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Abstract

Finding four six-dimensional mutually unbiased bases (MUBs) containing the identity matrix

is a long-standing open problem in quantum information. We show that if they exist, then the

H2-reducible matrix in the four MUBs has exactly nine 2 × 2 Hadamard submatrices. We apply

our result to exclude from the four MUBs some known CHMs, such as symmetric H2-reducible

matrix, the Hermitian matrix, Dita family, Bjorck’s circulant matrix, and Szollosi family. Our

results represent the latest progress on the existence of six-dimensional MUBs.
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I. INTRODUCTION

In quantum physics, mutually unbiased bases (MUBs) present a basic notion of describ-

ing physical observables [1]. MUBs have been extensively useful in quantum tomography,

discrete Wigner functions [2, 3] and King problem [4]. In particular, MUBs minimize the

uncertainty of estimating density matrices and may conceal security in quantum key dis-

tribution protocols. It’s been proven that the complete set of d-dimensional MUBs has

d+ 1 MUBs. The main problem on MUBs is to prove whether MUBs in the d-dimensional

Hilbert space Cd is complete for any integer d. It has been proven true when d is prime

power. However it is widely conjectured that four MUBs may not exist in C6. Much effort

has been devoted to the problem in the past decades [5–25].

In this paper we investigate this conjecture in terms of the so-called H2-reducible matrix

[26, 27]. The latter is a 6×6 complex Hadamard matrix (CHM) containing a 2×2 Hadamard

submatrices, which is proportional to a 2×2 unitary matrix. The H2-reducible matrix repre-

sents a large subset of CHMs covering many known affine CHMs say the Fourier matrix and

non-affine CHMs such as Hermitean family. So the H2-reducible matrix plays an important
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role whose existence in an MUB trio is worth being studied. In [28], we have investigated

the four-MUB conjecture in terms of the H2-reducible matrix and concluded that the H2-

reducible matrix belonging to an MUB trio has exactly nine or eighteen 2 × 2 Hadamard

submatrices. In this paper,we concentrate on the problem further. We review preliminary

results on CHMs and H2-reducible matrices in Lemma 1. Next we review preliminary results

on MUB trio in Lemma 3 and 4. In Theorem 7, we show that if an H2-reducible matrix be-

longs to an MUB trio, then the matrix has exactly nine 2×2 Hadamard submatrices. This is

the main result of this paper supported by the preliminary Lemma 2 and 5. We furthermore

apply our result to exclude some known CHMs as members of MUB trio. They include the

affine CHMs say the Fourier matrix, Dita family, Bjorck’s circulant matrix, and non-affine

CHMs such as Hermitean and Szollosi family. Our results present the latest progress on the

existence of four six-dimensional MUBs. They are also related to other topics in quantum

information, e.g., unitary matrices, tensor rank and unextendible product basis [29–31].

The rest of this paper is structured as follows. In Sec. II we construct the notion of

CHMs, equivalence and complex equivalence of matrices, as well as the parametrization of

H2-reducible matrices. In Sec. III we introduce the main result of this paper. In Sec. IV

we apply our result to exclude some known CHMs as members of MUB trio. We conclude

in Sec. V.

II. PRELIMINARIES

In this section we introduce the notations and facts used in this paper. We refer to the

n×n complex Hadamard matrix (CHM) Hn = [uij]i,j=1,...,n as a matrix with orthogonal row

vectors and entries of modulus one. That is, H†
nHn = nIn and |uij| = 1. To find out the

connection between different CHMs, we define the equivalence and complex equivalence. We

refer to the monomial unitary matrix as a unitary matrix each of whose row and columns

has exactly one nonzero entry, and it has modulus one. Two n × n matrices U and V are

complex equivalent when U = PV Q where P,Q are both monomial unitary matrices. If

P,Q are both permutation matrices then we say that U, V are equivalent. Evidently if U, V

are equivalent then they are complex equivalent, and the converse fails. The number of real

entries of a CHM may be changed under complex equivalence, while it is unchanged under

equivalence. For example, it is straightforward to show that any n × n CHM is complex

3



equivalent to a CHM containing at least 2n+1 entry one. They are in the first column and

row of the CHM.

In quantum physics, a pure state is described by a unit vector in linear algebra. Two

states in Cd are MU when their inner product is of modulus 1√
d
. Two MUBs are orthonormal

basis are MU when their elements are pairwise MU. For convenience we refer to a unitary

matrix as an MUB consisting of the column vectors of the unitary matrix. For d = 6, it has

been a long-standing open problem whether four MUBs I6, V,W,X exist. If it exists then

we refer to the three unitary matrices V,W,X as an MUB trio.

In the following we review Theorem 11 of the paper [26]. We shall use it in the proof of

Lemma 5 and Theorem 7. The result parameterizes every H2-reducible matrix.

Lemma 1 (i) The H2-reducible CHM is complex equivalent to the CHM H in [26, Theorem

11], namely

H =











F2 Z1 Z2

Z3
1

2
Z3AZ1

1

2
Z3BZ2

Z4
1

2
Z4BZ1

1

2
Z4AZ2











=











I2 0 0

0 Z3 0

0 0 Z4











·











F2 I2 I2

I2
1

2
A 1

2
B

I2
1

2
B 1

2
A











·











I2 0 0

0 Z1 0

0 0 Z2











, (1)
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where

F2 =





1 1

1 −1



 , Z1 =





1 1

z1 −z1



 , Z2 =





1 1

z2 −z2



 ,

Z3 =





1 z3

1 −z3



 , Z4 =





1 z4

1 −z4



 ,

A =





A11 A12

A∗
12 −A∗

11



 , B =





−1− A11 −1 −A12

−1− A∗
12 1 + A∗

11



 ,

A11 = −1

2
+ i

√
3

2
(cos θ + e−iφ sin θ),

A12 = −1

2
+ i

√
3

2
(− cos θ + eiφ sin θ),

B11 = −1

2
− i

√
3

2
(cos θ + e−iφ sin θ),

B12 = −1

2
− i

√
3

2
(− cos θ + eiφ sin θ),

θ, φ ∈ [0, 2π), |zj | = 1,

z23 = MA(z
2
1) = MB(z

2
2),

z24 = MA(z
2
2) = MB(z

2
1),

MA(z) =
A2

12z − A2
11

(A2
11)

∗z − (A2
12)

∗ ,

MB(z) =
B2

12z −B2
11

(B2
11)

∗z − (B2
12)

∗ . (2)

(ii) Suppose M =











F2 Z1 Z2

Z3 a b

Z4 c d











is an H2-reducible matrix where F2, Z1, Z2, Z3 and Z4 are

given in (2). Then M is the same as the matrix H in (1) satisfying (2). In particular,

a, b, c, d are 2× 2 Hadamard submatrices described in (2). ⊓⊔

We review Theorem 12 in the recent paper [28] on H2-reducible matrices and MUBs.

This is the main result of [28]. We shall use it in the proof of Theorem 7 as the main result

of this paper.

Lemma 2 If an H2-reducible matrix belongs to an MUB trio, then the matrix has exactly

nine or eighteen 2× 2 Hadamard submatrices. ⊓⊔
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Next we review a fact from [23, Lemma 11]. It gives the necessary condition by which a

6× 6 CHM is a member of some MUB trio. This is used in the proof of Lemma 5.

Lemma 3 The CHM in an MUB trio contains no a real 2 × 3 or 3 × 2 submatrix up to

complex equivalence.

Finally we review a fact on complex numbers used in the proof of Theorem 7.

Lemma 4 (i) Suppose a + b + c = 0 with complex numbers a, b, c of modulus one. Then

(a, b, c) ∝ (1, ω, ω2) or (1, ω2, ω) with ω = e
2πi

3 .

(ii) Suppose a + b + c + d = 0 with complex numbers a, b, c, d of modulus one. Then

a = −b,−c or −d.

III. THE H2-REDUCIBLE MATRIX IN AN MUB TRIO

In this section we show that the H2-reducible matrix in an MUB trio has exactly nine

2×2 Hadamard submatrices. This is presented in Theorem 7. For this purpose we construct

a preliminary lemma.

Lemma 5 Suppose M is a 6× 6 CHM containing more than nine 2× 2 Hadamard subma-

trices, and M belongs to an MUB trio. Then up to complex equivalence we may assume that

M is the matrix in (1) with the entry (3, 3) of M being −1.

Proof. Evidently M is an H2-reducible matrix. It follows from Lemma 1 (i) that there

exist two 6× 6 monomial unitary matrices P,Q such that

H := [hij ] := H(θ, φ, z1, z2, z3, z4) = PMQ

=











F2 Z1 Z2

Z3
1

2
Z3AZ1

1

2
Z3BZ2

Z4
1

2
Z4BZ1

1

2
Z4AZ2











=











I2 0 0

0 Z3 0

0 0 Z4











·











F2 I2 I2

I2
1

2
A 1

2
B

I2
1

2
B 1

2
A











·











I2 0 0

0 Z1 0

0 0 Z2











, (3)

where F2, Z1, ..., Z4, A, B containing the parameters θ, φ, z1, z2, z3, z4 with θ, φ ∈ [0, π), and

|zj | = 1 are given in (2). Since H and M are complex equivalent, H still has more than
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nine 2 × 2 Hadamard submatrices. Using (3), we obtain that hij = −1 for some (i, j) such

that i, j 6= 1 and (i, j) 6= (2, 2). If one of z1, ..., z4 is −1 then H has a 2 × 4 or 4 × 2 real

submatrix. It is a contradiction with Lemma 3, because H belongs to an MUB trio. Hence

hij = −1 with (i, j) ∈ {3, 4, 5, 6} × {3, 4, 5, 6}.
We present claim one as follows. If we assume that H in (3) with h33, h35, h53 or

h55 = −1 does not belong to any MUB trio, then neither does H with hij = −1 and

(i, j) ∈ {3, 4, 5, 6} × {3, 4, 5, 6}. To prove the claim, we consider H(θ, φ, z1, z2, z3, z4) with

h43 = −1. Let the permutation matrix R = I2 ⊕





0 1

1 0



 ⊕ I2. Then (3) implies that

RH(θ, φ, z1, z2, z3, z4) = H(θ, φ, z1, z2,−z3, z4) = [h′
ij] with h′

33 = −1. Using the assumption,

we obtain that H(θ, φ, z1, z2,−z3, z4) = [h′
ij ] does not belong to any MUB trio. Neither does

H(θ, φ, z1, z2, z3, z4) with h43 = −1. One can similarly show that H(θ, φ, z1, z2, z3, z4) with

h34, h44, ... or h66 = −1. We have proven claim one.

We present claim two as follows. If we assume that H in (3) with h33 = −1 does not

belong to any MUB trio, then neither does H with h35, h53, h55 = −1. To prove the claim,

we consider H(θ, φ, z1, z2, z3, z4) with h55 = −1. Let the permutation matrix R1 = I2 ⊕














0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0















. Then (3) implies that R1H(θ, φ, z1, z2, z3, z4)R1 = H(θ, φ, z2, z1, z4, z3) = [h′′
ij]

with h′′
33 = −1. Using the assumption, we obtain that [h′′

ij ] does not belong to any MUB

trio. We have proven claim two. One can similarly show that H with h35 = −1 belongs

to an MUB trio if and only if so does H with h53 = −1. To prove the claim, if suffices to

show that H(θ, φ, z1, z2, z3, z4) with h53 = −1 does not belong to any MUB trio. Indeed, (3)

implies that R1H(θ, φ, z1, z2, z3, z4) = H(θ + π, φ, z1, z2, z4, z3) = [h′′′
ij ] with h′′′

33 = −1. Using

the assumption, we obtain that [h′′′
ij ] does not belong to any MUB trio. We have proven

claim two.

By combining claim one and two, we have proven the assertion. ⊓⊔
From the proof of Lemma 5, one can similarly obtain the following observation.

Corollary 6 Suppose M is an H2-reducible matrix in (1). If M with h33 = x does not belong

to any MUB trio, then neither does M with hij = x and (i, j) is one of (3, 4), (3, 5), ..., (6, 6).

Now we are in a position to prove the main result of this section.
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Theorem 7 If an H2-reducible matrix belongs to an MUB trio, then the matrix has exactly

nine 2× 2 Hadamard submatrices.

In other words, the member of MUB trio has no CHM containing the 3 × 3 submatrix










1 1 1

1 −1 ∗
1 ∗ −1











up to complex equivalence.

Proof. Suppose M = [mij ] is an H2-reducible matrix belonging to an MUB trio. It

follows from Lemma 2 that M has exactly nine or eighteen 2 × 2 Hadamard submatrices.

We shall exclude the latter by contradiction, and the assertion follows.

Assume that M has exactly eighteen 2 × 2 Hadamard submatrices. Using Lemma 5,

we may assume that M is the matrix in (1) with m33 = −1. Applying Lemma 4 (ii) to

row 1, 3 of M and column 5, 6 of M , we obtain that one of





m12 m15

m32 m35



 and





m12 m16

m32 m36



 is

an Hadamard submatrix. Let the permutation matrix R1 = I2 ⊕ I2 ⊕





0 1

1 0



. Using (1),

one can show that MR1 is still an H2-reducible matrix containing exactly eighteen 2 × 2

Hadamard submatrices in an MUB trio. For convenience we still name MR1 as M = [mij ].

So





m12 m15

m32 m35



 is a 2× 2 Hadamard submatrix. Similarly by studying column 1, 3, we may

assume that





m21 m23

m51 m53



 is a 2×2 Hadamard submatrix. Using Lemma 1, we can determine

the eighteen 2 × 2 Hadamard submatrices in M . We obtain four equations m33 = −1,

m35 = −z3, m53 = −z1, and m55 = z2z4. Using (1), one can derive the expressions of

M = [mij ]. By solving the four equations, we obtain m66 = −1. It means that M has

more than eighteen 2× 2 Hadamard submatrices. It is a contradiction with the assumption

that M has exactly eighteen 2× 2 Hadamard Hadamard submatrices. So we have excluded

the option that M has exactly eighteen 2 × 2 Hadamard submatrices. We have proven the

assertion. ⊓⊔
In the next section we introduce the application of Theorem 7.
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IV. APPLICATION

In this section, we will exclude some known CHMs as members of MUB trio by using

Theorem 7. First of all we introduce Theorem 8 and Theorem 9, which exculde symmetric

H2-reducible matrix and the Hermitian matrix respectively from MUB trio.

Theorem 8 The CHM in any MUB trio is not a symmetric H2-reducible matrix.

Proof. Suppose that H is a symmetric H2-reducible matrix in an MUB trio. The first row

of H is (h1, h2, h3, h4, h5, h6). Let D = diag(h
− 1

2

1 , h
− 1

2

1 h−1
2 , h

− 1

2

1 h−1
3 , h

− 1

2

1 h−1
4 , h

− 1

2

1 h−1
5 , h

− 1

2

1 h−1
6 ).

Then D is a monomial unitary matrix, and H
′

= DHD is a symmetric H2-reducible matrix

whose first row and column consist of ones. According to the Corollary 3 of [26], H
′

has

at least one element equaling to −1. If the element −1 does not belong to the diagonal of

H
′

, then H
′

contains at least two elements equaling to −1 by the symmetry of H
′

. Hence

H
′

does not belong to any MUB trio by Theorem 7. So the element −1 belongs to the

diagonal of H
′

. From the proof of Lemma 5, we know that there is a permutation matrix

P s.t. H
′′

= PH
′

P , and the element of the third row and the third column of H
′′

is −1,

meanwhile H
′′

is a symmetric H2-reducible matrix which has the form in (1). We assume

that

H
′′

=











F2 Z1 Z2

Z3
1

2
Z3AZ1

1

2
Z3BZ2

Z4
1

2
Z4BZ1

1

2
Z4AZ2











9



where

F2 =





1 1

1 −1



 , Z1 =





1 1

z1 −z1



 , Z2 =





1 1

z2 −z2



 ,

Z3 =





1 z3

1 −z3



 , Z4 =





1 z4

1 −z4



 ,

A =





A11 A12

A∗
12 −A∗

11



 , B =





−1− A11 −1 −A12

−1− A∗
12 1 + A∗

11



 ,

A11 = −1

2
+ i

√
3

2
(cos θ + e−iφ sin θ),

A12 = −1

2
+ i

√
3

2
(− cos θ + eiφ sin θ),

B11 = −1

2
− i

√
3

2
(cos θ + e−iφ sin θ),

B12 = −1

2
− i

√
3

2
(− cos θ + eiφ sin θ),

θ, φ ∈ [0, 2π), |zj | = 1,

z23 = MA(z
2
1) = MB(z

2
2),

z24 = MA(z
2
2) = MB(z

2
1),

MA(z) =
A2

12z − A2
11

(A2
11)

∗z − (A2
12)

∗ ,

MB(z) =
B2

12z −B2
11

(B2
11)

∗z − (B2
12)

∗ . (4)

Suppose that h
′′

mn(1 ≤ m,n ≤ 6) is the element of the m
′

th row and the n
′

column of H
′′

.

Because of the symmetry of H
′′

, we have h
′′

mn = h
′′

nm, z1 = z3 and z2 = z4. By h
′′

34 = h
′′

43, we

have

1

2
(A11 + A12z1 −A12z3 + A11z1z3) =

1

2
(A11 − A12z1 + z3(A12 + A11z1)). (5)

Namely

(− cos θ + eiφ sin θ)z1 = 0. (6)

Obviously z1 6= 0. So − cos θ + eiφ sin θ = 0, namely tan θ = e−iφ. Since tan θ is real, then

e−iφ = 1 or e−iφ = −1. Now we can verify that h
′′

45 = h
′′

54 = −1 by using (4). Hence H
′′

dose not belong to any MUB trio by Theorem 7. To sum up we have H dose not belong to

any MUB trio. So we complete this proof.

⊓⊔
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Theorem 9 The CHM in any MUB trio is not an Hermitian matrix.

Proof. Suppose that H6 is an Hermitian matrix in an MUB trio. From the paper [32] by

Kyle Beauchamp and Remus Nicoara we know that H6 is equivalent to H(θ), where:

H(θ) =



























1 1 1 1 1 1

1 −1 1

x
−y − 1

x
y

1 x −1 t −t −x

1 − 1

y
1

t
−1 1

y
−1

t

1 −x −1

t
y 1 1

z

1 1

y
− 1

x
−t z 1



























, (7)

and θ ∈ [−π,−arcos(−1+
√
3

2
)] ∪ [arcos(−1+

√
3

2
), π], the parameters x, y, z, t are given by:

y = eiθ, z =
1 + 2y − y2

y(−1 + 2y + y2)
(8)

x =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

1 + 2y − y2
(9)

t =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

−1 + 2y + y2
. (10)

One can verify that H(θ) is an H2-reducible matrix of more than eighteen 2× 2 Hadamard

submatrices. So H(θ) does not belong to any MUB trio by Theorem 7, of cause H6 does

not belong to any MUB trio. Hence we complete this proof. ⊓⊔
Next we shall investigate some affine and non-affine CHMs. First the two CHMs con-

structed on p256 of [26], and the Dita family [16, Eq. (5.45)] which are affine CHMs, all

have more than nine 2× 2 Hadamard submatrices. So they are both excluded by Theorem

7. One can similarly exclude the Fourier family and its transpose as known affine families.

Next a special CHM is Bjorck’s circulant matrix [16, Eq. (5.46)],

C6 =



























1 id −d −i −d∗ id∗

id∗ 1 id −d −i −d∗

−d∗ id∗ 1 id −d −i

−i −d∗ id∗ 1 id −d

−d −i −d∗ id∗ 1 id

id −d −i −d∗ id∗ 1



























, (11)

11



where d = 1−
√
3

2
+ i

√√
3

2
. One can show that C6 has more than nine 2 × 2 Hadamard

submatrices. It is known that every circulant Hadamard matrix is equivalent to either the

6 × 6 Fourier matrix or C6. So every circulant Hadamard matrix does not belong to any

MUB trio.

Third Theorem 7 excludes some non-affine CHMs too, such as the Szollosi family [4, Eq.

(C.12)]

X(a, b) = H(x, y, u, v) =



























1 1 1 1 1 1

1 x2y xy2 xy

uv
uxy vxy

1 x
y

x2y x
u

x
v

uvx

1 uvx uxy −1 −uxy −uvx

1 x
u

vxy −x
u

−1 −vxy

1 x
v

xy

uv
−xy

uv
−x

v
−1



























, (12)

where entries x, y and u, v are solutions of the equations fα = 0 and f−α = 0, respectively

such that fα(z) = z3−αz2+α∗z− 1 and α = a+ bi restricted by D(α) ≤ 0 and D(−α) ≤ 0

with D(α) = |α|4 + 18 |α|2 − 8Re[α3]− 27. One can show that both Hermitean and Szollosi

families are H2-reducible matrices of more than nine 2× 2 Hadamard submatrices. So they

are not members of any MUB trio in terms of Theorem 7.

V. CONCLUSIONS

We have shown that if four six-dimensional MUBs containing the identity matrix exist,

then theH2-reducible matrix in the four MUBs has exactly nine 2×2 Hadamard submatrices.

We have applied our result to exclude some known affine and non-affine CHMs as members

of MUB trio, such as symmetric H2-reducible matrix, the Hermitian matrix, Dita family,

Bjorck’s circulant matrix, and Szollosi family. The next step is to exclude every H2-reducible

matrix as a member of MUB trio.
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