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We construct a family of map which is shown to be positive when imposing certain condition on the param-

eters. Then we show that the constructed map can never be completely positive. After tuning the parameters,

we found that the map still remain positive but it is not completely positive. We then use the positive but

not completely positive map in the detection of bound entangled state and negative partial transpose entangled

states.
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I. INTRODUCTION

Entanglement, first introduced in the EPR paper [1], is a

quantum mechanical feature that can be used as a resource for

computational and communicational purposes [2, 3]. It plays

a central role in many information processing protocols such

as quantum cryptography [4], quantum superdense coding [5]

and quantum teleportation [6, 7]. The potential offered by

quantum entanglement to computing, security and communi-

cation makes it a topic of vital interest to researchers all across

the globe.

One of the important problem in quantum information theory

is the detection of entanglement in a quantum mechanical sys-

tem. A pure two-qubit entangled system always violated Bell-

CHSH inequality and thus detected by Bell-CHSH operator

[8, 9]. On the other hand, the Bell-CHSH inequality fails to

detect the several mixed bipartite entangled state. This loop-

hole can be fixed using Peres-Horodecki (PH) positive par-

tial transpose (PPT) criteria, which is necessary and sufficient

for the detection of entanglement in 2 ⊗ 2 and 2 ⊗ 3 systems

[10, 11]. In higher dimensional systems, all states with nega-

tive partial transpose (NPT) are entangled but the states with

positive partial transpose may or may not be entangled [12].

The entangled states which are described by a density matrix

that remains positive under partial transposition are known as

bound entangled states. Thus, the separability problem can

also be framed as analysing whether states with positive par-

tial transposition are entangled or not.

The separability problem can be tackled to certain extent by

witness operator [13, 14]. Witness operators are hermitian

operators with at least one negative eigenvalues. The witness

operators are more powerful than Bell inequalities in the sense

that it can detect multipartite entanglement in different cuts, if

some prior information about the state under investigation is

provided. They not only detect multipartite entanglement in

different cuts but also detect genuine entanglement and clas-
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sify entanglement in multipartite system. They are observ-

ables and thus experimentally realizable also.

A map Λ : Md1
(C) → Md2

(C) is said to be positive map if

Λ(A) ∈ Md2
(C) is positive, for any positive A ∈ Md1

(C).
Unfortunately, the structure of positive map is not completely

understood and still it is under extensive research [15–17]. In-

decomposable maps plays an important role among all posi-

tive linear maps due to the fact that it can detect positive par-

tial transpose entangled states. Let Λ be a positive map and

let Id : Md(C) → Md(C) denote an identity map. Then we

say that Λ is completely positive if for all d, the extended map

Id ⊗ Λ is positive. Trace map is an example of a completely

positive map. There also exist a map such as transposition

map which is positive but not completely positive map. These

positive but not completely positive maps are important in de-

tecting the entanglement in a composite quantum system.

The separability problem can be reformulated in terms of pos-

itive maps [11] as follows: Let us suppose that Hd1
and Hd2

represent two Hilbert spaces with dimensions d1 and d2 re-

spectively. A bipartite quantum state described by the den-

sity operator σ ∈ Hd1
⊗ Hd2

is separable if and only if

(Id1
⊗ Λ)σ is positive for any positive map Λ. Thus there

is a deep relation between the theory of detection of entangle-

ment and operator theory. This linkage has been established

by Choi-Jamiolkowski isomorphism [18, 19]. According to

Choi-Jamiolkowski isomorphism, there is a one to one corre-

spondence between entanglement witnesses and a positive but

not completely positive map.

The motivation of this work is as follows: The construction

and studying the structure of new positive map may give use-

ful insight in the understanding of positive map, which gives

us the first motivation of this work. Secondly, we find that the

problem of constructing the positive but not completely posi-

tive map and its relation in the detection of entanglement may

take one step further in the development of not only operator

theory but also quantum information theory.

The work is organized as follows: In section-II, we review

few earlier results that is needed in our work. In section-III,

we have constructed a family of map and then characterize it

for when the map is (i) positive or (ii) completely positive or

(iii) positive but not completely positive. In section-IV, we

have chosen a particular map from the class of positive but

not completely positive map and then shown that it can detect

bound entangled entangled state. In section-V, we end up with

http://arxiv.org/abs/2104.13308v2
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the conclusion.

II. PRELIMINARIES

Definition-1: A matrix V is said to be a contraction if

‖V ‖ ≤ 1 (1)

where ‖.‖ denote the operator norm.

Result-1 [20]: Let φ : Mm(C) → Mn(C) be a linear map.

Then the following statements are equivalent:

(i) φ is completely positive.

(ii) Cφ is positive semidefinite, where Cφ denotes the Choi

matrix of φ.

Result-2 [21]: Let A be a partitioned block matrix of the

form

A =

(

X Y
Y ∗ Z

)

(2)

Then A is positive semidefinite if and only if X and Z are

positive semidefinite and there exists a contractionV such that

Y = X
1

2 V Z
1

2 (3)

Result-3 [22]: For positive definite blocks X and Z , the ma-

trix A given in (2) is positive semidefinite iff X ≥ Y Z−1Y †.

III. CONSTRUCTION OF A FAMILY OF MAP

In this section, we will construct a map and derive the

condition for which the map is positive. Further, we will

probe that whether the constructed map is completely posi-

tive. Moreover, we will provide the explicit matrix form of

the map, which is positive but not completely positive.

Let us take a positive integer n (n ≥ 2) and then we define a

general family of map Φ : Mn(C) →Mn(C)⊗Mn(C) as

Φα,β(A) = α((A +AT )⊗ In) + β(|ψ+〉〈ψ+|)Γ (4)

where A denote n × n matrix, α, β ∈ R, Γ represent the

partial transposition, In denote the identity matrix of order n
and |ψ+〉 = 1√

n

∑n
i=1 |ii〉.

To discuss our result, we will fix n = 2 and re-define the map

Φ :M2(C) →M2(C)⊗M2(C) as

Φα,β(A) = α((A +AT )⊗ I2) + β(|ψ+〉〈ψ+|)Γ (5)

where I2 denote the identity matrix of order 2 and |ψ+〉 =
1√
2
(|00〉+ |11〉).

For any a, d ≥ 0 and b, c ∈ R, we can take the input matrix

A ∈M2(R) of the form

A =

(

a b
c d

)

(6)

In matrix notation, the output of the map Φα,β can be ex-

pressed as

Φα,β =









2aα+ β
2 0 α(b+ c) 0

0 2aα β
2 α(b + c)

α(b + c) β
2 2dα 0

0 α(b+ c) 0 2dα+ β
2









(7)

A. Conditions for which a map φ will be positive

We will derive here the conditions for which Φ represent a

positive map. The map Φ will be positive if the matrix repre-

sented by Φα,β given in (7) is a positive semi-definite matrix.

To accomplish this task, we re-express Φα,β in a block matrix

form as

Φα,β =

(

X Y
Y ∗ Z

)

(8)

where

X =

(

2aα+ β
2 0

0 2aα

)

, Y =

(

α(b + c) 0
β
2 α(b + c)

)

,

Z =

(

2dα 0

0 2dα+ β
2

)

(9)

Applying Result-2 on Φα,β , we can state that the matrix Φα,β

will be positive semidefinite if the following conditions hold:

(i)X ≥ 0 ⇒ 2aα ≥ 0 and 4aα+ β ≥ 0 (10)

(ii)Z ≥ 0 ⇒ 2dα ≥ 0 and 4dα+ β ≥ 0 (11)

(iii) ‖V ‖ = ‖X −1

2 Y Z
−1

2 ‖ ≤ 1

⇒ ‖





α(b+c)√
dα(4aα+β)

0

β

4α
√
ad

α(b+c)√
aα(4dα+β)



 ‖ ≤ 1 (12)

where ‖V ‖ denote the operator norm of V .

Conditions (i) and (ii) given by (10) and (11) are collectively

given by

2α(a+ d) + β ≥ 0, α ≥ 0 (13)

Now our task is to take into account condition (iii) in which we

need to calculate the operator norm of the matrix V . Operator

norm of the matrix V is defined as the maximum eigenvalue

of V TV . The eigenvalue of V TV can be calculated from the

characteristic equation of V TV . The characteristic equation

of V TV is given by

λ2 − k1λ+
k2

4
= 0 (14)

where k1 = α(b+c)2

(4aα+β)d + β
4aα + β2

16adα2 + d
a

and k2 =
(b+c)2(β+4dα)

ad(4aα+β) .
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Since a ≥ 0 and d ≥ 0 from the earlier assumptions and using

equations (10) and (11), we can infer that k1 ≥ 0 and k2 ≥ 0.

Thus, it is clear from Descarte’s rule of sign that the two roots

of the characteristic equation given by (14) will be positive. If

λ1 and λ2 denote two positive eigenvalues of V TV then they

are given by

λ1 =
1

2
(k1 +

√

k21 − k2)

λ2 =
1

2
(k1 −

√

k21 − k2) (15)

Since both the eigenvalues are positive so ‖V ‖ =
max{λ1, λ2} = λ1. The condition (iii) says that ‖V ‖ ≤ 1
which implies

4(1 +
√

k21 − k2 − k2) ≥ 1 (16)

The map Φα,β is positive if equations (13) and (16) holds si-

multaneously. In particular, the map Φα,β will be positive for

α ≥ 0 and β = 0.

B. Is the map φ completely positive?

In this section, we will investigate the fact that whether the

map φ is completely positive. To do this, we begin with the

construction of Choi matrix corresponding to the positive op-

erator Φα,β . The Choi matrix CΦα,β
is defined as [18]

CΦα,β
=

1
∑

i,j=0

|i〉〈j| ⊗ Φα,β(|i〉〈j|) (17)

where |i〉 represent the basis state in two-dimensional Hilbert

space.

The Choi matrixCΦα,β
can be re-expressed in terms of matrix

as

CΦα,β
=



























2α+ β
2 0 0 0 β

2 0 α 0

0 2α β
2 0 0 0 β

2 α

0 β
2 0 0 α β

2 0 0

0 0 0 β
2 0 α 0 β

2
β
2 0 α 0 β

2 0 0 0

0 0 β
2 α 0 0 β

2 0

α β
2 0 0 0 β

2 2α 0

0 α 0 β
2 0 0 0 2α+ β

2



























, (18)

To show the completely positivity of a positive map Φα,β , we

need to the show that the choi matrix CΦα,β
corresponding

to the positive map Φα,β is positive semidefinite. We first

express the choi matrix in block form as

CΦα,β
=

(

P Q
Q∗ R

)

(19)

where

P =









2α+ β
2 0 0 0

0 2α β
2 0

0 β
2 0 0

0 0 0 β
2









, Q =









β
2 0 α 0

0 0 β
2 α

α β
2 0 0

0 α 0 β
2









,

R =









β
2 0 0 0

0 0 β
2 0

0 β
2 2α 0

0 0 0 2α+ β
2









(20)

Following Result-3, we can show that the choi matrix CΦα,β

is positive semidefinite if and only if the following conditions

are satisfied:

(i) P ≥ 0 holds when β = 0 and α ≥ 0 (21)

(ii) R ≥ 0 holds when β = 0 and α ≥ 0 (22)

(iii) P −QR−1Q∗ ≥ 0 holds for either

(α = 0 and β 6= 0) or (α > 0 and 4α+ β < 0)

or (α > 0 , 3α+ 2β ≥ 0 and β 6= 0) (23)

It can be easily observe that the conditions (i), (ii) and (iii)
does not hold simultaneously. Thus the map Φα,β is not com-

pletely positive.

C. Conditions for which a map φ will be positive but not

completely positive

In the previous sections, we have derived the condition for

which the map Φ will be positive and later we proved that the

positive map Φ cannot be completely positive. In this section,

we will derive the common interval of α for which the map Φ
will be positive but not completely positive simultaneously.

Without any loss of generality, let us consider the 2×2 positive

matrix A1 ∈M2(R) as

A1 =

(

1
4

1
3

1
9 2

)

(24)

Further, taking β = −γ(γ > 0), the output of the mapping

can be represented by the matrix as

Φα,−γ(A1) =









α
2 − γ

2 0 4α
9 0

0 α
2 − γ

2
4α
9

4α
9 − γ

2 4α 0
0 4α

9 0 4α− γ
2









(25)

It can be easily shown that the map Φα,−γ always produces a

positive matrix at the output if γ > 0 and α ≥ 9γ

2
√
146

. Thus

Φα,−γ represent a positive map if γ > 0 and α ≥ 9γ

2
√
146

.

Furthermore, the Choi matrix corresponding to the positive



4

map Φα,−γ is given by

CΦα,−γ
=























m1 0 0 0 − γ
2 0 α 0

0 2α − γ
2 0 0 0 − γ

2 α
0 − γ

2 0 0 α − γ
2 0 0

0 0 0 − γ
2 0 α 0 − γ

2
− γ

2 0 α 0 − γ
2 0 0 0

0 0 − γ
2 α 0 0 − γ

2 0
α − γ

2 0 0 0 − γ
2 2α 0

0 α 0 − γ
2 0 0 0 m1























(26)

where m1 = 2α− γ
2 .

The eigenvalues of CΦα,−γ
are given by

µ1 =
−γ +

√

4α2 + γ2

2
, µ2 =

−γ −
√

4α2 + γ2

2

µ3 =
4α− γ +

√

4α2 + γ2

2
,

µ4 =
4α− γ −

√

4α2 + γ2

2
,

µ5 = α+

√

4α2 + γ2 +
√

16α2 + 4α2γ2 + γ4

2

µ6 = α+

√

4α2 + γ2 −
√

16α2 + 4α2γ2 + γ4

2

µ7 = α−

√

4α2 + γ2 +
√

16α2 + 4α2γ2 + γ4

2

µ8 = α−

√

4α2 + γ2 −
√

16α2 + 4α2γ2 + γ4

2

(27)

It can be observed that the Choi matrixCΦα,−γ
has at least one

negative eigenvalues for any α and γ. Therefore, Φα,−γ is not

completely positive map for any α and γ. Thus for γ > 0
and α ≥ 9γ

2
√
146

, the map Φα,−γ is positive but not completely

positive.

IV. POSITIVE BUT NOT COMPLETELY POSITIVE MAP

ACT AS WITNESS OPERATOR FOR THE DETECTION OF

ENTANGLED STATES

In this section, we will construct a specific map which is

positive but not completely positive and then use it to detect

negative partial transpose entangled states and bound entan-

gled states. We will construct the Choi matrix from the posi-

tive map that can be considered as a witness operator. A wit-

ness operator W is a hermitian operator, which satisfies the

following properties:

(i) Tr(Wρs) ≥ 0, for all separable state ρs

(ii) Tr(Wρe) < 0, for at least one entangled state ρe

(28)

A. Detection of Bound Entangled State

To achieve our task, let us first fix γ = 2 and then choose

a value of α from the interval α ≥ 9√
146

. Taking α = 3
4 , the

matrix given in (25) reduces to

Φ 3

4
,−2(A1) =









11
8 0 1

3 0
0 3

8 −1 1
3

1
3 −1 3 0
0 1

3 0 4









(29)

In particular, the map Φ 3

4
,−2 represent a positive map. Using

this positive map, we can construct the Choi matrix which is

given below:

CΦ 3

4
,−2

=

























1
2 0 0 0 −1 0 3

4 0
0 3

2 −1 0 0 0 −1 3
4

0 −1 0 0 3
4 −1 0 0

0 0 0 −1 0 3
4 0 −1

−1 0 3
4 0 −1 0 0 0

0 0 −1 3
4 0 0 −1 0

3
4 −1 0 0 0 −1 3

2 0
0 3

4 0 −1 0 0 0 1
2

























, (30)

The Choi matrix CΦ 3

4
,−2

has at least one negative eigenvalues

and thus it does not represent a positive semidefinite matrix.

Hence Φ 3

4
,−2 is a positive but not completely positive map.

Next our task is to show that CΦ 3

4
,−2

act as witness opera-

tor and for this it is sufficient to show that there exist at least

one entangled states described by the density operator ρe for

which Tr(CΦ 3

4
,−2
ρe) < 0. Then we can say that the entan-

gled state will be detected by CΦ 3

4
,−2

.

Let us consider a quantum state described by the density op-

erator ρb which is given by

ρb =
1

1 + 7b

























b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2

2
b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√
1−b2

2 0 0 1+b
2

























(31)

where the state parameter satisfies 0 ≤ b ≤ 1. The state ρb is

shown to be a bound entangled state by range criterion [12].

We are now in a position to show the utility of the operator

CΦ 3

4
,−2

in the detection of entanglement. To accomplish this

task, we calculate Tr(CΦ 3

4
,−2
ρb), which is given by

Tr(CΦ 3

4
,−2
ρb) =

b− 1

4(1 + 7b)
< 0 (32)

Thus the bound entangled state ρb detected by the witness op-

erator CΦ 3

4
,−2

.
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B. Detection of Negative Partial Transpose Entangled State

Let us consider a quantum state described by the density

operator ρNPT which is given by

ρNPT =
1

3























1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1























(33)

It can be easily shown that the state (33) represent a negative

partial transpose entangled state. Now, our task is to construct

a witness operator which can detect it. To accomplish this

task, let us start with the positive input matrix which is given

by

A2 =

(

3 1
3

1
9 2

)

(34)

Considering β = −γ(γ > 0) and applying the map on A2,

we get the output matrix in the form

Φα,−γ(A2) =









6α− γ
2 0 4α

9 0
0 6α − γ

2
4α
9

4α
9 − γ

2 4α 0
0 4α

9 0 4α− γ
2









(35)

The map Φα,−γ will be positive map if γ > 0 and α ≥
9γ

90−2
√
27

. In the next step, we fix γ = 1 and then choose a

value of α from the interval α ≥ 9
90−2

√
27

. Taking α = 1
8 , the

matrix given in (35) reduces to

Φ 1

8
,−1(A2) =









1
4 0 1

18 0
0 3

4
−1
2

1
18

1
18

−1
2

1
2 0

0 1
18 0 0









(36)

Therefore, the particular form of the map Φ 1

8
,−1 represent a

positive map. Using this positive map, we can construct the

Choi matrix as

CΦ 1

8
,−1

=

























−1
4 0 0 0 −1

2 0 1
8 0

0 1
4

−1
2 0 0 0 −1

2
1
8

0 −1
2 0 0 1

8
−1
2 0 0

0 0 0 −1
2 0 1

8 0 −1
2−1

2 0 1
8 0 −1

2 0 0 0
0 0 −1

2
1
8 0 0 −1

2 0
1
8

−1
2 0 0 0 −1

2
1
4 0

0 1
8 0 −1

2 0 0 0 −1
4

























, (37)

The Choi matrix CΦ 1

8
,−1

has at least one negative eigenvalues

and thus it does not represent a positive semidefinite matrix.

Hence Φ 1

8
,−1 is a positive but not completely positive map.

We will now show that CΦ 3

4
,−2

act as witness operator and it

detect the state (33). To detect the state described by the den-

sity operator ρNPT , we calculate Tr(CΦ 3

4
,−2
ρNPT ), which is

given by

Tr(CΦ 1

8
,−1
ρNPT ) =

−1

6
< 0 (38)

Thus the negative partial transpose entangled state ρNPT de-

tected by the witness operator CΦ 1

8
,−1

.

V. CONCLUSION

To summarize, we have constructed a map which is applied

on n × n matrix and as a result, we obtain n2 × n2 matrix

at the output. The mapping constructed here is general and

work for higher order matrices also. But to simplify the dis-

cussion, we have taken n = 2 and then showed that the map

is positive under certain conditions. Further, we have shown

that the constructed map can never be completely positive and

also obtained the conditions for which the map is positive but

not completely positive. Lastly, we have discussed that the

Choi matrix constructed from the positive map can act as a

witness operator and take part in the detection of bound en-

tangled state and negative partial transpose entangled state.
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