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Abstract

Quantum key distribution (QKD) allows two parties to establish a shared secret
key that is secure against all-powerful adversaries. One such protocol named B92 is
quite appealing due to its simplicity but is highly sensitive to channel noise. In this
work, we investigate a high-dimensional variant of an extended version of the B92
protocol and show that it can distill a key over high noise channels. The protocol
we consider requires that Alice send only three high-dimensional states and Bob only
perform partial measurements. We perform an information-theoretic security analysis
of our protocol and compare its key rate to that of a high-dimensional BB84 protocol
over depolarization and amplitude damping channels.

1 Introduction

The need for perfect security necessitated the development of cryptographic systems where
there are no computational constraints on the capabilities of the adversary. Quantum key
distribution (QKD) is one such system that is extensively studied and is increasingly ma-
turing to the point of real-world adoption. In QKD, using quantum mechanical properties
of communication resources, two parties Alice (A) and Bob (B), following a specified set of
steps, generate a shared secret that is secure from an all-powerful adversary Eve (E).

Since the first QKD protocol by Bennett and Brassard in 1984 (BB84) [1], there have
been numerous advances in both theoretical and practical aspects [2, 3, 4]. However, because
generating, maintaining, and manipulating quantum resources are exceptionally hard with
current technologies, people have strived to create conceptually simpler protocols that also
require less quantum resources. For instance, BB84 itself uses four quantum states and two
measurement bases. In 1992, Bennett proposed an even simpler QKD protocol called B92,
that uses only two non-orthogonal states and measurement bases [5].
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The unconditional security of this protocol has been investigated by several authors [6, 7]
with continually improving results (for instance, in [7], a noise tolerance of 6.5% is reported).
However, B92 is very noise sensitive compared to other protocols like BB84 as was already
noted in the original paper [5]. Lucamarini et al. [8], proposed an extended version of
B92 (Ext-B92) which added two additional non-informative states to better bound Eve’s
information gain. Depending on the user-defined choice for key encoding states, the noise
tolerance of that protocol can approach 11% in the asymptotic scenario [8], similar to BB84,
and at least 7% in the finite key scenario [9].

These protocols mentioned above use qubits (dimension two systems) as the commu-
nication resource between Alice and Bob. However, higher dimensional quantum systems
(see [10] for a brief survey) have been shown to have several advantages and interesting
properties over qubit-based protocols. Some protocols have been shown to withstand a high
channel noise level as the dimension of the system increases [11, 12, 13, 14]. Others exhibit
interesting theoretical properties such as the so-called “Round Robin” protocol which can
bound Eve’s information based only on the dimension of the system and not necessarily
through observing channel noise [15]. In addition to several theoretical results that prove
the unconditional security of HD-QKD protocols, the actual technology to implement high-
dimensional systems is also becoming more mature with recent high-dimensional protocols
proving to be feasible to implement [16, 17, 18, 19, 20]. Thus, it is worth studying protocols
that are highly susceptible to noise, like B92 based variants (in our case the extended B92),
to see if HD-systems give an advantage.

In this work, we propose a high-dimensional variant of the Ext-B92 protocol of [8]. Keep-
ing in mind that certain high-dimensional states are difficult to create or distinguish, we make
sure in our protocol to limit the required state preparations and measurement operations
required. In particular, Alice need only be able to send three high dimensional states while
Bob need only be able to perform a computational basis measurement (distinguishing any
computational state {|0〉 , |1〉 , · · · , |D − 1〉}) or be able to perform a partial basis measure-
ment in an alternative basis - this partial measurement need only distinguish a particular
superposition state defined in the protocol and need not be capable of distinguishing all D
possible states. As far as we are aware, this is a novel high-dimensional QKD protocol.

Despite these limitations on Alice and Bob’s capabilities, we show that these higher
dimensional states do help improve noise tolerance in this protocol as the dimension of the
system increases which agrees with recent research on high-dimensional BB84. We perform
an information-theoretic security analysis and show that it can maintain a positive key rate
while withstanding noise levels of 5.35% for qubits (dimension 2) to 15.5% for dimension 214

in a depolarizing channel. Thus, we show that higher dimensions can aid in depolarization
noise tolerance for a B92 style encoding scheme with (partial) extended test cases in the
form of a third basis state being transmitted for testing the channel. Moreover, we consider
an amplitude damping channel and show that choosing the distinguished superposition state
carefully in a high-dimensional QKD protocol is of significant importance as different choices
lead to different noise tolerances.

We make several contributions in this work. First, we describe and analyze a high-
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dimensional version of the Ext-B92 protocol originally introduced for qubits [8]. We perform
an information theoretic security analysis against collective attacks (a powerful class of at-
tacks against QKD protocols) to derive its key-rate in the asymptotic scenario for arbitrary
dimensions and channel parameters. Our methods here may have a broader impact in other
QKD protocol security analyses, especially for high-dimensional systems with only partial
basis measurements or state preparations as with our protocol here. Finally, we evaluate
our resulting key rate and compare it with a high-dimensional version of the BB84 protocol,
showing how the choice of states to send can greatly affect the key-rate depending on the
channel.

2 Notation

For a quantum system A we will use ρA to denote its density operator. Its von Neumann
entropy will be denoted by S(A) = S(ρA) and is defined by − tr(ρA log ρA). Given a bipartite
quantum state ρAE shared by two systems A and E, we will denote the conditional von
Neumann entropy of A given access to E, by S(A|E)ρ. We will often forgo writing the
subscript ρ when the context is clear. This conditional entropy is defined as S(AE)−S(E).
The Shannon entropy of A will be denoted by H(A) and the conditional Shannon entropy
of two systems A and B, will be denoted by H(A|B). The binary entropy function will
also be represented by H(p) where H(p) = −p log(p) − (1 − p) log(1− p) for p ∈ [0, 1]. All
logarithms presented in this work are base 2. For an arbitrary quantum state |ψ〉, we use
P (|ψ〉) to denote its projector |ψ〉〈ψ|. Finally, given a vector |x〉 and a numerical value such
as 1

2
we sometimes write

∣∣1
2
x
〉

to mean 1
2
|x〉.

Later, to compute the lower bound of the conditional von Neumann entropy of a classical-
quantum state ρAE, we make use of the following theorem:

Theorem 1. (From [21]): Let HA⊗HE be a finite dimensional Hilbert space. Consider the
following density operator.

ρAE =
1

N

(
|0〉〈0|A ⊗

τ∑
i=1

∣∣e0i 〉〈e0i ∣∣+ |1〉〈1|A ⊗
τ∑
i=1

∣∣e1i 〉〈e1i ∣∣
)
,

where N > 0 is a normalization term, τ <∞, and each
∣∣eji〉 ∈ HE (these are not necessarily

normalized, nor orthogonal, states; also it might be that
∣∣eji〉 ≡ 0 for some i and j). Let

nji =
〈
eji
∣∣eji〉 ≥ 0. Then:

S(A|E)ρ ≥
τ∑
i=1

(
n0
i + n1

i

N

)
· Si,

where:

Si =

{
h
(

n0
i

n0
i+n

1
i

)
− h(λi) if n0

i > 0 and n1
i > 0,

0 otherwise.
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and:

λi =
1

2
+

√
(n0

i − n1
i )

2 + 4 Re2 〈e0i |e1i 〉
2(n0

i + n1
i )

.

3 The Protocol

The protocol we propose here is a high-dimensional variant of the Ext-B92 protocol originally
described in [8]. In that protocol, two non-orthogonal states, similar to B92, are used for key
encoding while two additional states are used for quantum tomography (these four states
together come from two distinct bases). In the higher dimensional case we analyze here, we
will use two non-orthogonal states for key encoding; for error testing, we adopt a simplifi-
cation from [9] (done there for the qubit case) and not require users to be able to control
two complete bases. More specifically, in our high-dimensional extended B92, Alice sends |i〉
and |φ〉 = 1√

2
(|i〉+ |j〉) to encode classical key bits of 0 and 1 respectively, where |i〉 , |j〉 are

fixed and chosen from the D-dimensional computational basis states {|0〉 , ..., |D − 1〉}. We
ask that Alice send only |j〉 as the additional uninformative state. Thus, Alice need only
be able to prepare and send three distinct quantum states. On Bob’s part, we require his
ability to measure in two POVMs. These are Z = {|0〉〈0| , ..., |D − 1〉〈D − 1|} (the complete
computational basis) and X = {|φ〉〈φ| , I − |φ〉〈φ|} where of course, the identity operator I
is understood to be D-dimensional. Hence, Bob would be able to detect any computational
basis state but would only need to detect |φ〉. Our protocol, which we call here HD-Ext-B92,
in detail appears in Protocol 1.

Table 1: Definition of Alice and Bob’s directly observable parameters (|b〉 ∈
{|0〉 , ..., |D − 1〉})

Parameter Description of Probability Value
pib Bob observes |b〉 conditioned on Alice sending |i〉 and Bob choosing the Z basis
pjb Bob observes |b〉 conditioned on Alice sending |j〉 and Bob choosing the Z basis
pφb Bob observes |b〉 conditioned on Alice sending |φ〉 and Bob choosing the Z basis
piφ Bob observes |φ〉 conditioned on Alice sending |i〉 and Bob choosing POVM X
pjφ Bob observes |φ〉 conditioned on Alice sending |j〉 and Bob choosing POVM X
pφφ Bob observes |φ〉 conditioned on Alice sending |φ〉 and Bob choosing POVM X

4 Security Analysis

In the quantum communication stage of our protocol, Alice and Bob use the quantum channel
to establish a raw-key. Because Eve has total control over this channel, she may attack the
traveling signals arbitrarily while only respecting the laws of physics. In this paper, we
consider collective attacks whereby Eve attacks each round of the protocol independently

4



Protocol 1 High-dimensional Extended B92 (HD-Ext-B92)

Public Parameters: The dimension of a signal state D ≥ 2 and the choice of distinct
i, j ∈ {0, 1, · · · , D − 1} are arbitrary, but are fixed at the start of the protocol and known
to all parties (including the adversary).
Quantum Communication Stage: The quantum communication stage of the protocol
will repeat the following until a sufficiently large raw-key has been distilled:

1. Alice chooses randomly whether this round will be a “key-round”, where a raw key bit
will attempt to be established, or a “test” round, which will be used for error testing
later. If this is a key-round, she will choose a random key bit and if this is 0, she will
prepare and send the state |i〉; otherwise, she sends the state |φ〉. If this is a test round,
she will prepare |i〉, |j〉, or |φ〉 choosing uniformly at random.

2. Bob measures in either the Z basis or using POVM X. In a key-round, if he uses Z
and observes any outcome other than |i〉, then he sets his bit to be 1. Otherwise, if he
uses POVM X and observes I − |φ〉〈φ|, then he sets his bit to be 0. All other results
are considered inconclusive.

3. Alice informs Bob over the authenticated channel whether this was a test round or a
key-round. If this is a key-round, Bob also tells Alice if his result was inconclusive (in
which case both parties discard the iteration). On test-rounds, both parties disclose
their choices and measurement outcomes to determine the error rate in the channel.
In particular, they will observe those statistics enumerated in Table 1. Note that we
will not discard mismatched basis events; i.e., events where Alice and Bob use different
bases. Indeed, such events can greatly improve key generation rates [22, 23, 24, 25, 26]
and so we use this technique here.

Classical Communication Stage: Alice and Bob will next run an error correction protocol
and a privacy amplification protocol resulting in a secret key of size ` bits (possibly ` = 0 if
it is determined that Eve has too much information, to be discussed later in this paper, and
so parties abort the protocol).
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and identically, but may delay her measurements until the end of the protocol. These are
a powerful class of attack which often imply security of general coherent attacks [27, 28],
though we leave a complete proof of whether this applies to our protocol as future work.

The goal of our analysis is to obtain a lower bound on the conditional von Neumann
entropy S(A|E), which represents how much entropy is left in Alice’s register A, given Eve’s
(quantum) memory E. Then, we will find how much this quantity differs from the conditional
Shannon entropy H(A|B), which represents how much entropy is left in Alice’s register given
Bob’s memory B. These two terms will ultimately let us calculate our quantity of interest
from this protocol, which is, the key rate r (namely, the number of secret key bits, denoted
` over the size of the produced raw key denoted M). To compute the key rate we use the
Devetak Winter key-rate [29, 30], which states the key rate r in the asymptotic setting is:

r = lim
M→∞

`

M
= inf[S(A|E)−H(A|B)], (1)

where the infimum is over all collective attacks performed by Eve that fall within the range
of observed noise statistics (in our case, those statistics shown in Table 1). Note that the
above entropy functions are computed over a single key-round. However S(A|E) is not
straightforward to calculate, unlike H(A|B), because it involves Eve’s quantum memory
on which we only have partial information. Nevertheless, we can obtain a lower bound on
S(A|E) which will be the main goal of our security analysis.

We begin by modeling the state of the joint quantum system held between Alice, Bob,
and Eve at the end of one key-round of the protocol. That is, to compute Equation 1, we
need the von Neumann entropy of the resulting density operator conditioned on a key bit
being distilled and so we must model the joint quantum state, conditioning on the event
that Alice and Bob establish a key bit.

At the beginning of the protocol, Alice decides on her classical bit and sends her qudit
accordingly to Bob. If she wants to send classical bit 0, she sends a |i〉 and if she wants to
send 1, she sends a |φ〉. So when she sends the qudits, her own classical register, denoted
by A and the transit register, denoted by T (used to model the traveling qudit), is in the
following state:

ρ
(0)
AT =

1

2
|0〉〈0|A ⊗ |i〉〈i|T +

1

2
|1〉〈1|A ⊗ |φ〉〈φ|T .

Eve attacks this traveling qudit with a unitary attack operator U , which acts on Hilbert
space HT ⊗ HE. Here, HE models Eve’s memory space. Assuming her own memory is in
an arbitrary but normalized state |χ〉E that resides in HE, we can describe U ’s action on a
basis state |a〉 as:

U |a〉T ⊗ |χ〉E =
D−1∑
b=0

|b, eab〉TE ,

where D is the dimension of each qudit and each |eab〉 is an arbitrary state in Eve’s ancilla.
Because U is unitary, we note that the following must hold:

∑D−1
b=0 〈eib|eib〉 = 1. Additionally,
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by linearity of U we have:

U |φ〉T = U
1√
2

(|i〉T + |j〉T )

=
1√
2

D−1∑
b=0

|b〉T ⊗ (
∣∣eib〉E +

∣∣ejb〉E)

=
1√
2

D−1∑
b=0

|b〉T ⊗ |fb〉E , (2)

where, |fb〉E := |eib〉E +
∣∣ejb〉E. So the result of Eve’s attack on ρ

(0)
AT is the following:

ρ
(1)
ATE =

1

2
|0〉〈0|A ⊗ U |i〉〈i|T U

† +
1

2
|1〉〈1|A ⊗ U |φ〉〈φ|T U

†

=
1

2
|0〉〈0|A ⊗ P

(
D−1∑
b=0

∣∣b, eib〉TE
)

+
1

2
|1〉〈1|A ⊗ P

(
1√
2

D−1∑
b=0

|b〉T ⊗ |fb〉E

)
,

where, recall, P (|z〉) = |z〉〈z| is the projection operator. Henceforth, we will forgo writing
the subscript for a register when the context is clear. Now, after the qudit arrives at Bob’s
lab, he measures the transit register T in either POVM Z or X with equal probability. Let’s
consider the case when he uses X and gets the outcome I − |φ〉〈φ| (we are conditioning on
a successful key-round for this analysis). This is the case when Bob sets his key-bit to 0,
because in a noiseless scenario, this outcome could only be obtained when Alice would have
sent an |i〉. Let’s define the measurement operator in this case as M0 = IA⊗ (I−|φ〉〈φ|)⊗ IE.
Then the un-normalized post-measurement state, conditioned on him observing M0 (again,
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we are only interested, for the moment, in a successful key distillation round) is:

ρXATE = M0 · ρ(1)ATE ·M
†
0

=
1

2
|0〉〈0| ⊗ P

(
((I− |φ〉〈φ|)⊗ I)

∑
b

∣∣b, eib〉 )
+

1

2
|1〉〈1| ⊗ P

( 1√
2

(
(I− |φ〉〈φ|)⊗ I

)∑
b

|b〉 ⊗ |fb〉
)

=
1

2
|0〉〈0| ⊗ P

(∑
b

∣∣b, eib〉− 1

2
(
∣∣i, eii〉+

∣∣i, eij〉+
∣∣j, eii〉+

∣∣j, eij〉))
+

1

2
|1〉〈1| ⊗ P

( 1√
2

(∑
b

|b, fb〉 −
1

2
(|i, fi〉+ |i, fj〉+ |j, fi〉+ |j, fj〉)

))
=

1

2
|0〉〈0| ⊗ P

( ∑
b 6=i,b 6=j

∣∣b, eib〉+
1

2
(|i〉 ⊗ (

∣∣eii〉− ∣∣eij〉))− 1

2
(|j〉 ⊗ (

∣∣eii〉− ∣∣eij〉)))
+

1

2
|1〉〈1| ⊗ P

( 1√
2

( ∑
b 6=i,b 6=j

|b, fb〉+
1

2
(|i〉 ⊗ (|fi〉 − |fj〉))−

1

2
(|j〉 ⊗ (|fi〉 − |fj〉))

))
=

1

2
|0〉〈0| ⊗ P

( ∑
b 6=i,b 6=j

∣∣b, eib〉+
1

2
|i, g〉 − 1

2
|j, g〉

)
+

1

2
|1〉〈1| ⊗ P

( 1√
2

( ∑
b 6=i,b 6=j

|b, fb〉+
1

2
|i, h〉 − 1

2
|j, h〉

))
, (3)

where in the last equality, we have defined |g〉 = |eii〉 −
∣∣eij〉 and |h〉 = |fi〉 − |fj〉. Now that

Bob has his X basis measurement result at his hand, we can trace out the transit register T
and add Bob’s register B to hold his measurement result. Then the resulting state is:

ρXAEB =
1

2
|0〉〈0|A ⊗

( ∑
b 6=i,b 6=j

∣∣eib〉〈eib∣∣+
1

2
|g〉〈g|

)
⊗ |0〉〈0|B

+
1

2
|1〉〈1|A ⊗

1

2

( ∑
b 6=i,b 6=j

|fb〉〈fb|+
1

2
|h〉〈h|

)
⊗ |0〉〈0|B .

Similarly, if he uses POVM Z and gets outcome I − |i〉〈i|, he can be certain in a noiseless
scenario that Alice has sent a |φ〉. With the measurement operator M1 := IA⊗(I−|i〉〈i|)⊗IE,
in this case we get the following un-normalized post-measurement state:

ρZATE = M1 · ρ(1)ATE ·M
†
1

=
1

2
|0〉〈0| ⊗ P

(
(I− |i〉〈i|)

∑
b

∣∣b, eib〉 )+
1

2
|1〉〈1| ⊗ P

( 1√
2

(I− |i〉〈i|)
∑
b

|b〉 ⊗ |fb〉
)

=
1

2
|0〉〈0| ⊗ P

(∑
b 6=i

∣∣b, eib〉 )+
1

2
|1〉〈1| ⊗ P

( 1√
2

∑
b 6=i

|b〉 ⊗ |fb〉
)
.
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Following a similar procedure as before, we trace out the transit register T and add Bob’s
register holding his measurement result. The resulting density operator is:

ρZAEB =
1

2
|0〉〈0|A ⊗

∑
b 6=i

∣∣eib〉〈eib∣∣⊗ |1〉〈1|B +
1

2
|1〉〈1|A ⊗

1

2

∑
b6=i

|fb〉〈fb| ⊗ |1〉〈1|B .

Then the total (still non-normalized) density operator that represents a key-bit generation
round, is the following:

ρAEB = ρXAEB + ρZAEB

=
1

2
|0〉〈0|A ⊗

( ∑
b6=i,b 6=j

∣∣eib〉〈eib∣∣+
1

2
|g〉〈g|

)
⊗ |0〉〈0|B

+
1

2
|1〉〈1|A ⊗

1

2

( ∑
b6=i,b 6=j

|fb〉〈fb|+
1

2
|h〉〈h|

)
⊗ |0〉〈0|B

+
1

2
|0〉〈0|A ⊗

∑
b 6=i

∣∣eib〉〈eib∣∣⊗ |1〉〈1|B +
1

2
|1〉〈1|A ⊗

1

2

∑
b 6=i

|fb〉〈fb| ⊗ |1〉〈1|B

=
1

2
|0〉〈0|A ⊗

(( ∑
b 6=i,b 6=j

∣∣eib〉〈eib∣∣+
1

2
|g〉〈g|

)
⊗ |0〉〈0|B +

∑
b 6=i

∣∣eib〉〈eib∣∣⊗ |1〉〈1|B )
+

1

2
|1〉〈1|A ⊗

(1

2

( ∑
b 6=i,b 6=j

|fb〉〈fb|+
1

2
|h〉〈h|

)
⊗ |0〉〈0|B +

1

2

∑
b 6=i

|fb〉〈fb| ⊗ |1〉〈1|B
)
. (4)

Keeping in mind that, our ultimate goal is to bound Eve’s entropy about Alice’s register, i.e.
S(A|E), in the case where Alice and Bob shares a key-bit, we trace out Bob’s register too,
keeping only the registers of Alice and Eve. Thus, we calculate the final required density
operator as:

N · ρAE =
1

2
|0〉〈0|A ⊗

( ∑
b 6=i,b 6=j

∣∣eib〉〈eib∣∣+
1

2
|g〉〈g|+

∑
b 6=i

∣∣eib〉〈eib∣∣ )
+

1

2
|1〉〈1|A ⊗

(1

2

∑
b 6=i,b 6=j

|fb〉〈fb|+
1

4
|h〉〈h|+ 1

2

∑
b 6=i

|fb〉〈fb|
)

= |0〉〈0|A ⊗
(1

2

∑
b6=i,b 6=j

∣∣eib〉〈eib∣∣+
1

4
|g〉〈g|+ 1

2

∑
b 6=i,b 6=j

∣∣eib〉〈eib∣∣+
1

2

∣∣eij〉〈eij∣∣ )
+ |1〉〈1|A ⊗

(1

4

∑
b6=i,b 6=j

|fb〉〈fb|+
1

8
|h〉〈h|+ 1

4

∑
b6=i,b 6=j

|fb〉〈fb|+
1

4
|fj〉〈fj|

)
= |0〉〈0| ⊗

( ∑
b6=i,b 6=j

∣∣eib〉〈eib∣∣+
1

2

∣∣eij〉〈eij∣∣+
1

4
|g〉〈g|

)
+ |1〉〈1| ⊗

(1

2

∑
b 6=i,b 6=j

|fb〉〈fb|+
1

4
|fj〉〈fj|+

1

8
|h〉〈h|

)
, (5)
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where the normalization term N can be calculated as:

N =
∑

b6=i,b 6=j

〈
eib
∣∣eib〉+

1

2

〈
eij
∣∣eij〉+

1

4
〈g|g〉+

1

2

∑
b 6=i,b 6=j

〈fb|fb〉+
1

4
〈fj|fj〉+

1

8
〈h|h〉 (6)

Now, using Theorem 1, we may compute the conditional entropy as:

S(A|E) ≥
∑

b 6=i,b 6=j

(
n0
b + n1

b

N

)
sb +

(
n0
i + n1

i

N

)
si + (

n0
j + n1

j

N
)sj, (7)

where:

n0
b :=

〈
eib
∣∣eib〉 , n1

b :=
1

2
〈fb|fb〉 , for all b 6= i, j

n0
i :=

1

2

〈
eij
∣∣eij〉 , n1

i :=
1

8
〈h|h〉 ,

n0
j :=

1

4
〈g|g〉 , n1

j :=
1

4
〈fj|fj〉 .

and:

sb = H2

(
n0
b

n0
b + n1

b

)
−H2

1

2
+

√
(n0

b − n1
b)

2 + 4× Re2
〈
eib

∣∣∣ 1√
2
fb

〉
2(n0

b + n1
b)



si = H2

(
n0
i

n0
i + n1

i

)
−H2

1

2
+

√
(n0

i − n1
i )

2 + 4× Re2
〈

1
2
eij

∣∣∣ 1
2
√
2
h
〉

2(n0
i + n1

i )


sj = H2

(
n0
j

n0
j + n1

j

)
−H2

1

2
+

√
(n0

j − n1
j)

2 + 4× Re2
〈
1
2
g
∣∣1
2
fj
〉

2(n0
j + n1

j)

 .

Thus, to find a lower bound on S(A|E) (thus giving us a lower bound on the protocol’s
key-rate), we must determine bounds for the inner-products appearing in the above expres-
sions. Of course, these inner products are functions of Eve’s quantum ancilla. We show how
to determine suitable bounds on these systems based only on parameters that are directly
observable in our protocol during test rounds (see Table 1).

4.1 Parameter Estimation

To calculate the conditional entropy of ρAE, we need to estimate all the inner products ap-
pearing in equation (6). This can be done by connecting these inner products with observable
noise statistics that arise from test rounds of Alice and Bob’s quantum communication. Let

10



us see the statistics that can be observed directly in a test round. For example, in a round
where Alice sends an |i〉 or a |j〉, Eve attacks with U , and Bob measures in Z; the proba-
bility that Bob gets a particular outcome |b〉〈b| in Z can be used to estimate partial Z basis
channel noise. In the following, by pib and pjb, we denote the probability that, given that
Alice prepares |i〉 or |j〉 and Bob measures the transit register in basis Z then the outcome
is |b〉〈b| for a particular b ∈ {0, ..., D − 1}. (See also Table 1.)

pib = 〈i|U †(|b〉〈b| ⊗ I)U |i〉 =
〈
eib
∣∣eib〉 (8)

pjb = 〈j|U †(|b〉〈b| ⊗ I)U |j〉 =
〈
ejb
∣∣ejb〉 (9)

thus giving us {n0
b} as needed in the entropy equation. Now, we trace the evolution of the

quantum system when Alice prepares |i〉 and Bob measures in POVM X. For example, we
can not observe the inner product

〈
eii
∣∣eij〉 directly. But we consider the probability that Alice

sends an |i〉, Eve attacks with U , and Bob measures in X to find a |φ〉, denoted as piφ:

piφ = 〈i|U †(|φ〉〈φ| ⊗ I)U |i〉

=
∑
b,c

〈b| |φ〉〈φ| |c〉
〈
eib
∣∣eic〉

=
1

2

∑
b,c

〈b| (|i〉〈i|+ |i〉〈j|+ |j〉〈i|+ |j〉〈j|) |c〉
〈
eib
∣∣eic〉

=
1

2
(
〈
eii
∣∣eii〉+

〈
eii
∣∣eij〉+

〈
eij
∣∣eii〉+

〈
eij
∣∣eij〉)

=
1

2
(pii + 2 Re

〈
eii
∣∣eij〉+ pij), (10)

where, we have used equation (8) for pii, pij and an elementary property of complex inner
products. Notice that, even though we could not observe

〈
eii
∣∣eij〉, equation (10) will imply:

2 Re
〈
eii
∣∣eij〉 = 2piφ − pii − pij. (11)

Using this estimation of Re
〈
eii
∣∣eij〉, we can now estimate the inner product 〈g|g〉, which

appears in the normalizer N in equation (6). This is:

〈g|g〉 = (
〈
eii
∣∣− 〈eij∣∣)(∣∣eii〉− ∣∣eij〉)

=
〈
eii
∣∣eii〉− 〈eii∣∣eij〉− 〈eij∣∣eii〉+

〈
eij
∣∣eij〉

= pii − 2 Re
〈
eii
∣∣eij〉+ pij

= 2pii + 2pij − 2piφ. (12)

Now let’s focus on calculating 〈fb|fb〉. Remembering that |fb〉 = |eib〉 +
∣∣ejb〉 (See equation

(2)), we can easily derive the following:

〈fb|fb〉 = (
〈
eib
∣∣+
〈
ejb
∣∣)(∣∣eib〉+

∣∣ejb〉)
=
〈
eib
∣∣eib〉+

〈
eib
∣∣ejb〉+

〈
ejb
∣∣eib〉+

〈
ejb
∣∣ejb〉

= pib + 2 Re
〈
eib
∣∣ejb〉+ pjb, (13)

11



where we have used equation (8) and (9) for pib, pjb. Now if we look closely at equation (2),
we see that 〈fb|fb〉 is actually directly observable. Because it is the probability that Alice
sends a |φ〉, Eve attacks with U , and conditioned on the case that Bob measures in Z, gets
an outcome |b〉. We denote it by pφb and see that:

pφb = 〈φ|U †(|b〉〈b| ⊗ I)U |φ〉

=
( 1√

2

D−1∑
c=0

〈c| ⊗ 〈fc|
)

(|b〉〈b| ⊗ I)
( 1√

2

D−1∑
d=0

|d〉 ⊗ |fd〉
)

=
1

2

D−1∑
c,d=0

〈c| |b〉〈b| |d〉 〈fc|fd〉

=
1

2
〈fb|fb〉 , (14)

and consequently, 〈fb|fb〉 = 2pφb. So, from equations (13) and (14) we infer the following:

2 Re
〈
eib
∣∣ejb〉 = 2pφb − pib − pjb. (15)

Notice that equation (13) and consequently (15), holds for all b = 0, ..., D − 1. So we
immediately get 〈fj|fj〉 for normalizer N . Now let’s calculate the last inner product in N
which is 〈h|h〉. First let’s discover the constituent inner products for 〈h|h〉. Then we will
connect each of those to Alice and Bob’s observables.

〈h|h〉 = (〈fi| − 〈fj|)(|fi〉 − |fj〉)
= 〈fi|fi〉 − 〈fi|fj〉 − 〈fj|fi〉+ 〈fj|fj〉
= 〈fi|fi〉 − 2 Re 〈fi|fj〉+ 〈fj|fj〉 . (16)

Now, let us take advantage of another directly observable quantity. Which is the probability
that Bob would measure a |φ〉 in the X basis if Alice indeed sent a |φ〉. We denote it as pφφ
and see that:

pφφ = 〈φ|U †(|φ〉〈φ| ⊗ I)U |φ〉

=
1√
2

(∑
b

〈b, fb|
)(
|φ〉〈φ| ⊗ I

) 1√
2

(∑
c

|c, fc〉
)

=
1

4

(∑
b,c

(
〈b| |i〉〈i| |c〉 ⊗ 〈fb|fc〉+ 〈b| |i〉〈j| |c〉 ⊗ 〈fb|fc〉

+ 〈b| |j〉〈i| |c〉 ⊗ 〈fb|fc〉+ 〈b| |j〉〈j| |c〉 ⊗ 〈fb|fc〉
))

=
1

4
(〈fi|fi〉+ 〈fi|fj〉+ 〈fj|fi〉+ 〈fj|fj〉)

=
1

4
(〈fi|fi〉+ 2 Re 〈fi|fj〉+ 〈fj|fj〉)

=
1

2
(pφi + Re 〈fi|fj〉+ pφj). (17)
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Equation (17) implies that:

Re 〈fi|fj〉 = 2pφφ − pφi − pφj. (18)

Along with the fact that 〈fi|fi〉 = 2pφi and 〈fj|fj〉 = 2pφj from equation (14), we can say
from equation (16) and (18) that:

〈h|h〉 = 4(pφi + pφj − pφφ).

This concludes the estimation of inner products appearing in the normalizer N of ρAE in (6).
We need to estimate the real parts of three more classes of inner products to calculate each of

the λ-terms appearing in Theorem 1. These are {Re
〈
eib

∣∣∣ 1√
2
fb

〉
}b,Re

〈
1
2
g
∣∣1
2
fj
〉
,Re

〈
1
2
eij

∣∣∣ 1
2
√
2
h
〉

.

In the following we connect these inner products to observable statistics. Let’s focus on the
first one:

Re

〈
eib

∣∣∣∣ 1√
2
fb

〉
=

1√
2

Re(
〈
eib
∣∣)(∣∣eib〉+

∣∣ejb〉)
=

1√
2

Re(
〈
eib
∣∣eib〉+

〈
eib
∣∣ejb〉)

=
1√
2

(pib + pφb −
pib
2
− pjb

2
), (19)

where we have used the definition of |fb〉 in the first equality and have used equation (8) and
(15) to insert the value of Re 〈eib|eib〉 ,Re

〈
eib
∣∣ejb〉. Now let’s focus on the second inner product

Re
〈
1
2
g
∣∣1
2
fj
〉
:

Re

〈
1

2
g

∣∣∣∣12fj
〉

=
1

4
Re(
〈
eii
∣∣− 〈eij∣∣)(∣∣eij〉+

∣∣ejj〉)
=

1

4
Re(
〈
eii
∣∣eij〉+

〈
eii
∣∣ejj〉− 〈eij∣∣eij〉− 〈eij∣∣ejj〉)

=
1

4
(piφ −

pii
2

+ Re
〈
eii
∣∣ejj〉− pij − pφj +

pjj
2

). (20)

The value of Re
〈
eii
∣∣eij〉 and Re

〈
eij
∣∣ejj〉 is found in (11) and (15) respectively. Furthermore,〈

eij
∣∣eij〉 is simply pij because of equation (8). Noticeably, the term

〈
eii
∣∣ejj〉 is not observable.

We will deal with this a bit later. Now we move on to the last of the necessary inner products

for the theorem, Re
〈

1
2
eij

∣∣∣ 1
2
√
2
h
〉

.

1

2
× 1

2
√

2
Re
〈
eij
∣∣h〉 =

1

4
Re
〈
eij
∣∣ (|fi〉 − |fj〉)

=
1

4
Re
〈
eij
∣∣ (∣∣eii〉+

∣∣eji〉− ∣∣eij〉− ∣∣ejj〉)
=

1

4
Re(
〈
eij
∣∣eii〉+

〈
eij
∣∣eji〉− 〈eij∣∣eij〉− 〈eij∣∣ejj〉)

=
1

4

(
piφ −

pii
2

+ Re
〈
eij
∣∣eji〉− pij − pφj +

pjj
2

)
, (21)
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where the unknown terms Re
〈
eij
∣∣eii〉 = Re

〈
eii
∣∣eij〉 ,Re

〈
eij
∣∣ejj〉 can be found in equations (11)

and (15) respectively. In equation (21), we are again faced with a term Re
〈
eij
∣∣eji〉 for which

we do not have a direct observation. Now we deal with this term and the other unobservable
term from equation (20), which is Re

〈
eii
∣∣ejj〉. Although it is not hard to see, we need to

take several steps to find an equation that relates these two inner products. Consider 〈fi|fj〉
which we may expand as:

2 Re 〈fi|fj〉 = 2 Re(
〈
eii
∣∣eij〉+

〈
eii
∣∣ejj〉+

〈
eji
∣∣eij〉+

〈
eji
∣∣ejj〉) (22)

First let’s deal with the unobservable term
〈
eji
∣∣ejj〉. It is easy to see that, the probability of

Alice sending a |j〉, Eve attacking with U and Bob measures in X to find a |φ〉, denoted by
pjφ is:

pjφ = 〈j|U †(|φ〉〈φ| ⊗ I)U |j〉

=
∑
b,c

〈b| |φ〉〈φ| |c〉
〈
ejb
∣∣ejc〉

=
1

2

∑
b,c

〈b| (|i〉〈i|+ |i〉〈j|+ |j〉〈i|+ |j〉〈j|) |c〉
〈
ejb
∣∣ejc〉

=
1

2
(
〈
eji
∣∣eji〉+

〈
eji
∣∣ejj〉+

〈
ejj
∣∣eji〉+

〈
ejj
∣∣ejj〉)

=
1

2
(pji + 2 Re

〈
eji
∣∣ejj〉+ pjj). (23)

From equation (23), it is clear that:

2 Re
〈
eji
∣∣ejj〉 = 2pjφ − pji − pjj. (24)

The value of one of the other three unobservable terms appearing in equation (22), i.e.,〈
eii
∣∣eij〉 can be found in equation (11). However, Re

〈
eii
∣∣ejj〉 ,Re

〈
eji
∣∣eij〉) are unobservable at

this point. With the help of equations (11) and (24), we can rewrite equation (22) as:

2 Re 〈fi|fj〉 = 2piφ − pii − pij + 2 Re(
〈
eii
∣∣ejj〉+

〈
eji
∣∣eij〉) + 2pjφ − pji − pjj, (25)

We further notice from equation (18),

2 Re 〈fi|fj〉 = 4pφφ − 2pφi − 2pφj. (26)

Then, we equate the previous two equations (25), (26) to ultimately find:

4pφφ − 2pφi − 2pφj = 2piφ − pii − pij + 2 Re(
〈
eii
∣∣ejj〉+

〈
eji
∣∣eij〉) + 2pjφ − pji − pjj

=⇒ 2 Re(
〈
eii
∣∣ejj〉+

〈
eji
∣∣eij〉) = 4pφφ − 2pφi − 2pφj − 2piφ + pii + pij − 2pjφ + pji + pjj

=⇒ Re(
〈
eii
∣∣ejj〉+

〈
eji
∣∣eij〉) = 2pφφ − pφi − pφj − piφ +

pii
2

+
pij
2
− pjφ +

pji
2

+
pjj
2
. (27)
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Let’s define the right-hand side of equation (27) to be K, the value of which may be com-
puted by Alice and Bob based only on observed statistics of the quantum channel. Now we
have all the pieces necessary to compute the conditional entropy S(A|E) according to The-
orem 1. We minimize S(A|E) given by Equation 7 over the two unobservable values. Note
that we minimize over these unobservable quantities as we must assume that Eve choose
the attack strategy that gives her the most information. However, her attack must be con-
strained by the above analysis. These unobservable inner-products are further constrained
by Cauchy-Schwarz in that −√pij · pji ≤ Re

〈
eij
∣∣eji〉 ≤ √pij · pji and similarly for the other

inner product. The sum of these two values is further constrained by Equation 27 (the value
K). With the bound on S(A|E) calculated, we can focus on the Shannon entropy of Alice’s
register given Bob’s register, i.e. H(A|B). To see it clearly, let us remember the density
operator ρAEB in equation (4), where Bob’s register was still in place. From that ρAEB, we
can see that the probability of Alice and Bob sharing different pairs of classical bits 0 and 1
is the following:

p00 =
1

2N

( ∑
b6=i,b 6=j

〈
eib
∣∣eib〉+

1

2
〈g|g〉

)
=

1

2N

( ∑
b 6=i,b 6=j

pib + pii + pij − piφ
)

p01 =
1

2N

∑
b6=i

∣∣eib〉〈eib∣∣ =
1

2N

( ∑
b 6=i,b 6=j

pib + pij

)
p10 =

1

2N

(1

2

∑
b6=i,b 6=j

|fb〉〈fb|+
1

4
|h〉〈h|

)
=

1

2N

( ∑
b 6=i,b 6=j

pφb + (pφi + pφj − pφφ)
)

p11 =
1

4N

∑
b6=i

|fb〉〈fb| =
1

2N

( ∑
b 6=i,b 6=j

pφb + pφj

)
.

From p00, p01, p10, p11, it is trivial to compute H(A|B). From all of this, we may easily
compute a lower-bound on the min-entropy S(A|E) and also directly compute H(A|B) thus
giving us a lower-bound on the key-rate of this protocol.

4.2 Evaluation

Note that the above security analysis and bound of S(A|E) and H(A|B), would hold for an
arbitrary quantum channel; one need only observe those values listed in Table 1 in order to
minimize S(A|E) as described in the previous section. As examples, and to compare with
other protocols, we will evaluate our protocol in two different channels, commonly used in
QKD protocol evaluation. These are the depolarizing channel and the amplitude damping
channel. First, let’s consider the depolarization channel. Given a density operator σ acting
on a Hilbert space of dimension D, the depolarization channel with parameter Q, denoted
here as EQ acts as follows:

EQ(σ) =

(
1− D

D − 1
Q

)
σ +

Q

D − 1
I. (28)
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To calculate the key rate of our protocol, we calculate the required observable statistics
assuming the adversary uses this channel (in particular, the statistics indexed in Table 1).
These are easily found to be:

pii = pjj = pφφ = 1−Q

pib = pjb = pφb =
Q

D − 1

piφ = pjφ = pφi = pφj =
1

2

(
1− DQ

D − 1

)
+

Q

D − 1
.

This is sufficient to evaluate the key-rate of our protocol as shown in Figure 1. Note that,
as with other high-dimensional QKD protocols, as the dimension of the system increases,
the tolerance to depolarization noise also increases. In our numerical evaluations, the noise
tolerance approaches 15.5% as the dimension increases thus showing that, as with other high-
dimensional QKD protocols, the extended-B92 style scheme can also benefit from higher
dimensional systems, at least against this particular channel type.

We also compare with the HD-BB84 protocol [31] which we now state for complete-
ness. Similar to the qubit case, the qudit based HD-BB84 uses two bases, namely, the
computational basis Z = {|0〉 , |1〉 , ..., |D − 1〉} and another basis denoted by X where
X = {|x0〉 , |x1〉 , ..., |xf〉}. We assume the two bases are mutually unbiased. Alice sends
basis states from these two bases and Bob measures in X or Z. If both parties chose the
Z basis, the result is used for their raw key; otherwise, if both parties choose the X basis,
they use this to measure the noise in the quantum channel. The unconditional security of
this protocol has been proven [32, 33]. An entropic uncertainty relation presented in [34]
can be used to easily derive the following asymptotic key rate r for HD-BB84 assuming a
depolarization channel with a noise parameter Q. The final equation reads:

r = logD − 2(H2(Q) +Q log(D − 1)),

The result of this comparison is presented in Figure 2. As expected, BB84 outperforms our
protocol. However, this is not surprising as BB84 at the qubit level also outperforms the B92
and Extended B92 protocol. Furthermore, our high-dimensional protocol is not even utilizing
two complete bases as HD-BB84 does; instead, we are using a weak version where Alice need
only send three states and Bob need only perform partial measurements in the second basis.
Note also that we did not choose an optimal basis choice and, indeed, alternative encoding
selections for the X state may lead to higher key rates for our HD-Ext-B92 protocol as
demonstrated at least for the qubit case [8, 21].

Another channel of interest is the amplitude damping channel which can be described its
Kraus operators:

E0 =


1 0 0 · · · 0
0
√

1− p 0 · · · 0
0 0

√
1− p · · · 0

...
...

...
. . .

...
0 0 0 · · ·

√
1− p

 (29)
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Figure 1: The key-rate of the HD-Ext-B92 protocol for various dimensions D assuming a
depolarization channel. Here the dimension increases from left-to-right from D = 21 to
D = 25 in powers of two. We observe numerically, as the dimension continues to increase,
the noise tolerance for this channel tends towards 15.5%.

Figure 2: Key-rate comparison between our HD-Ext-B92 protocol (solid lines) and the HD-
BB84 protocol (dashed lines). Here the dimension for each protocol line individually increases
left-to-right from D = 21 up to D = 24. Note that for D = 21, HD-BB84 has a noise tolerance
of 11% (as expected since, in that case, it is standard BB84) while the HD-Ext-B92 protocol
does not attain that level of noise tolerance until D = 23. See text for further discussion.
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and:

E1 =


0
√
p 0 · · · 0

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , · · · , ED−1 =


0 0 0 · · · √p
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 . (30)

Table 2: Key rates for high-dimensional extended B92 protocol with D = 4 and different
choices of |i〉 and |j〉 under an amplitude damping channel with parameter p = .08.

|φ〉 = 1√
2
(|i〉+ |j〉) key rate

|i〉 = |0〉 , |j〉 = |1〉 .85
|i〉 = |0〉 , |j〉 = |2〉 .85
|i〉 = |1〉 , |j〉 = |2〉 .29
|i〉 = |1〉 , |j〉 = |3〉 .29

As before, we can compute those observable parameters in Table 1 under this channel
and then use our analysis in the previous section to derive a lower-bound on the key-rate of
our protocol. We can see that the key rate of our protocol can vary significantly with the
choice of basis states, in particular the distinguished |i〉 and |j〉 as shown in Table 2. Since
these are set by the users, they may choose basis states based on the channel properties to
maximize the key rate.

5 Closing Remarks

In this work, we have presented the usage of high-dimensional quantum systems as communi-
cation resources between Alice and Bob in the extended B92 protocol, originally introduced
in [8] for qubits. When extending that protocol to higher dimensions we took care to attempt
to minimize the quantum resources used by parties. In particular, our protocol only requires
Alice to send three different states while Bob need only perform partial measurements.

We performed an information theoretic security analysis against collective attacks and
evaluated under two different channels, the depolarization channel and the amplitude damp-
ing channel. We showed that, as with other high-dimensional protocols, under a depolar-
ization channel the noise tolerance tends to increase with the dimension of the system. For
the HD-Ext-B92 protocol, this tolerance eventually converges to 15.5% (as observed by our
numerical computations). Under an amplitude damping channel, we showed how the choice
of basis states used can greatly affect the key rate of the overall protocol.

Perhaps the biggest open question at the moment is to determine the effects of alternative
superposition states on the protocol. We only considered a state of the form 1√

2
|i〉+ 1√

2
|j〉.

One obvious candidate to consider would be the effect of having Alice send an equal super-
position state. Unfortunately, the security analysis of such a protocol proved to be highly
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difficult, especially when using the technique of mismatched measurements (as we used here).
The analysis might be simplified by having Alice send complete basis states instead of only
a small subset of basis states in which case alternative proof methods may be applied. We
leave this interesting question as future work. We also only performed an asymptotic key
rate analysis - performing a finite key analysis, taking into account also, perhaps, less ideal
measurement devices, would also be interesting to consider.
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