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Abstract
K -nearest neighbor classification algorithm is one of the most basic algorithms in
machine learning, which determines the sample’s category by the similarity between
samples. In this paper, we propose a quantum K -nearest neighbor classification algo-
rithm with the Hamming distance. In this algorithm, quantum computation is utilized
to obtain the Hamming distance in parallel at first. Then, a core sub-algorithm for
searching the minimum of unordered integer sequence is presented to find out the
minimum distance. Based on these two sub-algorithms, the whole quantum frame of
K -nearest neighbor classification algorithm is presented. At last, it is shown that the
proposed algorithm can achieve a significant speedup by analyzing its time complexity
briefly.

Keywords Quantum machine learning · K -nearest neighbor classification ·
Quantum algorithm

1 Introduction

Recently, with the development of quantummechanics and information science, quan-
tum information, the product of the combination of these two disciplines, has gradually
attracted people’s attention. One of the most popular issues is quantummachine learn-
ing (QML) [1]. Since the proposal of quantum linear system algorithm by Harrow et
al. [2], a series of quantum algorithms have been presented to solve various machine
learning tasks, such as quantum dimensionality reduction algorithm [3–5], quantum
regression algorithm [6,7], quantum association rules mining [8], quantum decision
tree classifier [9], quantum support vector machine [10–12], and quantum nearest
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neighbor classification algorithm [13–18]. They combine classical algorithms with
quantum computation and are shown to achieve significant speedup over their classi-
cal counterparts.

As one of the most common algorithms in machine learning, classification has
been widely applied in image recognition [17] and text categorization [19]. Typically,
K -nearest neighbor (KNN) classification algorithm determines the testing sample’s
category based on the metric of distance with excellent performance and has been
combinedwith quantumcomputation aswell, arousingwidespread interest of scholars.
In 2011, Lloyd et al. presented a quantummethod to calculate Euclidean distance [14]
with the help of swap test [20]. Based on that,Wiebe et al. proposed a quantum version
of nearest-centroid classification algorithm [15] whereGrover’s search algorithm [21],
in the form of the Dürr Høyer minimization algorithm [22], was utilized to find the
closest cluster. However, for non-numerical data, it does not make sense to compute
the Euclidean distance, while Hamming distance is significative and can be obtained
easily. In terms of that, Ruan et al. proposed a quantum KNN algorithm based on
Hamming distance [16]. However, in their algorithm, besides K , a new parameter t is
added, which is used to find out the training samples fromwhom the distance to the test
sample is less than t , so that there are two parameters to set and optimize, increasing
the amount of computation. Moreover, a key step of KNN algorithm, searching the
K -nearest neighbors, is ignored.

Further studying on these problems, we propose a whole quantum KNN classifica-
tion algorithm based on Hamming distance, which is shown to be quadratically faster
than its classical counterpart when the sample vectors lie in a low-dimensional feature
space. In the proposed algorithm, a core sub-algorithm is put forward to search the
minimum distance which is more efficient and more applicable to integer data than
Dürr Høyer minimization algorithm [22], which is utilized commonly in quantum
machine learning algorithms [15,17]. Moreover, we present the whole quantum frame
of KNN classification algorithm where the testing sample’s category can be obtained
clearly.

The rest of this paper is organized as follows: In Sect. 2, we review the classical
KNN classifier. Section 3 presents two quantum sub-algorithms, calculatingHamming
distance and searching the minimum of unordered integer sequence. Section 4 gives
the whole quantum frame of KNN classification algorithm. Conclusions are given in
the last section.

2 Preliminaries

In this section, we briefly review the basic idea and main processes of the classical
KNN classification algorithm [19,23,24].

KNN is one of the most common classification algorithms of supervised machine
learning, where the testing sample is classified according to the similarity between
it and training samples. For example, as shown in Fig. 1, there are two classes, blue
square and red triangle. The task is to determine what the green circle whose class is
unknown belongs to. At first, the distance metric is utilized to calculate similarities
between the green circle and other samples. It is easy to see that the K nearest neighbors
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Fig. 1 The illustration of KNN
algorithm

include two red triangles and one blue square when K = 3. Finally, based on “majority
voting” principle, the green circle is classified to the category of red triangle.

The general processes of classical KNN classifier can be summarized as follows:

(1) Compute the similarity between the testing sample (unclassified sample) and each
training sample.

(2) Find out K -nearest neighbors of the testing sample.
(3) Count categories of K -nearest neighbors and then assign the most frequent cate-

gory to the testing sample.

Obviously, the runtime of KNN classification algorithm is dominated by the com-
putation of distance, which should be implementedM times. Thus, its time complexity
is O (M).

There are many ways to calculate similarity. One of the most commonmetrics is the
Hamming distance. It can be applied to KNN classification algorithm to classify non-
numerical data points efficiently, which is concerned in this paper. Given the testing
sample vector −→x = (x1, x2, . . . , xN )T (x j ∈ {0, 1}; j = 1, 2, . . . , N ), whose class
is unknown, and training sample vectors −→vi = (vi1, vi2, . . . , vi N )T (vi j ∈ {0, 1};
j = 1, 2, . . . , N ) with class ci , where i = 1, 2, . . . , M ; ci ∈ {0, 1, . . . , L}. Hamming
distance between −→x and −→vi is given by:

di = ∣
∣−→x − −→vi

∣
∣ =

N
∑

j=1

(

x j ⊕ vi j
)

, (1)

which shows the difference of two bit vectors. For example, the Hamming distance
between 01101 and 11001 is 2.

Ruan et al. presented a quantum KNN classification algorithm for implementing
this algorithm based on themetric of Hamming distance [16]. In their algorithm, a new
parameter t is introduced to help finding out the K -nearest neighbors. Specifically,
if the Hamming distance between a training sample and the test sample is less than
t , it is considered to be one of the K nearest neighbors. Obviously, the value of t
is difficult to determine because there is no direct correlation between t and K . In
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addition, generally speaking, the value of K is much less than the number of training
samples M . Then, if the K -nearest neighbors are obtained by performing a projection
measurement on the quantum register directly (mentioned in Sect. 3.2 of Ref. [16]),
the success probability K

M may be very small. Therefore, this problem should also be
considered in the practical implementation of the algorithm presented in Ref. [16]. In
the next section, we will give possible solutions to these problems.

3 Two quantum sub-algorithms

From the classical frame of KNN classification algorithm, it is evident that there
are two core steps, i.e., steps (1) and (2). So, before presenting the whole quantum
frame of KNN classifier, two corresponding quantum sub-algorithms are put forward
in this section. The first quantum sub-algorithm is computing Hamming distance,
which is described in Sect. 3.1. The sub-algorithm B in Sect. 3.2 is a quantum method
for searching the minimum of unordered integer sequence. In Sect. 3.3, we perform
runtime analysis on the two sub-algorithms, respectively.

3.1 Sub-algorithm A: quantummethod for computing Hamming distance

Computing similarity is an important subprogram in classification algorithms. For the
classification of non-numerical data, Hamming distance is one of the popular ways
to calculate similarity. Here, we describe a quantum method to calculate Hamming
distance between −→x and −→vi in parallel.

A1: Prepare the superposition state

|φ1〉 = 1√
M

M
∑

i=1

|i〉 |vi 〉 |x〉 . (2)

where |x〉 = |x1x2 · · · xN 〉 = |x1〉|x2〉 · · · |xN 〉 = |x1〉 ⊗ |x2〉 ⊗ · · ·⊗ |xN 〉 and |vi 〉 =
|vi1vi2 · · · vi N 〉, respectively.

Considering a binary training data set−→vi , we can use a decimal value vi to represent
the vector, where vi = vi12N−1+· · ·+vi N20. Thus, the dataset can be taken as a new
vector

−→
V = (v1, v2, · · · , vM). Assume we have a quantum access to the vector

−→
V in

a quantum random access memory (QRAM) [25–28], then there exists an oracle OV

OV : |i〉 |0〉 �→ |i〉 |vi 〉 , (3)

which can efficiently access vi in time O
(

log2 M
)

. Possible physical realizations and
architectures for the QRAM are discussed in detail in Ref. [25] and Ref. [27].

Before performing OV , one important step is preparing the state 1√
M

∑M
i=1 |i〉.

Reference [17] gives an efficient approach to generate this state by performing a prod-
uct of Hadamard gates, H = 1√

2
((|0〉 + |1〉) 〈0| + (|0〉 − |1〉) 〈1|), and the quantum

comparator [29] that can be applied to compare the size of two numbers. At first,
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prepare m = ⌈

log2 (M + 1)
⌉

qubits in |0〉 and perform Hadamard gates to obtain
1√
2m

∑2m−1

i=0 |i〉. Next, we append two flag qubits. If i = 0, flip the first qubit, and if
i > M , flip the second qubit. The first operation can be implement by CNOT gate,
and the second operation can be achieved with the help of the quantum comparator.
Then measuring the flag qubits, we can obtain the state 1√

M

∑M
i=1 |i〉. The measure

probability is M/2m ; thus, the running time is O (2m/M) = O (1). Next, performing
oracle OV , we can obtain the state 1√

M

∑M
i=1 |i〉 |vi 〉.

For the testing vector −→x , we need to prepare N qubits. If x j = 0, the j th qubit is
in the state |0〉. Otherwise, it is in the state |1〉. In this way, we have |x〉. As a result,
we can generate the state |φ1〉 in O

(

log2 M
)

.
A2: Implement the CNOT gate to see whether the state in the same place is equal.

The CNOT gate is one of the most common controlled operations in quantum comput-
ing,with two input qubits, known as the target qubit and control qubit, respectively. The
action of the CNOTct gate is given by |x〉c |y〉t → |x〉c |x ⊕ y〉t , where x, y ∈ {0, 1},
c and t represent the control qubit and the target qubit, respectively; that is, if x = y,
then the target qubit t is in the state |0〉, otherwise t is in the state |1〉. By implementing
N CNOT gates on the qubits in the same place of |x〉 and |vi 〉 and labeling the result
state of the target qubit |xi 〉 with

∣
∣ri j

〉

, we have

|φ2〉 = 1√
M

M
∑

i=1

N
⊗

j=1

CNOTci j t j |i〉 |vi 〉ci1···ci N |x〉t1···tN

= 1√
M

M
∑

i=1

|i〉 |vi1 · · · vi N 〉ci1···ci N |ri1 · · · ri N 〉t1···tN , (4)

A3:Add a register in the state |0〉with n = ⌈

log2 (N + 1)
⌉

qubits to storeHamming

distance di . After calculating
∑N

j=1 ri j , the state becomes

|φ3〉 = 1√
M

M
∑

i=1

|i〉 |vi1 · · · vi N 〉 |ri1 · · · ri N 〉 |di 〉 . (5)

This step can be achieved by using the controlled incrementing circuit proposed by
Kaye [30] as shown in Fig. 2a. In Fig. 2a, di is described as di1di2 · · · din in binary
representation, and the controlled circuit consists of a series of controlled NOT oper-
ations and a Pauli operation X = |0〉 〈1| + |1〉 〈0|. The controlled NOT operations
mean NOT gates that are controlled on various patterns of control bits. A general con-
trolled NOT operation consists a target qubit and some control qubits, and the NOT
gate is applied conditioned on the control qubits being in a certain pattern. It can be
constructed out of the elementary gates {NOT, CNOT, Toffoli}. For a circuit having a
total of T bits, if T ≥ 5, and the number of control qubits satisfies

⌈ T
2

⌉ ≥ k ≥ 3, the
controlledk NOT operation can be simulated using 4k − 6 elementary gates [30]. It is
easy to verify that the controlled incrementing circuit can obtain the result of di + ri j .
Moreover, this circuit can be taken as a controlled operation incn , as shown in Fig. 2b.
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(a)

(b)

Fig. 2 The controlled incrementing circuit. The hollow circle on the control qubit indicates that the operation
is applied to the target qubit conditioned on the control qubit equaling 0, while the solid circle is in
the opposite condition. a The quantum circuit for the controlled incrementing circuit by using a series
of controlled NOT operations and a Pauli operation X . b The simplified circuit representation of the
incrementing circuit. This representation is the equivalent of (a)

Under the condition that the circuit has at least 2n qubits in total, the depth of incn
operation is:

⎧

⎨

⎩

1 n = 1
10 n = 2

2n2 + n − 5 n ≥ 3
(6)

This is true in the context of our algorithm, which has 2N + n + 1 qubits in total as
shown in Fig. 3.

Figure 3 shows the processes of the calculation of Hamming distance. After prepar-
ing the state |φ1〉, implement N CNOT gates and we can obtain |φ2〉. Then, perform
incn operations to obtain Hamming distance di stored in RD . An example is given
for illustrating this circuit more clearly. Given two vectors, −→vi = (01101)T and
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Fig. 3 The circuit for computing Hamming distance di . The last qubit in the state |1〉 is used for the
implementation of incn operation

−→x = (11001)T , their corresponding quantum states are |vi1 · · · vi5〉RV
= |01101〉 and

|x1 · · · x5〉RX
= |11001〉. Perform CONT gates, and the state of register RX becomes

|ri1 · · · ri5〉RX
= |10100〉. Then, implement the operation inc3 to obtain Hamming

distance,
∑5

j=1 ri j . Here, inc3 needs to be performed 5 times. For the first, the first
qubit of the register RX is the control qubit, and after performing the operation inc3,
the state of the register RD becomes |0 + ri1〉 = |1〉. For the second, perform the
operation inc3 controlled by the second qubit of the register RX , and the state of the
register RD becomes |1 + ri2〉 = |1〉. The last three operations are similar to the first
two. As a result, we have the Hamming distance between −→vi and −→x , |di 〉 = |2〉.

3.2 Sub-algorithm B: quantummethod for searching theminimum of unordered
integer sequence

The second step of KNN classification algorithm is finding out K -nearest neighbors,
that is, searching the K minimumHamming distances between the testing sample and
training samples. In other words, this task can be depicted as a problem: searching the
K minimum elements of the set D = {d1, d2, · · · , dM }, where di ∈ {0, 1, · · · , N }.
To solve this problem, we propose a quantum algorithm for searching the minimum

value of unordered integer sequence with runtime O
(√

M log2 M
)

. Compared with

the classical algorithm, our algorithmcan achieve a quadratic speedupwhen the sample
size is large.

To find out the minimum element of D, we introduce a parameter key j ∈
{0, 1, · · · , N } with its binary representation key j1key j2 · · · key jn , where n =
⌈

log2 (N + 1)
⌉

. The binary representation of di is di1di2 · · · din . Add a bit in 0 before
di and key j , i.e., di = 0di1di2 · · · din and key j = 0key j1key j2 · · · key jn . Then, we
have di � key j = di − key mod 2n+1. Suppose the result is bi with the binary rep-
resentation bi0bi1 · · · bin . If di < key, we can obtain bi0 = 1, and bi1 · · · bin is the
binary representation of di − key j mod 2n . That is, if di < key j , the bit bi0 will
be flipped to 1, otherwise bi0 = 0. This idea inspires us that the elements less than
key j can be reserved by measuring an ancillary qubit with outcome 1, if di and key j
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are encoded to quantum represents |di 〉 and
∣
∣key j

〉

. What’s more, thanks to quantum
parallelism, |di − key〉 can be computed in parallel, which makes the process more
efficient. Based on these analysis, a quantum algorithm for searching the minimum
value of unordered integer sequence is given as follows.

B1: Prepare the quantum state

|α1〉 = 1√
M

M
∑

i=1

|i〉 |di 〉RD
, (7)

For easy of depiction, RD is used to denote the register storing di which has n qubits.
To prepare |α1〉, assume we are provided the quantum oracle

OD : |i〉 |0〉 �→ |i〉 |di 〉 , (8)

which can efficiently access the entries of D in O
(

log2 M
)

time. This holds when
the entries of D are efficiently computable or are stored in QRAM [25–28]. We start
with performing the oracle OD on the state 1√

M

∑M
i=1 |i〉 |0〉 to have 1√

M

∑M
i=1 |i〉 |di 〉.

Here, the preparation of the state 1√
M

∑M
i=1 |i〉 is shown clearly in step A1 of Sect. 3.1.

B2: Add an ancillary qubit a2 in the state |0〉 before RD , and we have

|α2〉 = 1√
M

M
∑

i=1

|i〉 |0〉a2 |di 〉RD
. (9)

B3: Append a register storing key denoted by Rk . At first, suppose max0 = N ,

min0 = 0, then key0 =
⌊
max0+min0

2

⌋

with the binary representation key0 =
key01key02 · · · key0n . Generate state |key0〉 = |0key01key02 · · · key0n〉 stored in RK ,
and obtain

|α3〉 = 1√
M

M
∑

i=1

|i〉 |0〉a2 |di 〉RD
|key0〉RK

. (10)

B4: Reserve the elements less than key0.
Calculating |di − key0〉 in parallel, the state becomes

|α4〉 = 1√
M

M
∑

i=1

|i〉 |di � key0〉a2,RD
|key0〉RK

, (11)

where a � b represents a − b mod 2n+1.
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If there exist elements less than key0 in sequence D, labeled with dip , then a2 :
|0〉 → |1〉. We have

|α4〉 = 1√
M

⎛

⎝

l
∑

p=1

∣
∣i p

〉 |1〉a2
∣
∣dip − key0

〉

RD
|key0〉RK

+
M−l
∑

q=1

∣
∣iq

〉 |0〉a2
∣
∣diq − key0

〉

RD
|key0〉RK

⎞

⎠ , (12)

where l is the number of the elements less than key0; diq is the element bigger than or
equal to key0.

Otherwise,

|α4〉 = 1√
M

M
∑

q=1

∣
∣iq

〉 |0〉a2
∣
∣diq − key0

〉

RD
|key0〉RK

. (13)

At this time, if measure a2 to see the outcome 1, after successful measurement, we
retain the elements less than key0. According to Eq. (12), the probability of obtaining
measurement outcome 1 is Prob2 (1) = l/M . The state after measurement is:

|α5〉 = 1√
l

l
∑

p=1

∣
∣i p

〉 |1〉a2
∣
∣dip − key0

〉

RD
|key0〉RK

. (14)

Here, we need O (M) measurements. By utilizing amplitude amplification [31], the

runtime can be speed up to O
(√

M
)

. If all the measurement outcomes are 0, then the

conclusion is that no element is less than key0.
Next, restore RD to di . Perform quantum addition operation, and we obtain

|α6〉 = 1√
l

l
∑

p=1

∣
∣i p

〉 |0〉a2
∣
∣dip

〉

RD
|key0〉RK

, (15)

or,

|α6〉 = 1√
M

M
∑

q=1

∣
∣iq

〉 |0〉a2
∣
∣diq

〉

RD
|key0〉RK

. (16)

After implementing step B4, we obtain the elements less than key0 if they exist.
B5: Update the value of key based on the idea of binary searching. If the outcome

of measuring a2 is 1, then max j = key j−1 − 1, min j = min j−1. Otherwise, min j =
key j−1+1, max j = max j−1.We have key j =

⌊
max j+min j

2

⌋

. For example, we assume

that the minimum value of set D, dmin=5N
16 , and N is a multiple of 16, as shown in

123



18 Page 10 of 17 J. Li et al.

Fig. 4 The process of updating the value of key, where dmin denotes the minimum value of set D, and
min j , max j , key j is the value of min, max, key in j th iteration, respectively

Table 1 The iteration procedure
in searching minimum of the
given example, D = {1, 2, 1},
where Ma2 denotes the
measurement outcome on the
qubit a2 and “remaining
elements” represent the result in
one iteration

N = 2 N = 4

Iterations 0 1 0 1 2

Min 0 2 0 0 1

Max 2 2 4 1 1

Key 1 2 2 0 1

Ma2 0 1 1 0 0

Remaining elements {121} {11} {11} {11} {11}

Fig. 4. Then, the initial max0 = N , min0 = 0, and key0 = ⌊ N+0
2

⌋ = N
2 . In the next

three iteration, we have key1 = N
4 , key2 = 3N

8 , key3 = 5N
16 , respectively. Obviously,

through three iterations, key is close to dmin.
Then, update RK to store

∣
∣key j

〉

. Repeat step B4 until max j ≤ min j . After mea-
suring a2, the state is:

|α7〉 = 1√
E

E
∑

e=1

|ie〉 |Ma2〉a2
∣
∣die − key j

〉

RD

∣
∣key j

〉

RK
. (17)

where E is the number of the elements whose value is the minimum; di1 = di2 =
· · · = diE = dmin, dmin is the value of the minimum of set D; Ma2 denotes the
measurement outcomes on a2. The value of Ma2 depends on the original data set. For
example, supposing a data set D = {1, 2, 1} is given, analyze the searching minimum
procedure in the cases where the sample dimension N = 2 and N = 4, respectively,
and the changes of parameters in iterations are shown in Table 1. We can see that if
N = 2, in the last iteration, the measurement outcome on a2 is 1, while if N = 4,
the measurement outcome on a2 is 0. Besides, when the sample dimensions of two
data sets are same and the minimum values are different, it is also possible that the
measurement outcomes on a2 are different.

Then performing addition operation on register RD and RK , the final state is

|αmin〉 = 1√
E

E
∑

e=1

|ie〉 |0〉a2
∣
∣die

〉

RD

∣
∣key j

〉

RK
. (18)
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Table 2 The runtime of the
sub-algorithm A

Step Runtime

A1 O
(

log2 M
)

A2 O (N )

A3 O
(

Nn2
)

Overall time complexity O
(

log2 M + N + Nn2
)

Measuring the index register and RD in computational basis, we obtain the value of
the minimum elements of D, dmin and its index.

3.3 Runtime analysis

One of the clear advantages of quantum algorithm is that it is faster than classical algo-
rithm. Hence, in this section, the runtime of the above two quantum sub-algorithms is
discussed, respectively. Similarly to the representative quantum algorithm, we analyze
the number of quantum operations in each step of the two sub-algorithms and obtain
the time complexity of them. It is shown that the presented sub-algorithms achieve
significant speedup over their classical counterparts.

The sub-algorithm A presents a quantum method for calculating Hamming dis-
tance. Obviously, in step A1, the runtime of state preparation is O

(

log2 M
)

. Then, N
CNOT gates are utilized to obtain |ri1 · · · ri N 〉 in step A2, so the time complexity of
this step is O (N ). Finally, to compute the sum of ri j , N incn operations are used in
step A3. According to Ref. [30], each incn operation can be constructed out of O

(

n2
)

elementary gates, where n = ⌈

log2 (N + 1)
⌉

denotes the number of qubits in the reg-
ister RD . It is easy to see that step A3 takes runtime O

(

Nn2
)

. Based on the runtime of
each step of sub-algorithm A shown in Table 2, we can obtain the overall runtime of
this sub-algorithm is O

(

log2 M + N + Nn2
)

. Considering a low-dimensional feature
space, i.e., N � M , we can ignore the effect of N on the overall algorithm. In this case,
the time complexity of the quantum sub-algorithm A is O

(

log2 M
)

. In classical envi-
ronment, O (M) calculations are required to obtain the Hamming distances between
M training samples and one testing sample. Compared to the classical counterpart,
the proposed quantum sub-algorithm greatly reduces the time complexity.

The sub-algorithm B is a quantum sub-algorithm for searching the minimum of
unordered integer sequence, which can be used to find out the K -nearest neighbors in
KNN classification algorithm. In step B1, QRAM [25–28] is utilized to state prepara-
tion with the runtime O

(

log2 M
)

. Then, in step B2 and step B3, the particle a2 in state
|0〉 and the register RK in state |key0〉 are appended, respectively, so the runtime of
the two steps is O (1). After that, in step B4, |di − key〉 is calculated in parallel, and
a2 is measured to reserve the elements less than key. According to [30], the number of
fundamental quantum operations for implementing addition operator is O

(

n3
)

. Then,
the probability of obtaining measurement outcome 1 of a2 is l/M where l is unknown,

so it needs O
(√

M
)

repetitions by utilizing amplitude amplification [31]. Therefore,
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Table 3 The runtime of
sub-algorithm B

Step Runtime

B1 O
(

log2 M
)

B2 O (1)

B3 O (1)

B4 O
(

n3
√
M

)

B5 O
(

log2 N
)

Overall time complexity O
(

log2 N
√
M

(

log2 M + n3
))

the runtime of step B4 is O
(

n3
√
M

)

. Finally, key is updated O
(

log2 N
)

times to

obtain the minimum value in step B5. Based on Table 3, the overall time complexity

of the sub-algorithm B is O
(

log2 N
√
M

(

log2 M + n3
))

. Here, the case where the

sample vectors lie in a low-dimensional feature space is also taken into account, i.e.,

N � M , the time complexity is O
(√

M log2 M
)

. On a classical computer, to find

the elements with the minimum value requires a traversal of the data set with time
complexity O (M). Thus, comparedwith the classical searching algorithm, it is shown
that our algorithm achieves the speedup.

Involving the problem of searching the minimum value, Christoph Dürr and Peter
Høyer proposed a quantumalgorithm for finding theminimumvalue based onGrover’s

search algorithm [21] with running time O
(√

M
)

(M is the sample size) in 1996 [22].

Given a set containing M elements, their algorithm utilizes an oracle to compare the
value of elements with one of them and mark the smaller. The element can be in an
arbitrary numeric set. Different with their algorithm, the data set in our algorithm
is required to be a set of integers in a known range. We mark the index register and
search theminimumbasedon the properties of elements. The elements less than key are
reserved bymeasuring a flag qubit, which can be implemented via the present quantum
technique, such as QRAM [25–28], quantum addition operation [30] and amplitude
amplification [31]. In practical term, there exist lots of application scenarios where the
element requires to be a integer, and its scope has made requirement as well, such as
finding the minimum students’ test score in student management system, finding the
minimumage inDemographic andHealth Surveys andfinding theminimumHamming
distance which we concern in this paper.

4 Whole quantum frame for KNN classifier

Based on the above two sub-algorithms, in this section, we present the whole quantum
frame for KNN classifier based on Hamming distance in detail in Sect. 4.1. Its runtime
analysis is in Sect. 4.2.

123



Quantum K -nearest neighbor classification algorithm Page 13 of 17 18

4.1 Quantum algorithm

Given testing sample vector −→x , and training sample vectors {−→vi , ci }Mi=1, the detail of
the algorithm is as follows.
Step W1 Prepare the initial quantum state.

In this step, the initial quantum state

|ψ0〉 = 1√
M

M
∑

i=1

|i〉 |vi1 · · · vi N 〉RV
|ci 〉RC |x1 · · · xN 〉RX

(19)

is generated.
We assume training samples are stored in QRAM [25–28], and oracle OVC is

provided, where

OVC : |i〉 |0〉 |0〉 �→ |i〉 |vi 〉 |ci 〉 (20)

Then, the state 1√
M

∑M
i=1 |i〉 |vi 〉 |ci 〉 can be obtained in O

(

log2 M
)

. To generate
|x〉 = |x1x2 · · · xN 〉, prepare the state |0 · · · 0〉 with N qubits at first. If x j = 1, the
j th qubit is flipped to |1〉. Otherwise, it is still in |0〉. Thus, we can obtain |x〉 stored
in RX . As a result, |ψ0〉 is generated in O

(

log2 M
)

.
Step W2 Calculate Hamming distance.

In this step, the sub-algorithmA is utilized to compute Hamming distances between
the testing sample and training samples. Based on the quantum circuit as shown in
Fig. 3, firstly, perform N CNOT gates on RV and RX to see whether the state in the
same place is equal. Then, N -controlled incrementing operations incn are performed
to obtain |di 〉. The state becomes

|ψ1〉 = 1√
M

M
∑

i=1

|i〉 |vi1 · · · vi N 〉RV
|ci 〉RC |ri1 · · · ri N 〉RX

|di 〉RD

= 1√
M

M
∑

i=1

|i〉 |vi 〉RV
|ci 〉RC |ri 〉RX

|di 〉RD
. (21)

Step W3 Search K -nearest neighbors.
Considering that di is an integer between 0 and N , we can use the sub-algorithm B

proposed in Sect. 3.2 to search K -nearest neighbors of −→x directly. By implementing
the sub-algorithmB,we obtain the index imin and category cimin of the nearest neighbor.
Next, the steps are described in brief.
Step W3.1As shown in steps B2 and B3, append an ancillary qubit a2 as a flag particle

in the state |0〉, and a register RK to store the state |key0〉, where key0 =
⌊
max0+min0

2

⌋

with the binary representation key0 = key01key02 · · · key0n and initial max0 = N ,
min0 = 0.
StepW3.2PerformstepB4 to reserve the elements less than key0.Calculate |di − key0〉
at first, thenmeasure a2. If the outcome is 1, the elements less than key will be reserved.
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The probability of the outcome 1 will be l/M , so to perform measurements, we need

to make O
(√

M
)

measurements. One case is that all the measurement outcomes are

equal to 0, which shows all elements are not less than key0. Restore RD to di , we
obtain the state

|ψ2〉 = 1√
l

l
∑

p=1

∣
∣i p

〉 ∣
∣vi p

〉

RV

∣
∣ci p

〉

RC

∣
∣ri p

〉

RX
|0〉a2

∣
∣dip

〉

RD
|key0〉RK

, (22)

or

|ψ3〉 = 1√
M

M
∑

q=1

∣
∣iq

〉 ∣
∣viq

〉

RV

∣
∣ciq

〉

RC

∣
∣riq

〉

RX
|0〉a2

∣
∣diq

〉

RD
|key0〉RK

. (23)

Step W3.3 Update the value of key as step B5 shows and repeat step W3.2 until
max j ≤ min j . Finally, after measuring the index register and register RC , imin and
cimin can be obtained.
Step W3.4 Take −−→vimin out of the training sets and repeat the sub-algorithm B, then we
can obtain the second nearest neighbor. Therefore, repeating the sub-algorithm B K
times, we can obtain the K -nearest neighbors with their index ki (i ∈ {1, · · · , K })
and category cki .
Step W4 Determine the testing sample’s category.

The task of this step is to find out the category whose frequency is the highest of the
K -nearest neighbors. Here, the quantum measurement is utilized to avoid quantum-
classical interaction, so that the whole algorithm is more efficient. Firstly, based on
the result we obtain in step W3, we prepare the state,

|θ〉 = 1√
K

K
∑

i=1

|i〉 ∣
∣cki

〉

, (24)

where cki is category of the ki th nearest neighbor. Suppose cki is stored in QRAM
[25–28], and the oracle OCk

OCk : |i〉 |0〉 �→ |i〉 ∣
∣cki

〉

(25)

is provided. After generating 1√
K

∑K
i=1 |i〉 |0〉, we can implement the oracle OCk and

obtain the state |θ〉 in time O
(

log2 K
)

.
Assume the number of category j in K nearest neighbors is ρ j , j ∈ {0, 1, · · · , L}.

Measuring the second register RC in computational basis, the probability of outcome
j is:

Prob ( j) = 〈θ | (I ⊗ | j〉 〈 j |) |θ〉 = ρ j

K
. (26)
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It’s easy to see that the higher the frequency of category is, the bigger measurement
probability is. Besides, O (K ) repetitions are enough to obtain the category whose
frequency is highest in K nearest neighbors. At the end, assign the most frequent
category to the testing sample.

4.2 Runtime analysis

In this section, the time complexity of the proposed quantum KNN classification
algorithm is analyzed briefly. Based on the conclusions in Sect. 3.3, we analyze the
runtime step by step and obtain the overall time complexity of the whole algorithm is

O
(√

M log2 M
)

. As shown in Table 4, a detailed analysis of each step of the whole

quantum algorithm is depicted as follows.
At first, in step W1, the state |ψ0〉 is generated in time O

(

log2 M
)

with the help
of QRAM [25–28]. Then, in step W2, the Hamming distance between testing sam-
ple and training samples is calculated in parallel by utilizing the sub-algorithm A,
where N CNOT gates and N incn operations are implemented. Thus, the runtime
of step W2 is O

(

N + Nn2
)

. Next, sub-algorithm B is utilized to search K nearest
neighbors in step W3, which is the most time-consuming. The substeps of step W3
have the corresponding steps of sub-algorithm B, where step W3.1 corresponds step
B2 and B3; step W3.2 and step W3.3 correspond to step B4 and step B5, respec-
tively. According to the runtime analysis of sub-algorithm B in Sect. 3.3, steps B2

to B5 cost O
(

n3 log2 N
√
M

)

in total. Besides, the sub-algorithm B is required to

perform K times to search the K minimum distances, so the runtime on step W3 is

O
(

Kn3 log2 N
√
M

)

. Finally, the testing sample’s category is determined in stepW4.

As generating the state |θ〉 costs O (

log2 K
)

and O (K ) measurements are taken, the
runtime on step W4 is O

(

K log2 K
)

.
To sumup, the overall time complexity of the presented quantumKNNclassification

algorithm is O
(

K log2 N
√
M

(

log2 M + N + Nn2 + n3
) + K log2 K

)

. Generally

speaking, the vector dimension N and the number of nearest neighbors K are always
far less than the sample size M , so they have a trivial impact on the overall runtime. It
means that the overall time complexity of the quantumKNN classification algorithm is

O
(√

M log2 M
)

. Compared with the classical KNN classification algorithm [23,24]

whose time complexity is O (M), our algorithm achieves a significant speedup.

5 Conclusions

To sum up, in this paper, we present a quantum algorithm for KNN classifier based
on Hamming distance, which is one of the most basic algorithms in machine learning
and can be a significant subprocess in lots of classification algorithms [18,19] as well.
To achieve this task, two core sub-algorithms are proposed firstly. One is the quantum
method to calculate Hamming distances between testing sample and training samples,
where the addition circuit presented by Kaye [30] is utilized. Another is the sub-
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Table 4 The runtime of the quantum KNN classification algorithm

Step Runtime

W1 O
(

log2 M
)

W2 O
(

N + Nn2
)

W3 O
(

Kn3 log2 N
√
M

)

W4 O
(

K log2 K
)

Overall time complexity O
(

K log2 N
√
M

(

log2 M + N + Nn2 + n3
)

+ K log2 K
)

algorithm for searching the minimum of unorder integer sequence aiming at finding
out the nearest neighbor, which can be also efficiently applied to solve some statistical
problems. Based on the above methods, we put forward the whole quantum frame of
KNN classification algorithm.

Through a brief analysis, the presented algorithm can classify the testing sample

with the time complexity O
(√

M log2 M
)

when the sample vectors lie in a low-

dimensional feature space. Thanks to the characteristics of quantum computation, the
algorithm achieves quadratic speedup over the classical algorithm. However, when the
dimension of sample vectors is large, it is hard to obtain the quadratic acceleration,
which is a new issue we will study in the future. Moreover, how to efficiently select
K in quantum KNN classification algorithm also deserves further investigation.
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