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In this study, we apply quantum master equations beyond secular approximation, and investigate
the nonequilibrium thermodynamic cost of enhanced quantum metrology and quantum correlations.
We find that the nonequilibrium conditions enhance quantum Fisher information (QFI) and quan-
tum correlations predominantly for weak tunneling scenarios. The enhancement is assisted by a
corresponding increase of the thermodynamic cost characterized by the entropy production rate
(EPR). For the strong tunneling regimes, the QFI and quantum correlations can not be unceasingly
boosted by higher thermodynamic costs and decay once the system is overburdened with extremely
large energy currents. The result indicates that for open systems with weak tunneling rates, ther-
modynamic cost can be potentially exploited to improve the quantum metrology and quantum
correlations.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.-a, 05.70.Ln

I. INTRODUCTION AND MOTIVATION

Quantum enhanced measurement is one of the technologies that has seen tremendous developments during the past
decade [1–5]. As early as 1980s, detailed proposals had been put forward to amplify the sensitivity of gravitational
wave detection using squeezed light [6]. Similar method was also proposed in the field of spectroscopy, for example, to
enhance the fermion interferometer sensitivity [7]. One of the standard tools to evaluate the quantum enhancement
is the celebrated quantum Cramér-Rao bound [8]. The Cramér-Rao bound gives the minimum achievable statistical
uncertainty in the estimation of the parameters, which is defined as the quantum Fisher information (QFI) [9, 10].
QFI is a central concept in quantum estimation theory, and it is found instrumental in characterization of the disparity
in quantum states [9, 11]. For example, QFI as a measure of the geometric distance between quantum states, has been
applied to study quantum phase transitions without clear order parameters [12]. In addition, some recent studies have
suggested a strong connection between the QFI, the perturbative gravitational energy and the bulk entanglement in
holography [13–15].

Quantum entanglement is widely used as a measure of nonclassicality for quantum systems. However, unentangled
states can also exhibit non-classical behavior especially when dealing with mixed states [6]. This nonclassical corre-
lation can be captured by quantum discord and mutual information which are used as characterizations of quantum
correlations in information theory, quantum computing and also biophysics due to their robustness against the noises
from the environments [16]. The interplay between the quantum correlations and QFI is a fundamental issue that is
pertinent to a wide range of researches. One of the distinct traits that separate a quantum system from its classical
counterpart is the “spooky action at distance” or quantum entanglement [17], and it is shown to be a resource for
enhanced quantum metrology [18, 19]. Under certain constraints, the greatest precision in the estimation of a given
parameter is constrained by the Standard Quantum Limit (SQL). Nevertheless, by exploiting the very quantum nature
of the system, typically by using the entangled input states, a different limit can be saturated which is called the
Heisenberg limit (HL) [20, 21]. Genuine multiparticle entanglement is a crucial requirement for reaching the highest
sensitivities, for example quantum, in the study of the interferometry [3, 6, 22–24]. While on the other hand, a large
QFI often implies a nonvanishing Bell correlation or other quantum correlations such as quantum discord [25, 26].
Despite the close relationship between QFI and quantum correlations as suggested by accumulating studies, a general
and conclusive statement remains elusive. Some recent studies questioned that quantum metrology may not be related
to the fundamental concept of entanglement and a general model-independent relationship between the entanglement
measures and QFI is still yet to be found [25, 27].

The study of quantum metrology and the quantum correlations in ambient environment is imperative to fully
appreciate the quantum features of complex systems. It has a spectrum of applications to experiments and technologies
of thermometry, magnetometry and biophysical systems [28–32]. For example, for quantum information processors
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(QIP), the interactions with environments limit the fidelity and the quantum enhancement of scaling. This can be
detrimental to the precision of measurements and also the entanglement in the system, which is an important factor
to consider for QIP design [20, 33–35]. Molecular junctions are intrinsically dissipative systems which have been
widely studied. Depending on the specific situation, different mechanisms can lead to the tunneling or energy transfer
between two carriers such as the Föster energy transfer, Dexter energy transfer and surface energy transfer, etc. High
precision of estimation for parameters such as the tunneling strength between the two charge carriers is instrumental
for the experimental studies of the molecular structure [36, 37].

In an open system, the nonequilibrium steady state (NESS) has to be sustained by external resources with the
consumption of thermodynamic costs. To be specific, a constant current of energy input into the system is required
to keep the system in the steady state. This irreversible process is marked by the production of entropy [38].
Thermodynamic cost is not only central and unavoidable for performing computations which is constrained by the
Landauer limit [39], but also finds useful in enhancing quantum coherence and facilitating quantum measurements
[38, 40].

Many studies on dissipative systems are primarily concentrated on the equilibrium scenarios or the relaxation
process [41, 42]. Our goal is to explore the intrinsic nonequilibrium effect with multiple reservoirs, and quantify the
influence of the nonequilibriumness and the thermodynamic costs on the quantum metrology and quantum correlations
of the system. Classically, multiple nonidentical environments lead to the appearance of heat or particle flux and the
appearance of the thermodynamic cost characterized by the entropy production under the breaking of the detailed
balance [43, 44]. Quantum mechanically, this nonequilibriumness was shown to induce the quantum nonlocality and
enhance the coherence besides the “probability flow” [31, 45–50] and plays an important role in the appearance of
strong entanglement which is important for the study of quantum thermal machines [51, 52]. In particular, for a
weakly-interacting bipartite system in the NESS, quantum correlations between the two subsystems are significantly
strengthened as the two parts are driven away from the equilibrium [46]. This NESS coherence which is sustained
by the nonequilibrium environments was shown to be resourceful for quantum metrology in quantum systems such
as optical molecular models and beneficial for quantum energy transfer and quantum refrigerator in the study of
quantum thermal machines and light-harvesting systems [31, 51–55].

To address the effect of nonequilibrium environments and the thermodynamic costs, we study a simplified model
of molecular junctions, which comprises two interacting fermion carriers immersed in two separate reservoirs. The
model and its variations have been applied extensively to study quantum dots, charge transport in many-body system,
thermal entanglements, designs of quantum information processors, and especially the study of molecular junctions
[56–62]. The archetypical model of a molecular junction constitutes two metal or semiconductor electrodes (which can
be modeled as charge reservoirs), molecules and their mutual coupling. This model presents the possibility to study
the plethora of nonequilibrium behavior with the prospect of technological applications in nanoelectronic devices
[36]. The natural parameter in this model is the tunneling strength between the two subsystems. The strength of
the intra-system tunneling is finely tuned to dictate the rate of charge and energy transport, and it is often directly
related to the distance between the two carriers and is closely related to the study the molecular structures in the
biophysics experiments.

The environment is frequently deemed as a negative contribution in the study of quantum metrology; however, we
show that when one has certain control over the environment, it can be used as a booster in the accuracy. This point
has not been carefully addressed, for example, from the thermodynamic perspective in terms of entropy production.
The related result is new and not discussed in our previous work [46]. The result is an extension on the effects of
nonequilibriumness in quantum metrology. We believe that the model we use here is simple enough and clear enough
to convey the idea of nontrivial nonequilibrium impacts on quantum metrology.

In this paper, we apply the Bloch-Redfield equation beyond the secular approximation and quantify the performance
of the parameter estimations of the tunneling rate (also termed as the coherent coupling or RDDI potential depending
on the specific models) with the QFI and the quantum correlations with nonequilibrium thermodynamic costs. In
section two, we introduce the QFI and quantum correlations. In sections three and four, we introduce the system
Hamiltonian and we present the approximate analytic solutions to the equations of motion. In section five, we
investigate the quantum metrology and quantum correlations in the NESS and how the thermodynamic costs can
be exploited to enhance them significantly in a nonequilibrium system in the weak coupling regimes. Finally, we
demonstrate the nonmonotonic behaviors of the QFI and correlations in the strong coupling regime and comment on
the limitations of the enhancement of the QFI and quantum correlations by escalating the thermodynamic costs. The
explicit expressions of the dissipators and the proof of positivity of the EPR semi-classically defined in our paper are
given in the Appendix.
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II. QFI AND QUANTUM CORRELATION MEASURES

In parameter estimation theory, Fisher information plays gives the upper bound of accuracy of estimations [6, 63].
For a random variable x with probability distribution pθ(x), where θ is the parameter of the distributions, we can
estimate the parameter θ based on the observed distribution. However, this estimation may deviate from the real
value and the variance of θ is given by the Cramér-Rao (lower) bound Var(θest) ≥ 1

J
(M)
θ

, where Var(θest) := 〈(θest−θ)2〉
is the variance of θest and the (classical) Fisher information Jθ is defined as

J
(M)
θ =

∫
dMx

1

pθ(x)

(
∂pθ(x)

∂θ

)2

. (II.1)

For a quantum system, the state of a system is given by a density matrix ρθ instead of a probability distribution
function. Random data will be collected after the measurements on the system and these data could be used to
reconstruct the parameter θ of the system. Given a positive-operator-valued measurement (POVM) denoted by a
positive operator Mx, where x labels the possible measurement outcomes, the classical probability pθ(x) in equation
II.1 is given by pθ(x) = tr(ρθ(x)Mx). By introducing the symmetric logarithmic derivative Lρθ , the Fisher information
for M = 1 in II.1 can be written as

Jθ =

∫
dx

1

tr(ρθMx)

(
tr

(
1

2
(ρθLρθ + Lρθρθ)Mx

))2

, (II.2)

where ∂ρθ
∂θ = 1

2 (ρθLρθ + Lρθρθ) and Lρθ = 2
∫∞

0
dse−sρθ ∂ρθ∂θ e

−sρθ . The maximum of all possible measurements gives
a measurement independent quantity Fθ which is termed as the quantum Fisher information (QFI) [6],

Fθ ≡ tr(ρθL
2
ρθ

) = tr(Lρθ
∂ρθ
∂θ

) . (II.3)

The quantum version of the classical Cramér-Rao (lower) bound is called the quantum Cramér-Rao bound, which
reads Var(θest) ≥ 1

MFθ where M is the number of independent identical POVM measurements of the same system
prepared in the same state. Those measurements that can saturate the quantum Cramér-Rao bound are called optimal
distinguishing measurements [6, 22, 32]. The close connection between the QFI and the Bures distance is the following.

Bures distance endows the Riemannian geometry onto the space of density operators, dB(ρ1, ρ2) =
√

2− 2A(ρ1, ρ2),

where A(ρ1, ρ2) = tr(ρ
1/2
1 ρ2ρ

1/2
1 )1/2 represents the fidelity [9, 32]. It can be expressed in the QFI through the

integration of the infinitesimal distance dB(ρθ, ρθ+dθ) = 1
4F(ρθ)d

2θ for two density operators ρθ and ρθ+dθ [64].
Quantum correlations measure the degree of cooperative responses from two quantum systems. Many such measures

exist in the literature, such as the entanglement, quantum discord and quantum mutual information [16, 65–67]. The
entanglement formation, or concurrence, for a four dimensional density matrix is given by E(ρ) = Max(0,

√
λ1−

√
λ2−√

λ3 −
√
λ4), where λi are the eigenvalues of the Hermitian matrix R in the descending order where R is defined as

R = ρ(σy⊗σy)ρ∗(σy⊗σy). In our case of study, the relevant ones are the “X” type density matrices. The concurrence
then reduces to the following expression,

E(ρ) = 2 Max(0, |ρ23| −
√
ρ11ρ44, |ρ14| −

√
ρ22ρ33). (II.4)

Quantum mutual information (QMI) between two subsystems A and B is a direct generalization of classical mutual
information and is defined as:

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) , (II.5)

where S(ρ) = −tr (ρ log2 ρ) is the von Neumann entropy and ρA(B) is the reduced density operator of the subsystem
A(B), respectively. Another generalization of the classical mutual information is the classical correlation C(ρ) and it
is defined as the superior of I(ρ|{Bk}) over all possible von Neumann measurements where

I(ρ|{Bk}) := S(ρA)− S(ρ|{Bk}) , (II.6)

and S(ρ|{Bk}) :=
∑
k pkS(ρk) is the quantum conditional entropy with respect to the von Neumann measurements

Bk. The post-measurement conditional density operator ρk associated with the measurement result k is the ρk =
1
pk

(I ⊗Bk)ρ(I ⊗Bk), where pk = tr(I ⊗Bk)ρ(I ⊗Bk) and I is the identity operator. The quantum discord Q, which

reflects the non-classical correlations between the two subsystems is defined to be the difference between the quantum
mutual information and the classical correlation, Q(ρ) := I(ρ)− C(ρ).
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III. FORMALISM

To address the the effect of nonequilibrium environments, we consider a simplified molecular junction model. The
schematic demonstration of the system in shown in Fig. 1. This setup is pertinent to the essential features of molecular
junctions, charge and energy transport and spin-chain systems in non-equilibrium environments as mentioned in the
previous section. We take the Hamiltonian of the above system to be as follows:

HS = ω1η
†
1η1 + ω2η

†
2η2 + ∆(η†1η2 + η†2η1) (III.1)

where HS represents the free system Hamiltonian without the environments. For the two fermionic sites (S1, S2) each
can either adopt a fermon with certain energy ωi or remain an empty state. Fermion(s) on S1 and S2 have a finite
rate of hopping between the two sites with strength ∆. The two sites are immersed in two separate large reservoirs
(two electrodes) described by the following Hamiltonian,

HR =
∑
k,p

~ωk (a†kpakp) +
∑
q,s

~ωq (b†qsbqs). (III.2)

𝜇1

𝑇1

𝜇2

𝑇2

𝜔1 𝜔2
Δ

Figure 1: Schematic demonstration of the system.

The creation and annihilation operators η†1,2 and η1,2 on the site 1(2) follow the standard fermionic statistics. The
interaction between the system and the reservoirs is the local process of the subsystem S1 or S2 emitting a fermion
to the environment or taking a fermion from the bath it is in contact with. The Hamiltonian can be written as the
following form,

Hint =
∑
k,p

λk (η†1akp + η1a
†
kp) +

∑
q,s

λq (η†2bqs + η2b
†
qs), (III.3)

where λ is the interaction strength between the system and the reservoir and a†kp(b
†
kp) are the creation operators

of a particle with momentum k, polarization p in the reservoirs, while akp(bkp) are the corresponding annihilation
operators. The system Hamiltonian can be diagonalized with the transformation,

~ζ =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
~η (III.4)

where cosθ =
w2 − w1√

(w1 − w2)2 + 4∆2
. After the diagonalization,

HS = ω′1ζ
†
1ζ1 + ω′2ζ

†
2ζ2 (III.5)

with ω′1,2 = 1
2 (ω1 + ω2 ±

√
(ω1 − ω2)2 + 4∆2) and ζ1,2 (ζ†1,2) satisfy the anti-commutation relation.
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We apply the quantum master equation approach with the Born-Markov approximation and without secular ap-
proximation. For details in this approach and the caveat used in our model, see [46]. We ignore the variance in the
reservoirs, i.e. ρ̃R(t) ≈ ρR(0) = ρR and the quantum master equation (QME) takes the following form,

dρ̃S(t)

dt
= −TrR

∫ t

0

ds
[
H̃int(t), [H̃int(s), ρ̃S(t)⊗ ρR]

]
(III.6)

where H̃int ≡ eiH0t/~Hinte
−iH0t/~ is the interaction Hamiltonian in the interaction picture, Hint is the interaction

Hamiltonian in the Schrödinger picture and H0 = HS + HR. We ignore the back reaction from the reservoir to our
system and trace out the environmental contributions to the full density matrix to obtain the reduced density matrix
of our system.

The secular approximation used in the Lindblad master equations fails to capture the population and coherence
couplings which is crucial for nonequilibrium studies [45–47]. Moreover, secular approximation requires extra time
scale hierarchy that is not always applicable, in particularly when nonequilibrium effects are prominent [46, 48].
Generally speaking, the secular approximation is not needed when the intra-system coupling (or the hopping rate)
is much less than the levels of the system, ∆ � ωi. The discussion of the applicability of different master equations
and the secular approximation can be found in Refs. [68–70]. In this study, we apply Markovian approximation
without secular approximation (Bloch-Redfield equation) and examine the nonequilibrium impacts on the system
QFI, the quantum correlations characterized by coherence, linear entropy, mutual information and quantum discord,
and the thermodynamic cost characterized by the entropy production. The explicit form of the equation is given in
the Appendix. A.

IV. QFI OF X-TYPE BIPARTITE SYSTEMS AND EPR

For the system we consider, we are interested in the long time steady state behavior, namely the nonequilibrium
steady state solution (NESS). The solution for the density matrix is obtained by solving the quantum master equation
Eq. A.1 given in the appendix,

ρ̇S(t) = i[ρS , HS ]−D0[ρ]−Ds[ρ] = 0 . (IV.1)

The density matrix of the NESS has two uncoupled parts, of which one is the nonzero entries given in Eq. IV.2, and
the rest are off-diagonal coherence components which are uncoupled with the population terms thus vanish in the
long time limit. Therefore, we only need to consider the ”X” form solution in the energy representation,

ρS(∞) =

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

 , (IV.2)

where ρS(∞) denotes the NESS solution and will be shorthanded as “ρ” from now on. One feature of the Bloch-
Redfield equation is the non-vanishing off-diagonal elements ρ23 and ρ32, the coherence terms in the energy basis which
are omitted by the Lindblad formalism. Those terms are unimportant in the equilibrium regimes but are crucial in
the description of nonequilibrium physics.

After performing the spectral decomposition ρ =
∑N
i pi|ψi〉〈ψi| (where N denotes the number of nonzero pi), the

QFI for a general quantum state described by the density matrix ρ(θ) is given by [71]

Fθ =

N∑
i=1

(∂θpi)
2

pi
+ 4

N∑
i=1

pi〈∂θψi|∂θψi〉 −
N∑

i,j=1

8pipj
pi + pj

|〈ψi|∂θψj〉|2. (IV.3)

The coefficients of the spectrum decomposition in IV.3 can be given in terms of the elements of the reduced density
matrix and is given as follows,

p1 = ρ11, |ψ1〉 = |g〉, (IV.4)

p2 = (ρ22 + ρ33)/2 +
√

(ρ22 − ρ33)2/4 + |ρ23|2, |ψ2〉 = cos
α

2
eiφ|e〉+ sin

α

2
|f〉, (IV.5)

p3 = (ρ22 + ρ33)/2−
√

(ρ22 − ρ33)2/4 + |ρ23|2, |ψ3〉 = sin
α

2
eiφ|e〉 − cos

α

2
|f〉, (IV.6)

p4 = ρ44, |ψ4〉 = |f〉, (IV.7)
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where

α = arctan[2|ρ23|/(ρ22 − ρ33)], φ = arg(ρ23). (IV.8)

For the bipartite quantum system with the spectral decomposition given by Eq. (IV.4), the QFI according to
Eq. (IV.3) can be written as follows,

Fθ =

4∑
i=1

(∂θpi)
2

pi
+

(p2 − p3)2

p2 + p3

[
(∂θα)2 + (∂θφ)2 sin2 α

]
. (IV.9)

We denote the expression of the QFI as Fθ = FEθ +FNθ , where FEθ =
∑4
i=1

(∂θpi)
2

pi
and FNθ = (p2−p3)2

p2+p3

[
(∂θα)2 + (∂θφ)2 sin2 α

]
,

for the reason to be discussed in the following text.
When the two reservoirs are identical, i.e. T1 = T2 = T and µ1 = µ2 = µ, the system relaxes to the equilibrium

with the reservoirs, and the reduced density matrix in energy basis is given as follows,

ρS(∞) =



e2~β(ω−µ)

Z
0 0 0

0
e~βω

′
2−µ

Z
0 0

0 0
e~βω

′
1−µ

Z
0

0 0 0
1

Z


, (IV.10)

where β = 1
T is the reciprocal of the temperature and Z =

(
e2~β(ω−µ) + e~β(ω′

2−µ) + e~β(ω′
1−µ) + 1

)
is a normalization

factor. The coherence terms of the reduced density matrix for the system vanish for the equilibrium case. For the
symmetric junction case, ω1 = ω2 = ω, the QFI can be expressed as follows in the weak tunneling limit ∆� ω,

F∆ ≈
β2

Z
(eβ(ω+∆−µ) + eβ(ω−∆−µ)) =

2β2

Z
eβ(ω−µ) cosh ∆ , (IV.11)

and Z ≈ (1+e~β(ω−µ))2. For equilibrium states with equal temperature and chemical potential for the two reservoirs,

only the first term FEθ in Eq. IV.9 survives. The second term FN∆ = (p2−p3)2

p2+p3

[
(∂θα)2 + (∂θφ)2 sin2 α

]
vanishes in the

equilibrium condition as the steady-state coherence ρ23 = 0 and α = 0. We notice that the first term in Eq. (IV.9)
is formally equivalent to the classical Fisher information if we identify the set of eigenvalues as the probability
distribution. The remaining parts correspond to the contribution from the appearance of the quantum coherence,
which is absent in the equilibrium scenario.

On the other hand, for the two environments not in equilibrium, i.e. T1 6= T2 or µ1 6= µ2, the nonzero terms of the
reduced density matrix up to the first order in the expansion of Γ/∆ are given as below,

ρ11 = (1− n1p)(1− n2p) +O(g2) ,

ρ22 = (n1p − n1pn2p) +O(g2) ,

ρ33 = (n2p − n1pn2p) +O(g2) ,

ρ44 = n1pn2p +O(g2) ,

ρ23 = −i(n1m + n2m)g/2 +O(g2) ,

ρ32 = i(n1m + n2m)g/2 +O(g2) ,

(IV.12)

where ni,p/m = (n(ω′i, T1, µ1)±n(ω′i, T2, µ2))/2, g = Γ
∆ and n(ω′i, Tj , µj) follows Fermi-Dirac distribution. The distinct

trait of this solution is the nonvanishing coherence terms ρ23 and its complex conjugate ρ32. It is worth noticing that
both of the two terms in Eq. IV.9 contribute to F∆ in the nonequilibrium conditions in contrast to that in the
equilibrium scenario. This contribution from the nonequilibrium coherence is non-negative and thus contributes
positively to the QFI.

Nonequilibrium current and thermodynamic cost

This enhanced coherence from the nonequilibrium conditions can appear in many places, such as the entanglement
and quantum correlations of the two subsystems and QFI’s, but this enhanced quantum effect comes with the ther-
modynamic cost characterized by the entropy production. The entropy production rate (EPR) that comes with the
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enhanced quantum effect is a measure of nonequilibriumness. Experimentally, it represents the degree of disorder and
randomness induced in the system, which may be important for precise measurement. The relationship between the
EPR and the QFI is what we focus on in this paper.

The nonequilibrium process often lead to the quantum flux of energies between the two subsystems and the two
reservoirs. The energy flux reaches a constant value when the NESS is reached. We consider the case with fermionic
reservoirs. In the NESS, the constant flux is in the form of particle exchange between the reservoir and the system.
The particle flows from the reservoir with a high temperature or chemical potential to the bath with a low temperature
or chemical potential. The particle flux is characterized by the following expression,

Tr(ρ̇SNS) = Tr

i[ρS , HS ] +
∑
i=1,2

Di[ρS ]

NS
 =

2∑
l=1

Il , (IV.13)

where Il with l = 1, 2 are the particle currents from the reservoir 1 or 2 to the system, and NS = ζ†1ζ1 + ζ†2ζ2 is the
number operator which commutes with the system Hamiltonian HS , i.e. [NS , HS ] = 0. The commutator term is the
unitary evolution of the state operator under the free system Hamiltonian and does not contribute in the expression
of the current. It can be easily shown that the corresponding term vanishes after taking the trace and applying the
cyclic identity of matrix tracing due to the commutation relation of the number operator with the system Hamiltonian.
According to the master equation, we have

Il = Tr(Dl[ρS ]NS) , (IV.14)

where the steady state dissipators Dl[ρS ] are given by the Bloch-Redfield equation

ρ̇S(t) = i[ρS , HS ] +
∑
i=1,2

Di[ρS ] . (IV.15)

Here, Di[ρS ] is the dissipator in contact with the ith reservoir which represents the particle current from that reservoir.
In the Lindblad form, only diagonal (equal frequency) operators show up as the result of the secular approximation.
In the Redfield form, the fast processes (crossing terms) which represent the coherence contribution to the dynamics
are considered and not thrown away. It has the same interpretation as that of the Lindbladian superoperators with
additional coherence contributions. The explicit expression is given in the Appendix A. Similarly, we can define the
energy current Jl:

Tr(ρ̇SHS) =

2∑
l=1

Jl , (IV.16)

where

Jl = Tr(Dl[ρS ]HS) . (IV.17)

In the NESS, the current from the first reservoir to the system is equal to that from the system to the second reservoir,
and it can be shown that J1 + J2 = 0 and I1 + I2 = 0. Since the two thermal reservoirs are only connected by a
microscopic quantum system, the energy transfer process is assumed to be slow and the bath is assumed to be classical
with short thermalization time. We assume the validity of the semi-classical description of the entropy production,
and the EPR of the environment is approximately given as follows,

Ṡ = −J1 − µ1I1
T1

− J2 − µ2I2
T2

= −J1

(
1

T1
− 1

T2

)
+ I1

(
µ1

T1
− µ2

T2

)
. (IV.18)

In order for the reservoirs to remain constant in the NESS, external work needs to be implemented to extract the
entropy away from the system. Therefore, the entropy increase of the external systems is at least at the rate given
by Eq. IV.18. We also remind that the semi-classical approximation of the entropy production can have negativity
problem in certain cases using the local master equations, e.g. when the inter-site coupling is strong. This naively
appears to violate the second law of thermodynamics [72]. This issue arise due to that the coarse-grained definition
of EPR is a semi-classical approximation and cannot be extended into the whole parameter space. In the appendix
B, we provide a proof that the definition works well in the parameter regimes we are interested. We also remark
that in the study of quantum thermodynamics, one of the most widely-used definitions of EPR is expressed through
the relative entropy, which does not have the problem of negativity in the thermodynamic limit [73]. However, that
definition needs the data about the environment which is not applicable using the master equation approach.
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V. WEAK TUNNELING SCENARIO

The effect of nonequilibrium current and thermodynamic cost on QFI
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Figure 2: QFI in nonequilibrium environments. (a) QFI vs ∆T at different chemical potentials. T1 = 0.2,
T2 = T1 + ∆T and ∆ = 0.005. The QFI is enhanced when the chemical potential is away from system frequencies.

(b) QFI vs ∆µ at different chemical potentials. T1 = T2 = 0.2, µ1,2 = 1±∆µ and ∆ = 0.005. For all,
Γ1 = Γ2 = 0.002, ω1 = ω2 = 1.
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Figure 3: Coherence in energy basis. Coherence |ρ23| vs ∆T at different chemical potentials at the same condition as
Fig. 2 (a).

In the bipartite quantum system, one of the most important parameters to be finely tuned in experiments is the
tunneling rate ∆. Many different methods have been developed to measure this parameter. For example in the model
of resonance energy transfer, this parameter can be finely controlled by adjusting the distance between the two parties
[74, 75]. For a specific quantum measurement, an optimal precision can be achieved when the bias between the two
ends (reservoirs) is large, which requires the energy consumption for the external system to maintain the bias. The
equilibrium scenario in which the two reservoirs are kept to the same temperature and chemical potential, has been
well studied. In general, the two subsystems can be immersed in two different environments and the bias between the
two environments will lead to a gradient probability flow from the high temperature or high chemical potential bath
to the colder environment or with lower chemical potential. Meanwhile, this energy/probability flow was shown to
have a close relation to the quantum coherence and nonlocality in a parpitite system [32, 45–47]. In the following, we
show that the QFI is significantly enhanced in the nonequilibrium environments and that the system dissipates extra
entropy in order to maintain the high QFI.

In the nonequilibrium regime with weak tunneling, the temperature bias and the chemical potential bias, which are
treated as measures of the degree of the nonequilibrium, appear to be strongly positively correlated with the QFI.
This can be used as a resource for quantum metrology. As is shown in Fig. 2 (a), the QFI at a small tunneling rate
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Figure 4: QFI and EPR. (a) QFI vs the EPR through enlarging the temperature bias of the two reservoirs at
different chemical potentials. T1 = 0.1 and T2 = T1 + ∆T . (b) QFI vs EPR via unbalancing the chemical potentials

of the two reservoirs. T1 = T2 = 0.1, µ1 = µ and µ2 = µ1 + ∆µ. (c) QFI vs energy current J via unbalancing the
chemical potentials of the two reservoirs. T1 = T2 = 0.1, µ1 = µ and µ2 = µ1 + ∆µ. For all, Γ1 = Γ2 = 0.002,

ω1 = ω2 = 1, and ∆ = 0.005.

∆ = 0.005 is plotted against the temperature bias ∆T . In the regime away from the resonance chemical potential
µ = 1, the QFI rises sharply with the increase of the temperature bias compared to its equilibrium values which lie
at the bottom of the figures. The QFI reaches a finite asymptotic value as ∆T →∞. When modulating the chemical
potential bias, we find the universal nonequilibrium enhancement in the parameter regimes we study without the
in-resonance anomaly. The QFI against the chemical potential bias is shown in Fig. 2 (b). The nonequilibrium
enhancement is easily noticed by comparing the QFI’s at low ∆µ’s (lower part of the figure) with those at high ∆µ’s
(upper part of the figure). On the other hand, it should be noted that the nonequlibrium enhancement of the quantum
metrology is only applicable when the tunneling rate of the quantum system is weak. For strongly coupled quantum
systems, i.e. those with large tunneling rates, the result is dramatically different [see Fig. 7].

The enhanced QFI is often viewed as due to the entanglement of the system. However, in an nonequilibrium system
where the system is often at a mixed state the entanglement vanishes easily. The quantum properties of the system
can be measured by other parameters such as the coherence, quantum discord, mutual information or linear entropy.
The QFI is enhanced when the mixing of the quantum states is stronger [see Fig. 3].

The enhancement of the QFI does not come for free. To sustain the system in the NESS, external energy has to
be provided to extract the thermodynamic dissipation cost or the entropy produced in the nonequilibrium process.
Classically, the temperature or chemical potential gradient appears hand in hand with the energy current and the
production of entropy. Quantum mechanically, apart from the energy current the nonequilibrium effect is noted by
the enhanced quantum nonlocality and the induced entropy production in the total system.

In Fig. 4 we plot the QFI with the EPR of the system. In the NESS, the system remains unchanged in time and
the EPR is constant. As can be noticed, the QFI grows monotonically with the increase of the EPR. This suggests
that the efficacy of nonequilibrium enhancement of quantum metrology becomes more prominent as more energy is
consumed and larger EPR is produced in the process. Tuning the nob of the chemical potentials can pump in the EPR
or enhance the QFI much more significantly compared to modulating the temperatures of the reservoirs. No matter
which ways we choose to implement the nonequilibrium condition, the same magnification of the QFI is obtained for
a given EPR. Since this is an irreversible process, external work is required to keep the reservoirs and the system
at their initial states. This suggests that the nonequilibrium entropy production is required for the enhancement of
the quantum metrology. In other words, thermodynamic cost or dissipation can be used to increase the precision of
estimations in a quantum system.

The effect of nonequilibrium current and thermodynamic cost on quantum correlations

The QFI often presents itself in tune with the rise and fall of quantum correlations [25, 26]. In an open system, the
quantum correlations are usually characterized by discord and mutual information, among others. The entanglement
as a measure of correlation often vanishes accidentally for mixed states even when the systems are still correlated
nonclassically. This phenomenon has been carefully discussed in many previous studies [46, 76], thus, we will not
elaborate more in this paper.

In order to obtain strengthened quantum correlations between the two parties in the quantum system, the thermo-
dynamic cost is unavoidable. In the NESS, for the two subsystems placed between the two reservoirs, the strength
or the magnitude of the quantum correlations between them shows a simple monotonic relationship with the thermo-
dynamic cost such as the EPR or the energy current. As shown in Fig. 5 (a, b), the quantum mutual information
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(QMI) and quantum discord (QD) steadily grow with the increasing EPR and energy current J1. Due to the finite
tunneling rate between the two parties in the system, the energy current that flows from one reservoir to the other
through the junction saturates at a finite value. The right end of Fig. 5 (b) represents the asymptotic values for the
energy currents, beyond which the system can not be further boosted by only adjusting the chemical potential biases.
The quantum correlations stop growing approximately at the EPR where the corresponding energy current reaches
the plateau. This shows that in the nonequilibrium open system, the quantum correlations inside the system can be
enhanced at the cost of the increased thermodynamic costs characterised through the EPR or the energy current.
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Figure 5: (a) Quantum mutual information (solid lines) and quantum discord (dashed lines) vs EPR. (b) Quantum
mutual information (solid lines) and quantum discord (dashed lines) vs energy current J1. T1 = T2 = 0.1,

µ1 = µ+ ∆µ, µ2 = µ and ∆ = 0.005.
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Figure 6: (a) Coherence vs EPR enlarging the temperature bias of the two reservoirs at different chemical
potentials. (b) Linear entropy SL vs EPR enlarging the temperature bias of the two reservoirs at different chemical

potentials. T1 = 0.1, T2 = T1 + ∆T and ∆ = 0.005.

Similarly, the measures of the mixture of the quantum states such as the coherence |ρ23| and the linear entropy
SL = (4/3)(1 − Tr(ρ̂S2)) also increase linearly with the EPR [see Fig. 6]. This suggests that the nonequilibrium
entropy production is required for the enhancement of quantum correlations and the improvement of the quantum
metrology. In other words, the thermodynamic cost or dissipation can be used as a tool to increase the quantum
natures of the system.

VI. STRONG TUNNELING SCENARIO

For quantum systems with strong tunnelings, the impact of nonequilibrium environments on the quantum correla-
tions can be qualitatively different from that of low tunneling rates [31, 46]. We expect the disparity appears in the
quantum metrology as well. Regarding the different approaches of master equations, both the local and the global
master equations give approximately the same results in this scenario as the tunneling rate falls into the range of
Γ� ∆� ωi. In our numerical computation, we do not assume the secular approximation. In this section, we discuss
the relationship between the thermodynamic cost, the QFI and correlation measures.

For the strong tunneling regime, we would have naively expected that the quantum correlation and QFI would be
stronger than that in the weak tunneling regime due to a larger tunneling rate. However, this assumption turned
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Figure 8: Quantum correlations and QFI against EPR for strong tunneling scenario. ∆ = 0.1. (a) Quantum
entanglement against EPR. (b) QMI (solid lines) and QD (dashed lines) vs EPR. (c) QFI vs EPR. For (b) and (c),

∆ = 0.05. For all, µ1 = µ+ ∆µ, µ2 = µ, T1 = T2 = 0.1, and Γ1 = Γ2 = 0.002, ω1 = ω2 = 1.

out to be over-simplistic. A hint of this over-simplicity can be found from Eq. IV.12. The coherence in the energy
representation ρ23 ≈ −i(n1m + n2m)∆/2Γ decays as the tunneling rate becomes higher, which infers that the system
is closer to a classical one. Physically, it means that each of the two subsystems is in the steady state with the
average of the two reservoirs. Then, the nonequilibrium between the two parties in the system diminishes and the two
subsystems are approximately in the same state. In other words, due to the strong coupling, the two systems become
one whole system. As can be noted in Fig. 7 (a), the degree of the nonequilibrium characterized by the temperature
bias ∆T represses the QFI, which is in a sharp contrast with Fig. 2. Besides the opposing trends, the magnitude of
the QFI is repressed in the strong tunneling regime compared with the weak tunneling case. For the two strongly
coupled subsystems (e.g. ∆� Γ), the nonequilibriumness does not play a significant role in determining the behavior
of the system. As mentioned above, the solution merely shows that each subsystem is effectively in contact with both
reservoirs simultaneously as a result of the strong coupling between the subsystems and much weaker interactions
with the environment. In this case, increasing the nonequilibriumness through the temperature difference is then
equivalent to increasing the temperature of the higher temperature reservoir while fixing temperature of the lower
temperature bath, or increasing the average temperature of the two baths. This situation is essentially very similar
to the equilibrium case of the system in an average temperature reservoir. Therefore, the behaviors of QFI and
quantum correlations are expected to be similar to the equilibrium case when the average temperature increases. This
is justified from the V-shape light band in Fig. 7 (b). The QFI reaches the optimized values when one of the chemical
potentials is near the resonance with the system, and it diminishes when both chemical potentials are away from the
resonance similar to the behavior of the whole system immersed simultaneously in the two baths.

In the strong tunneling regime, a higher thermodynamic cost does not guarantee a higher precision in measurement
nor stronger quantum correlations. In the regime of the weak tunneling, the entanglement of the two subsystems
vanishes almost identically at finite temperatures due to the mixed state nature of the system. For the large tunneling
case, a weak entanglement appears in the system at low temperatures and it shares the similar trend against the
increase of the EPR with that of the QD and QMI [Fig.8 (a,b)]. The similar behavior is observed in the coherence
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and linear entropy SL. This mimics the average effect of the two reservoirs. When the tunnelling rate is far above the
decay rate of the system, the two subsystems essentially becomes one whole system immersed in the two reservoirs
simultaneously. When tuning up the bias, the average of the two reservoirs changes correspondingly. This not only
has impact on the EPR and currents but also on the quantum correlations and the QFI. This average effect results
in the nonzero values of the quantum correlations and QFI at zero EPR (e.g. for µ = 0.6 case in Fig. 8), which
is in sharp contrast with Fig. 4 and 5, where no quantum correlations or QFI is witnessed at zero EPR and that
significantly stronger correlations and QFI’s are observed at large EPR’s.

VII. REMARKS AND CONCLUSION

In this work, we study the quantum metrology and quantum correlations of two-fermionic systems in nonequilibrium
environments. The relationship between them and the thermodynamic cost (EPR) is investigated. The meaning of
the QFI in our study is how much data about the tunneling rate a measurement can in principle obtain from the
system allowing any POVM measurement. For the parameter estimation of the tunneling rate ∆, we remark that in
the nonequilibrium case, an enhancement of the QFI is seen away from the resonant frequencies when the tunneling
rate is low. By amplifying the energy current and the EPR, a universal enhancement of the QFI is witnessed. From
a more practical perspective, the weak inter-site tunneling is in the regime where the parameter is hard to measure
accurately from an experiment, and it is a more relevant regime for realistic consideration. On the other hand, for a
large tunneling rate the nonequilibrium conditions do not boost the quantum metrology and correlations significantly,
and this regime is less important for our consideration. To conclude, in this study we propose a new approach which
can be potentially applied to improve the quantum information measures and correlations in an open system. In
this approach, entropy production or thermodynamic cost is needed and can be exploited to achieve the desired
enhancement. We also pointed out that the nonequilibrium enhancement comes at the thermodynamic cost of energy
consumption and dissipation from the external sources, which might trade off some nonequilibrium enhancement by
introducing extra disorder to the controlled environments depending on the specifics of the experiments.

The analyses and results in this paper may provide insights for the study of quantum metrology and related fields.
Though the experimental verification is yet to be performed, the general method proposed in this study can be helpful
in guiding the design of certain future experiments. Furthermore, for the basic understandings of nonequilibrium
quantum phenomena, the relationship between the thermodynamic cost and the quantum mechanical nature of a
system characterized by the Fisher information and the quantum correlations has been investigated but not fully
understood, and how to enhance them in an open system is an important question in many areas of studies. The
equilibrium scenario is relatively well-understood, but the physics of far-from-equilibrium scenario remains elusive.
We hope that our study can shed light on the understanding of nonequilibrium physics and its application in quantum
metrology and quantum information sciences.

The entropy production in this work is treated in an approximate and semi-classical way. More careful analysis
can be done to incorporate the corrections of quantum thermodynamics. In addition, the environment is treated as
classical and the Markovian approximation is assumed. The method and conclusions drawn from this model can be
directly extended to the study the quantum processor based on dimer qubit [59, 60], wherein two similar two-level
systems separated by a few nanometers and interacting via resonant dipole-dipole interactions as well as general
bipartite two-level open quantum systems [31].
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Appendix A: Solution to the quantum master equation

The quantum master equation with the above approximations can be shown to have the following form,

ρ̇S(t) = i[ρS , HS ]−D0[ρ]−Ds[ρ], (A.1)
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where the dissipation terms are

D0[ρ] =

2∑
i=1

Ni[ρ], Ds[ρ] =

2∑
i=1

Si[ρ] . (A.2)

Without constraining the specific properties of the reservoirs, Ni[ρ] and Si[ρ] are defined as follows (plus and minus
signs are for bosonic reservoirs and fermionic reservoirs, respectively),

Ni[ρ] = Γ1 ·
1

2
[1 + (−1)i cos θ]

[
(1± nTi1 )(ζ†1ζ1ρ̃− ζ1ρ̃ζ

†
1) + nTi1 (ζ1ζ

†
1 ρ̃− ζ

†
1 ρ̃ζ1) + h.c.

]
+ Γ2 ·

1

2
[1 + (−1)i−1 cos θ]

[
(1± nTi2 )(ζ†2ζ2ρ̃− ζ2ρ̃ζ

†
2) + nTi2 (ζ2ζ

†
2 ρ̃− ζ

†
2 ρ̃ζ2) + h.c.

]
, (A.3)

and

Si[ρ] = (−1)i−1 1

2
Γ1 sin θ

[
(1± nTi1 )(ζ†2ζ1ρ̃− ζ1ρ̃ζ

†
2) + nTi1 (ζ2ζ

†
1 ρ̃− ζ

†
1 ρ̃ζ2) + h.c.

]
+ (−1)i−1 1

2
Γ2 sin θ

[
(1± nTi2 )(ζ†1ζ2ρ̃− ζ1ρ̃ζ

†
2) + nTi2 (ζ1ζ

†
2 ρ̃− ζ

†
1 ρ̃ζ2) + h.c.

]
. (A.4)

where ω′a is the energy eigenvalue of the system, sin θ and cos θ are the elements in the transformation matrix defined in

III.4, and nTik is the number density of the ith reservoir with temperature T and energy ω′k. The dissipator D0 describes
the particle exchanges with the reservoirs, and Ds gives the coherence between energy levels of the system which is
absent in the Lindblad formalism and important for studies of quantum systems in nonequilibrium environments.

Due to the rapid oscillation of field modes, we assume the Weisskopf-Wigner approximation. We expand the time
integral to infinity and replace the summation in the interaction Hamiltonian by integration. The decay rates after
the approximation are defined as follows,

Γi ≡
2V

(2π)3
π

∫
d3~k λ2

~k
δ(ω′i − ωk). (A.5)

In this study, we assume that the number density of the reservoir is the standard Fermi-Dirac distribution, nTik =
1

eβi(ω
′
k−µi) + 1

.

Appendix B: Positivity of the EPR formula

The master equation and our definition of currents are coarse-grained descriptions of the quantum system. The
approach is an approximation which under certain limits may appear to break the classical laws of thermodynamics.
Therefore, the range of applicability is an issue that needs to be verified. Here, we provide a simple proof that this
definition is valid in the parameter regime discussed in this paper. The particle current from bath l is defined as the
change of the number of system particles per unit time due to the existence of the bath l. The simplified expression
from Eq. IV.14 is:

Il = Tr(Dl[ρS ]NS) . (B.1)

Similarly, the energy current from the bath l is:

Jl = Tr(Dl[ρS ]HS) . (B.2)

Assuming the symmetric sites ω1 = ω2 and that the inter-site tunneling rate is much lower than the system frequency
∆� ω, we apply the leading order solution (IV.12) to the semi-classical expression of the EPR (IV.18). The entropy
production is defined classically by TdS = dU − µdN . The EPR can be approximately expressed as follows:

Ṡ = −J1

(
1

T1
− 1

T2

)
+ I1

(
µ1

T1
− µ2

T2

)
(B.3)

' ω(β1 − β2) ((1− n1)(ρ11 + ρ44) + n1(ρ11 + ρ33) + (1− n1)(ρ33 + ρ44) + n1(ρ11 + ρ22)) (B.4)

− (µ1β1 − µ2β2) ((1− n1)(ρ22 + ρ44)− n1(ρ11 + ρ33) + (1− n1)(ρ33 + ρ44)− n1(ρ11 + ρ22)) . (B.5)
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The leading order elements of the density matrix are given in Eq.(IV.12). The steady state solution of the master
equation results in the following EPR:

Ṡ ' (µ1β1 + ωβ2 − µ2β2 − ωβ1)(2e2µ1β1+(µ2+ω)β2 + 2eµ1β1+ωβ1+2ωβ2 − 2e2µ2β2+(µ1+ω)β1 (B.6)

− 2eµ2β2+β1ω+(β1+β2)ω + 2e2µ1β1+2ωβ2 − 2e2µ2β2+2ωβ1)f(µi, βi) , (B.7)

where f(µi, βi) is a positive function defined as follows:

f−1(µi, βi) = 2(eµ1β1 + eωβ1)2(eµ2β2 + eωβ2)2/(β1β2) . (B.8)

Since we are only interested in the issue of positivity, we will ignore this positive factor. Regrouping the expression
of EPR, we can write it as follows:

Ṡ ' f(µi, βi) ·
[
(µ1β1 + ωβ2)− (µ2β2 + ωβ1)

]
·
[
(2e2µ1β1+(µ2+ω)β2 − 2e2µ2β2+(µ1+ω)β1) + (2eµ1β1+ωβ1+2ωβ2

− 2eµ2β2+β1ω+(β1+β2)ω) + (2e2µ1β1+2ωβ2 − 2e2µ2β2+2ωβ1)
]

=f(µi, βi) ·
[
(µ1β1 + ωβ2)− (µ2β2 + ωβ1)

]
·
[
eµ1β1+µ2β2(2eµ1β1+ωβ2 − 2eµ2β2+ωβ1) + eωβ1+ωβ2(2eµ1β1+ωβ2

− 2eµ2β2+ωβ1) + (2e2µ1β1+2ωβ2 − 2e2µ2β2+2ωβ1)
]

(B.9)

We notice that in the last equation, each term in the parentheses of the second square bracket has the same sign
as the first square bracket

[
(µ1β1 + ωβ2) − (µ2β2 + ωβ1)

]
. Therefore, the whole expression is non-negative. This

derivation suggests that in the regimes we are interested in, the semi-classical expression for the entropy production
is well-behaved and we can assume that it gives the reasonably accurate value for the classical EPR of our system.
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[38] J. P. Santos, L. C. Céleri, G. T. Landi, and M. Paternostro, The role of quantum coherence in non-equilibrium entropy

production, npj Quantum Information 5, 1 (2019).
[39] R. Landauer, Irreversibility and heat generation in the computing process, IBM journal of research and development 5,

183 (1961).
[40] S. Deffner, J. P. Paz, and W. H. Zurek, Quantum work and the thermodynamic cost of quantum measurements, Physical

Review E 94, 010103 (2016).
[41] F. Troiani and M. G. Paris, Universal quantum magnetometry with spin states at equilibrium, Physical review letters 120,

260503 (2018).
[42] A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology in non-markovian environments, Physical review letters

109, 233601 (2012).
[43] X. Fang, K. Kruse, T. Lu, and J. Wang, Nonequilibrium physics in biology, Reviews of Modern Physics 91, 045004 (2019).
[44] S. R. De Groot and P. Mazur, Non-equilibrium thermodynamics (Courier Corporation, 2013).
[45] Z. Wang, W. Wu, and J. Wang, Steady-state entanglement and coherence of two coupled qubits in equilibrium and

nonequilibrium environments, Physical Review A 99, 042320 (2019).
[46] X. Wang and J. Wang, Nonequilibrium effects on quantum correlations: Discord, mutual information, and entanglement

of a two-fermionic system in bosonic and fermionic environments, Physical Review A 100, 052331 (2019).
[47] Z. Zhang and J. Wang, Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum

steady state, energy (charge) transport, and thermodynamics, The Journal of chemical physics 140, 06B622 1 (2014).
[48] S.-W. Li, C. Cai, and C. Sun, Steady quantum coherence in non-equilibrium environment, Annals of Physics 360, 19

(2015).
[49] K. Zhang, W. Wu, and J. Wang, Influence of equilibrium and nonequilibrium environments on macroscopic realism through

the leggett-garg inequalities, Physical Review A 101, 052334 (2020).
[50] K. Zhang and J. Wang, Entanglement versus bell nonlocality of quantum nonequilibrium steady states, Quantum Infor-

mation Processing 20, 1 (2021).
[51] J. B. Brask, G. Haack, N. Brunner, and M. Huber, Autonomous quantum thermal machine for generating steady-state

entanglement, New Journal of Physics 17, 113029 (2015).



16
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