo% A%, 0 = 2, 359)

It can be easily shown that there exist state parameters
Ao, Ai(i = 2,3), Ay for which Tr(H;py,) < 0. For in-
stance, if we take \g = 0.4,1,=0.894427(i = 2,3) and
Ay = 0.2, we get Tr[H;py,] = —0.2176. Therefore, the
classifcation witness operator H;(i = 2, 3) classify the class
of states ¥y, (i = 2,3) € S; given in from the class
[hx;=0) (i = 2,3) € S1.

B. Classification witness operator for the classification of
states contained in subclass-I and subclass-II1

In this subsection, we will construct classification witness
operator to discriminate subclass-I from subclasses of GHZ
class spanned by four basis states.

1. Classification of states confined in subclass-1I1 with state
parameters Ao, A2, A3 and Ay and subclass-1

The GHZ class of state within subclass-III with state pa-
rameters \g, A2, A3 and A4 is given by

|2/J,\2’)\3> = )\0‘000> + )\2|101> + )\3‘110> + )\4|111> (60)

with A3 + A3 + A3 + A\f = 1.
The Hermitian matrices 7T, and T, T, for the state
Prors = |Urs.as) (¥rs,24] 18 given in appendix-2.

The expression for Tr((T," T,;) + (T," T,))] is given by
Tr((To"T,) + (T, T,)] = 16A5A] +8A5A3
+8AGA 61)
Case-L: If 1,00 (T, T) = u = 4033 and piyin (T,7T,) =

0. The inequality (37) then can be re-expressed in terms of the
expectation value of the operators O; as

<<01>1/JA2,A3 >2
f(&)

If —2\/5)\0()\2 + A3) = 0, then RHS of inquality is
always positive for every state |¢)). Thus, in this case, it
is not possible to discriminate between the class of states
[x,=0,25=0) € S1 and the class of states |y, x,) € Ss3.

—2\/5/\0(/\2 +A3) < <01>¢>\2,>\3 -

Case-IL: If fi,00(Te " Ty) = v1 and pinin(T,"T,) = 0
then the inequality reduces to

—2vV2X0( A2 4+ A3) < (O1) - P (63)

'/’AQ,A3

where,

Pro= 203(1- N3+ /4030 + (1 - 22)2)
2<O5>¢A2,A3 (1 - <O5>wA2,A3

1
+ \/_4<06>12z,)\27/\3 + (1 — <O5>,¢)/\2,/\3)2) (64)




where,
1
Os = §(1+JZ®I+JZ®I+JZ)
O = 2(I®0, ®0ay) (65)

The expectation values of the operators O5 and Og, in terms
of invariants may be written as,

CacCap 1 21415
Os) = \2= —
( > 0 ZCBC CBC Tap
(Og) = 4(Aad3 — M A\y) =2Cpc (66)

We can now define an Hermitian operator H5 as
Hy = 01— P I (67)
Therefore, the inequality (63) can be re-formulated as
—2v200 (A2 4+ A3) < (Ha)p,y g (68)

If Ao + A3 =

[122=0,75=0)-
For —2v/2\o(\2 + A3) # 0, we can calculate Tr(Hypa, a; )
which is given by

0 then (Hi)y,,,, > 0 for all states

Tr(Hapayns) = 4Xods — 22002 (1 — Xo? + /T1) (69)

where,
T = )\24 — 2)\22/\32 + 2/\22/\42 + ()\32 + /\42)2 (70)

It can be easily shown that there exist state parameters
(Aos A2, Az, Ag) for which Tr(Hypa, ;) < 0. For instance, if
we take A\g = 0.35, A2 = 0.3, A3 = 0.864581 and Ay = 0.2,
we get Tr[Hypx, rs] = —0.108386. Therefore, the classifi-
cation operator H classify the class of states py, », € S3 and
the class of states px,—o,x;=0 € S1.

2. Classification of states confined in subclass-III with state
parameters Ao, A1, \i(t = 2,3) and A4 and subclass-1

The GHZ class of state within subclass-III with state pa-
rameters (Ao, A1, A2, Ag) and (Ag, A1, A3, \q) are given by

[¥a 2e) = A0/000) + A1|100) + A2|101) + Ag[111) (71)
with A3 + A2 + A3 + A\ = 1.
[¥x1.0) = A0|000) + A1]100) + A3[110) + A\4[111) (72)

with A2 + A7 + A3 + M\ = 1.

The Hermitian matrices 717, and TyT T, for the
state PriA2 = |¢/\1,>\2> <¢/\1,>\2 | and the state
Pxars = |¥a, 5) (1x, ;| are given in appendix-3.

The expression for Tr[(T,," T,;) + (T,," T,)] is given by

Tri(T,Ty) + (T,TT,)] = 16023 +8)\2\? +
ANGAT, (i=2,3) (73)
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Case-I: If 00 (T " Ty) = 4N2N3 and i, (T, 7 T})) = 0.
The inequality then can be re-expressed in terms of the
expectation value of the operators O; as

(<01>1/)>\1,Ai )2
4

If V2X\i + A1 = 0(i = 2,3), then RHS of inquality
is always positive. Thus, the R.H.S of the inequality is pos-
itive for every state |¢). But since 0 < (O1)y,, ,, < 1
so the R.H.S of the inequality (TT8) still positive even for
V2X\i + A1 # 0, (i = 2,3). Thus it is not possible to differen-
tiate between the class of states |1)x, =0 x,=0) € S1(¢ = 2,3)
and [y, ;) € S3(i = 2,3), using the inequality for
this case.

Case-Il: If fiar(T'Ty) = 2X3(A\F + X2 + A} +
VOZ A2 1022 —4A202), i=2,3 and piynin (T, T T,) = 0
Then the inequality (37) can be re-written as

—2X0(V2Xi + A1) < (O1)ys, s, — i =34

—2X0(V2Xi + A1) < (O1)y,, ,, — Pii=2,3 (75)
where, for i=2,3
P, = 203\ + 02+ A3
3 A2 A2 - AN (76)

P;(i = 2,3) can also be re-expressed in terms of the expecta-
tion values of the operators O1, O4 and O; (i = 2, 3) as

1
Pi=q+ \/q2 = 16000, 0, Oy, D

where ¢ = %[<01>12¢’%mi + (003, .. + (003, ] Wecan
now define an Hermitian operator Hy, k = 5,6 as

Hy = Oy —PI k=506,i=23i=k (78)
Therefore, the inequality (TT9) can be re-formulated as
—2X0(V2X; + A1) < (Hi)y,, 5,0 1=2,3,k=5,6 (79)

If v2Xi + Ay = 0,4 = 2,3 then (Hy)y,, ,, >0,k = 5,6 for
all states |1y, =0, x,=0) € S1(i = 2,3).

For v2\ + M\ # 0,i = 2,3, we can calculate
Tr(Hkpx, z; ), (i = 2,3,k = 5,6), which is given by

Tr(Hgpa,n) = 4hoAs — 2002 (A2 + A2 + 22 + /T(R0)
i=2,3k=56

where
T =M+ 22022 = A2 + A2+ 0520 =2,3(81)

It can be easily shown that there exist state parameters
()\0,)\1,)\1',)\4),(2' = 2,3) for which T’I“(Hkp)\h,\i) < 0
for k=5,6. For instance, if we take \y = 0.5, \{ =
0.83666, A; = 0.2,(i = 2,3) and Ay = 0.1, we get
Tr[Hipa, x;] = —0.540548, (k = 5,6). Thus, the Hermi-
tian operator Hy, k={5,6} serves as a classification witness
operator and classify the class of states described by the den-
sity operator py, »,, (1 = 2,3) € Ss and the class of states
Prr=0,0:=0, (i = 2,3) € Sy.



C. Classification of states confined in subclass-IV with state
parameters (Ao, A1,A2 A3, A1) and subclass-I

The GHZ class of state within subclass-IV with state pa-
rameters (Mg, A1, A2, A3, Ag) is given by

[¥x dens) = A0]000) + A1[100) + A2|101) + A3]110)
+ M111) (82)

with A3 + A7 + A2+ A3+ 2] = 1.

The Hermitian matrices 7./ T, and T T, for the state

PAixaxs = |’(/}>\1,/\2,>\3><1/)/\1,>\2,)\3| is given in appendix-4.
The expression for Tr((T," T,,) + (T," T,))] is given by

Tri(T,"T,) + (T,"T,)] = 16X3\3 + 8M\2A3 + 82\
+4MZN (83)

Case-I: If 1,00 (T 1) = u = 4033 and piin (T,7 T,) =
0. The inequality then can be re-expressed in terms of the
expectation value of the operators O; as

72A0(\/§)\2 + \/§>\3 + )\1) S <Ol>1/1>\1,>\2,k3

2
_ M (84)

If V2Xo + V2XA3 + A = 0, then RHS of inquality
is always positive irrespective of the values of the state
parameter (A1, A2, A3) . Thus it is not possible to differentiate
between the class of states |1y, x,.xs) € Sy and the class of

states [1)x, —0,x,=0,x5=0) € S1.

Case-Il: i (1.7 T,) = 2X°(1 — X +
V—=4(A2X3 = AA)2 + (1= A3)?) and prnin(T," T,)) = 0
Then the inequality can be re-written as

—200(V2X2 + V2X3 + A1) < (O1)y,, 4,0, — Pu(85)
where,
Py = 2X0%(1 — A2
Vo A0As — MA)? + (1 A3)2)
2(05) s, rgng (1 —

+

<O5>1Z1>\1,,\2,x3

¢ O s,
S | E—— (1= (O05) g5, 1,2, )?) (86)
We can now define an Hermitian operator H; as
H; = 01— P4l 87)
Therefore, the inequality can be re-formulated as
—200(V2Xo + V2X3 + A1) < (Hr)y, .0, (89)

If —2)\0(\/5)\2 —‘r\/i)\g —‘y—)\l) = 0 then <H7>wA1'/\2_’)\3 > 0 for
all states |¢)\1:07)\2:0’,\3:0> € 951.

For —2>\0(ﬁ)\2 + V2\3 + A1) # 0, we can calculate
Tr(H7pr, 00,05 ) Which is given by

Tr(Hrpa, aons) = 4Xoda — 2007 (A2 4+ A% + Az2 + 2,2
+ T4) (89)

where,

Ty = M4+ X+ A3+ M+ 801 A s — 202052 +
2002042 4 22012002 4+ 2012032 — 20,202
+2X5%0\,2 (90)

It can be easily shown that there exist state parameters
()\o, A1, A2, Az, )\4) for which T?“(H7p,\1,>\27)\3) < 0. For in-
stance, if we take Ay = 0.6, A\y = 0.785812, Ay = 0.1,
A3 = 0.05 and Ay = 0.1, we get Tr[H7px,,,] = —0.303798.
Thus, the classification witness operator H7 classify the class
of states described by the density operator px, i, x, € S4 and
the class of states described by px, —0,x,=0,A3=0 € 51

IV. EXAMPLES

In this section, we have provided few examples of three-
qubit states for which we construct classification witness op-
erators.

Example-1: The three-qubit maximal slice state is given by
(18],

1
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Let us consider the classification witness operators Hy, Ho
and Hs. The classification witness operator Hj for (97) is
now reduces to

|MS) = —(]000) + c[110) + d|111)), ¢*+d* =1 (91)

Wns =01 -1 92)

The expectation value of Wy, g with respect to the state | M .S)
can be evaluated as

TT(WMSPMS) = (2d - 1) (93)

Therefore, we can verify that Tr(Wass|MS)(MS|) < 0 for
the state parameter d < % Further, it is easy to verify that the
expectation value of the witness operator Hgs is positive for
all state belong to subclass-1. Since the given state is detected
by the classification witness operator H3 so state (O1)) belongs
to subclass-1II. To investigate the form of the given state lying
within subclass-II, we need to further classify it from the other
classes of states belong to subclass-II. We can check that in the
same range of the state parameter d i.e. for d < %, the value
of Tr(Hypys) and Tr(Happrs) are non-negative. Thus, we
can say that the classification witness operators Hg discrimi-
nate the maximal slice state from subclass-I and also it detects
the state in the form (54).

Example-2: Let us consider another three-qubit state defined
as

|¢) = VPIG) — /1 —p|K) (94)



TABLE I: Range of the parameter p for which the classification wit-
ness operator Hy classify the given GHZ state within the subclass-II1

State parameter p Tr[Hsp) | Tr[Hap] TT[HGP]‘
(a,¢)

(0.8, 0.3) (.291,.3) >0 <0 >0
0.9,04) |(548,57)] >0 <0 >0
(0.91, 0.8) (4,.51) >0 <0 >0
(0.85,0.35) | (.43,.45) >0 <0 >0
(0.88,0.8) (.25,.385)] >0 <0 >0
(0.78,0.3) |(.208,.22)] >0 <0 >0
(0.95,0.4) (.69,.7) >0 <0 >0
(0.83,0.45) | (.26,.31) >0 <0 >0

where,

|G) = al000) + b|111), a® +b* =1
|K) = ¢[110) +d[101), ¢ +d? =1 (95)

Now our task is to construct classification witness operator
that may distinguish it from the state belong to subclass-I and
also detect the form of the given state that belong to a par-
ticular class within subclass-1II. To accomplish our task, let
us consider classification witness operators H4, Hs and Hg
given in and (78). We find that the expectation value
of the witness operator H, is positive for all state belong to
subclass-1 but it gives negative value for some states belong
to subclass-III. Hence the state (94) belongs to subclass-IIL.
Moreover, we have investigated this classification problem
within the subclass-III by constructing a table below. It shows
that the expectation value of classification witness operator
H, is negative for some range of the state parameter p while
the expectation value of other classification witness operators
Hs and Hg gives positive values for the same range of the
state parameters. This means that the given state (94) belong
to subclass-1II and it takes the form (60). In this table we have
found the range of p where the witness operator H, detects
the GHZ state given in the example whereas Hy and Hg do
not detect the given GHZ state.

V. CONCLUSION

To summarize, we have defined systematically different
subclasses of pure three-qubit GHZ class. The subclass-I de-
noted by S contain the states of the form A\g|000) + A1]|111).
In particular, if \g = Ay = —= then the three-qubit state re-
duces to standard GHZ state and it is known that this state is
very useful in various quantum information processing task.
In this work, it has been shown that there exist states either
belong to subclass-II denoted by S or subclass-III denoted
by S5 or subclass-IV denoted by Sy, that may be more use-
ful in some teleportation scheme in comparison to the states
belong to S7. This observation gives the motivation to dis-
criminate the states belong to S;,7 = 2, 3,4 from the family

of states belong to S;. We have prescribed the method for
the construction of the witness operator to study the classifi-
cation of the states belong to S;,7 = 2,3,4. Later, we have
supported our work with few examples.
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VII. APPENDIX
A. Appendix-1

The Hermitian matrices T T, and T,/ T, for the state
Prz =[x, ) (¥, | are given by

4N3N3 0 4N\
T, T, =T,T,= 0 DYV 0 (96)
ZDVD U VIR | B D ¥ O ¥

The Hermitian matrices Tg T, and TyT T, for the state py, =
|1/J)\3><’(/})\3 ‘ is given by

A(N24+X2) 0 0

TI'T, = 0 40307 0 7
0 0 0
ANZNZ 0 0

T,T,=| 0 4X2(A2+X2) 0 (98)
0 0 0

The maximum eigenvalue of 7.2 T}, for the state |1y,)(i =
2, 3) is given by

fimaz (T T Ty) = 4X2(A\2 4+ 22),i = 2,3 (99)

The minimum eigenvalue of T T, for the state [¢,)(i =
2, 3) is given by

timin (T, T,) = 0 (100)

B. Appendix-2

The Hermitian matrices 7,17, and T?;T T, for the state
Przxs = |¢/\27A3><¢/\27A3\ is given by,

ANEAZH0D) 0 4NN
TI'T, = 0 42302 0 (101)
DYIVIV 0 4X3)\3



40303 0 4NE ANy
T,T, = 0 43 +2H 0 (102)
AN3 Aoy 0 4N3N3
The maximum eigenvalue of 71 T}, is given by
fmaz(Te ' Tp) = max{u,vi} (103)

where w = 4X\3A\3 and v; = 2X3(1 — A} +
VAN + (1= X9)2).

The minimum eigenvalue of T, 5 T, is given by

C. Appendix-3

The Hermitian matrices T T, and T,/ T, for the state
Pri A2 = |¢/\1,A2><¢/\1,A2| is given by

A0 ANENoy
TIT, = 0 4X3N2 0 (105)
AN 0 ANE(AT+ D)
AN 0 AN
T, T, = 0 4XA\ 0 (106)
AN 0 4NN

The Hermitian matrices T} T}, and T;] T}, for the state py, , =
|¢A1,3><1/1A1,3 | is given by

ANBAZ+ 22 0 433
Tr'T, = 0 432N 0 (107)
AN3N1 A3 0 AN3N?
4M3N3 0 0
T,T,=| 0 4X2M\+X}) 0 (108)
0 0 0
The maximum eigenvalue of 71 T}, is given by
tmar(Te' Ty) = maz{u,v;},i=2,3  (109)
where  v; = 2220+ A2+ AT+
VOZ+ 22 +22)2 —403)02),i=2.3.
The minimum eigenvalue of TyT T is given by
fmin(Ty " Ty) =0 (110)

D. Appendix-4

The Hermitian matrices 7,17, and TyT T, for the state

PA1,A2,As = |¢)\1,/\2,)\3><w/\1,)\2,)\3| is given by
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AN3(AN2 +)3) 0 42Xz + Aa\y)

TI'T, = 0 4X2\2 0
AN3(A1A3+AN\g) O ANZ(A2 +)))
402N3 0 ANENoy
)T, = 0 42+ 2D 0 (112)
4AN3 Aoy 0 4N3NZ
The maximum eigenvalue of 71 T}, is given by
fimaz (T Ty) = maz{u,va} (113)
where vy = 2007 (k + /=42 Az — A\ A)? + £2),
k=1-M\2.
The minimum eigenvalue of TyT T, is given by
pmin(T, T T,) = 0 (114)

E. Appendix-5

Classification witness operator for the classification of
states contained in subclass-II and subclass-III

The GHZ class of state within subclass-III with state
parameters (Ao, A1, A2, Ay) is given by

|92, 20) = A0|000) + A1]100) + Ag|101) + Ag[111) (115)

with A3 + A7 + A3 + \] = 1.

The Hermitian matrices 77 T, and T, T, for the state
Prire = |Uria0) (¥as 2, | are given in appendix-3.

The expression for Tr[(T,," T,,) + (T,," T,)] is given by

Tri(T."Ty) + (T, T,)] = 16022 +8M\2)3 +

4NN (116)

Case-I: If 0, (To " Ty) = 4N2NF and i (T, 7 T},) = 0.

The inequality then can be re-expressed in terms of the
expectation value of the operators O, as

O 2
_2)\0(\/5)\2 + )\1) < <Ol>¢)\1,A2 — %1 17)

If A2 = 0, then above inequality becomes,

(<01>w1,x2 )2

~2X0A1 < (O1) gy, 5, — . (118)

The R.H.S of the inequality is positive for every state |1)).
Thus it is not possible to differentiate between the class of
states [tx, r,=0) € Sz and [Py, »,) € Ss, using the inequal-
ity (TI8) for this case.

Case-Il: If fiar (T Te) = 20300\ + A2 + A} +

(1



VT 22+ 22 = 4A303) and fimin(T,"T,) = 0 Then
the inequality can be re-written as

—2X0(V2Xa + A1) < (O1)y,, 5, — P (119)
We can now define an Hermitian operator Hg, as
Hy = 01— P] + % (120)
Therefore, the inequality can be re-formulated as
—2V2X\oA2 < (Hs)y,, (121)
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If Ay = 0 then (Hs)y, ,, > 0, for all states |5, =0 x,=0) €
S1 and ‘1/))\1’)\2:0> € 9s.

For Ay # 0, then there exist state parameters (Mg, A1, A2, A\g)
for which Tr(Hspa,,n,) < 0. For instance, if we take
Ao = 0.01, Ay = 0.948631, Ay = 0.3 and Ay = 0.1, we
get Tr[Hgpx, a,] = —0.129027. Thus, the Hermitian oper-
ator Hg serves as a classification witness operator and clas-
sify GHZ class of states described by the density operator
Prire € S3 and the GHZ of states px,—ox,=0 € Si or
PA1,2;=05 (Z = 273) € Ss.

Simillarly, we can construct witness operator that can classify
GHZ states belonging to subclass-III and subclass-IV.
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