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Abstract The Bell’s inequality is a strong criterion to distinguish classical
and quantum mechanical aspects of reality. Its violation is the net effect of
the existence of non-locality in systems, an advantage for quantum mechanics
(QM) over classical physics. The quantum mechanical world is under the con-
trol of the Heisenberg uncertainty principle (HUP) that is generalized by quan-
tum gravity (QG) scenarios, called generalized uncertainty principle (GUP).
Here, the effects of GUP on the square of Bell operators of qubits and qutrits
are studied. The achievements claim that the violation quality of the square of
Bell inequalities may be a tool to get a better understanding of the quantum
features of gravity. In this regard, it is obtained that the current accuracy of
the Stern-Gerlach experiments implies upper bounds on the values of the GUP
parameters.
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1 Introduction

The pioneering work of Einstein-Podolski-Rosen (EPR) reveals the non-local
feature of physical realities [1], a property which leads to the violation of
Bell’s inequality [2]. One cornerstone of the EPR thought experiment is the
uncertainty principle arisen from the non-commutativity of position (x) and
momentum (p) operators [1,3,4,5]. In order to make this point more clear, let
us consider the CHSH (Clauser-Horne-Shimony) form of Bell’s inequality [6]

〈B̂CHSH〉 = 〈âb̂+ âb̂′ + â′b̂− â′b̂′〉
= 〈â(b̂+ b̂′) + â′(b̂− b̂′)〉
= ±2, (1)

in which â, â′ and b̂, b̂′ are operators, employed by Alice andBob, respectively,
with eigenvalues ±1 that satisfy â2 = â′2 = b̂2 = b̂′2 = 1̂. It is also obvious
that operators of different particles commute with each other. The square of
Eq. (1) (≡ B̂2

CHSH = B̂CHSH · B̂CHSH) is also obtained as [5]

B̂2
CHSH = 41̂a ⊗ 1̂b − [â, â′]⊗ [b̂, b̂′], (2)

which exposes the vital role of commutators of employed operators in B̂2
CHSH .

Indeed, if operators commute with each other, then we have B̂2
CHSH = 41̂a ⊗

1̂b which happens whenever there is not any non-locality [5]. Otherwise for
non-commutative variables, it is not correct. For example, by considering the
Pauli matrices, where their commutator is [σ̂j , σ̂k] = 2iǫjklσ̂l, the maximum

violation of Bell’s inequality is 〈B̂CHSH〉 =
√

〈B̂2
CHSH〉 =

√
8 = 2

√
2. This

value violates the inequality 〈B̂CHSH〉 ≤ 2, a strong signal to non-locality.
Here, ǫjkl denotes the antisymmetric Levi-Civita tensor.

In fact, it is Heisenberg who has firstly noted that the uncertainty relations
constrain the knowledge stored in a quantum mechanical system [7]. This
property causes non-locality and thus the violation of CHSH inequality [3,8].
Finally, it is worth to mention that there are numerous attempts to investigate
the violation of CHSH inequality theoretically [6,9] and experimentally [10],
and for a general review, one can see Refs. [11,12]. It also seems that this
inequality is beneficial in the relativistic regimes [13,14,15,16,17,18]. In fact,
the problem of the effects of relativity on non-locality and entanglement goes
back to the pioneering work of Peres et al. [19].

In the above case, including two-dimensional systems such as the electron
spin, the preassumption of ±1 for the outcomes of measurements is a vital
condition. In the case of d-dimensional systems such as those include orbital
angular momentum, the story becomes more complicated. In these cases, it
seems that the probabilistic versions of Bell’s inequality are more suitable [20,
21]. In fact, the measurement outcomes are not essentially ±1 which limits the
applicability of the square of the existent operational versions (in comparison
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with Eq. (2)) [5]. For simplicity, let us consider Bell’s inequalities for three
outcomes {0, 1, 2}, proposed by Collins et al. [20],

Ĉ223 = 2− 3(â2 + b̂′2) +
3

4
(âb̂+ â2b̂− â′b̂− â′2b̂− âb̂2

+ â′b̂2 + âb̂′ − â2b̂′ + â′b̂′ + â′2b̂′ + âb̂′2 − â′b̂′2)

+
9

4
(â2b̂2 − â′2b̂2 + â2b̂′2 + â′2b̂′2), (3)

where the notation Ĉ223 denotes 2 parties, 2 settings, and 3 outcomes. The
value is given by 〈Ĉ223〉 = 2(5 − γ2)/3 ≈ 2 · 9149 for the optimal state |ψ〉 =
(|00〉+γ|11〉+ |22〉)/

√

(2 + γ2), where γ = (
√
11−

√
3)/2 ≈ 0 ·7923 [22]. The z

component of angular momentum can be considered as an operator for which
the states |0〉, |1〉, |2〉 are correspond to m = 0, m = 1, and m = 2, respectively
(three outcomes {0, 1, 2}). The square of the operator Ĉ223 can easily be found
as [5]

Ĉ2
223 = 3 + (1 + {{â, â′}})(1 + {{b̂, b̂′}}), (4)

in which {{â, â′}} denotes the complex anti-commutator {{â, â′}} = ââ′† +
â′â†. In summary, all of the above cases authenticate the role of the commu-
tation relations, or equally the uncertainty principles, in emerging the non-
locality.

The quality of the violation of Bell inequality in the presence of a gravi-
tational field is firstly studied in Ref. [23]. Additionally, the effects of curved
spacetimes and also the presence of acceleration on entanglement and non-
locality are investigated in various articles such as Refs. [24,25,26,27,28,29,
30,31,32,33,34]. In this regard, it is worthwhile to mention that the quantum
features of gravity propose modified forms of ordinary HUP [35,36,37] and
signal us to a minimal length [38]. Such modified forms are also proposed in
optics [39].

Therefore, it is expected that QG affects our understanding of non-locality
which may even give us a way to test the quantum gravity scenarios. There
are several phenomenological studies on GUP which leads to modifications in
several areas of QM [36]. Due to GUP, it is proposed that the commutation
relations such as angular momentum operators [40] and spin algebra [40,41]
are modified which may give us a possibility to verify the Planck scale effects
in low energy quantum systems [36,37].

The aim of paper is to address the effects of quantum aspects of gravity
(GUP) on the square of Bell inequalities for the systems including observables
with two, and three outcomes. In the next section, we provide an introduc-
tory note on GUP, and its implications on the algebra of angular momentum,
studied in Ref. [40]. The square of Bell inequality for spin-1/2 systems in the
presence of GUP shall be investigated in the third section. Three-level sys-
tems together with a conclusion are also presented in the subsequent sections,
respectively.
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2 GUP formalism

Whenever the quantum features of gravity are considered, the generalized
coordinates X̂ and P̂ emerge instead of canonical coordinates x̂, p̂, and in a
quadratic model of GUP, proposed in Ref. [35], the HUP modification takes a
momentum dependent quadratic term as

∆X̂∆P̂ ≥ h̄

2

(

1 + β∆P̂ 2
)

, (5)

where β denotes the GUP parameter and a fundamental minimal length is
obtained as ∆Xmin = h̄

√
β, which is of the order of Planck’s length (lp =

√

h̄G/c3). The above GUP is obtained by using the modified Heisenberg al-
gebra [35,36,37]

[X̂, P̂ ] = ih̄(1 + βP̂ 2). (6)

The quantum mechanical commutators are replaced by the Poisson bracket
(PB) for corresponding classical variables by considering the classical limit
(i.e., h̄→ 0). It means that [37]

1

ih̄
[X̂, P̂ ] →

{

X̂, P̂
}

PB
, (7)

and thus [37]

{

X̂, P̂
}

PB
= 1 + βP̂ 2. (8)

To construct a general framework to study the GUP effects, we introduce
a representation, called coordinate representation, in the form of

X̂ = x̂,

P̂ = p̂
(
1 + βp̂2

)
, (9)

where x̂ = (x̂, ŷ, ẑ) and p̂ = (p̂x, p̂y, p̂z) represent the position and momenta

operators in QM, respectively. This representation can connect the (X̂, P̂)
space near Planck scale (QG) to the (x̂, p̂) space of QM, employed in the
various works [36,37,42].

It is shown that Eq. (6) modifies the angular momentum algebra, including
the orbital angular momentum and spin algebra [40,41]. In the presence of
GUP, using Eq. (9) one can easily find out the modified algebra of orbital
angular momentum (spin) as [40]

[L̂i, L̂j] = iǫijkL̂k(1 + βP̂ 2). (10)
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Here, L̂ = X̂ × P̂ . By bearing Eq. (9) and L̂ = x̂ × p̂ in mind, one can use
the above result to find out L̂ = X̂ × P̂ = L̂(1 + βp̂2), and thus [L̂i, L̂j] =

iǫijkL̂k(1 + βp̂2)(1 + βp̂2(1 + βp̂2)2) ≈ iǫijkL̂k(1 + 2βp̂2) where the latter is
written by considering only the terms of the order of β, and for simplicity, we
set h̄ = 1. It is obvious that the standard commutation relation of angular
momentum is recovered as β −→ 0.

3 Two-qubit systems

Now, considering the set of operators {Â, Â′, B̂, B̂′}, with eigenvalues ±1 sat-
isfying the condition Â2 = Â′2 = B̂2 = B̂′2 = 1̂. But, here, they obey re-
lation (10) instead of purely quantum mechanical commutator (obtained for
β = 0), and by rewriting Bell’s operator in Eq. (1) with these operators, one
finds

B̂GUP = Â⊗ B̂ + Â⊗ B̂′ + Â′ ⊗ B̂ − Â′ ⊗ B̂′. (11)

Therefore, the corresponding square of Bell’s operator is obtained as

B̂2
GUP = Â2 ⊗ B̂2 + Â2 ⊗ B̂′2 + Â′2 ⊗ B̂2 + Â′2 ⊗ B̂′2

+ (Â2 − Â′2)⊗ {B̂, B̂′}PB

+ {Â, Â′}PB ⊗ (B̂2 − B̂′2)

− [Â, Â′]⊗ [B̂, B̂′], (12)

that finally leads to

B̂2
GUP = 41̂A ⊗ 1̂B − [Â, Â′]⊗ [B̂, B̂′], (13)

similar to Eq. (2). In order to get more detailed analysis, let us firstly con-
sider a quantum state |ϕ〉, which includes spin and momentum information

of the system, and the unit vectors −→a = (ax, ay, az) and
−→
a′ = (a′x, a

′
y, a

′
z) for

the directions of operators Â and Â′, respectively, and
−→
b = (bx, by, bz) and−→

b′ = (b′x, b
′
y, b

′
z) for B̂ and B̂′, respectively. Based on Eq. (10) and Ref. [40],

we have Ŝ = ŝ(1+βp̂2), where ŝ is the spin operator in the pure quantum me-
chanical regime, and Ŝi (spin operator in the presence of minimal length with
eigenvalues λ = ± 1

2 (1+ βp2)) obey algebra (10). Therefore, defining the oper-

ator Ô ≡ Ŝ·−→n
|λ| , where −→n = {−→a ,−→a′ ,−→b ,−→b′ }, we can get operators Â, Â′, B̂, B̂′,

respectively. In this manner, bearing in mind that spin and momentum com-
mute with each other,

[
p̂i, P̂i

]
= 0, and by using Eq. (10), we easily find

〈B̂2
GUP 〉 = 4 +

(1 + βP 2
1 )(1 + βP 2

2 )

λ21λ
2
2

〈(
∑

i,j

aia
′
jǫijkŜ

1
k)(

∑

l,m

blb
′
mǫlmnŜ

2
n)〉,(14)



6 S. Aghababaei et al.

where Pi and Ŝ
i denote the momentum and the spin operators of the i-th par-

ticle in the QG regime, respectively. Moreover, λi =
1
2 (1+βp

2
i ) (corresponding

to the i-th particle), one finally obtains

〈B̂2
GUP 〉 ≃ 4 +

(1 + βP 2)2

λ2
〈(
∑

i,j

aia
′
jǫijkσ̂

1
k)(

∑

l,m

blb
′
mǫlmnσ̂

2
n)〉, (15)

in which we considered pa = pb ≡ p (particles have the same momentum), and
ŝi =

1
2 σ̂i (Pauli matrices) has also been used. Now, bearing Eq. (9) in mind,

since (1+βP 2)2

λ2 ≈ 4 1+2βP 2

1+2βp2 ≈ 4[1 + 4β2p4], we have 〈B̂2
GUP 〉 ≃ 〈B̂2

CHSH〉 up to
the first order of β, and

〈B̂2
GUP 〉 ≃ 〈B̂2

CHSH〉+ 16β2p4〈(
∑

i,j

aia
′
jǫijkσ̂

1
k)(

∑

l,m

blb
′
mǫlmnσ̂

2
n)〉, (16)

up to the second order of β. Hence, the existence of non-zero minimum length
affects the square of Bell inequality, due to the fact that the commutation re-
lations are modified in the presence of a non-zero minimum length. In general,
for quantum states like the Bell states, the maximum value of 〈B̂2

CHSH〉 is
achieved, as we have 〈(

∑

i,j aia
′
jǫijkσ̂

1
k)(

∑

l,m blb
′
mǫlmnσ̂

2
n)〉 = 1, that finally

leads to 〈B̂2
GUP 〉 ≃ 8 + 16β2p4. In summary, when the quantum features of

gravity become non-ignorable, B̂2
GUP is the true square of the Bell operator.

The difference between B̂2
GUP and B̂2

CHSH is mathematically due to the ef-
fects of QG on the commutation relations. It means that we may get a better
understanding of spin in high energy physics by using much more accurate
apparatus in the future, a result in line with previous studies (see [43] and
references therein).

Here, it is worthwhile to focus on a more general GUP framework [44] in
which

P̂ = p̂ (1 + f(p̂)) , (17)

where f(p̂) = αp̂ + βp̂2, α and β also denote the corresponding GUP pa-
rameters in the linear and quadratic terms, respectively. By considering this
general form and following the approach of Ref. [40], the alternative of angular
momentum algebra described in Eq. (10) is obtained as [40]

[L̂i, L̂j ] = iǫijkL̂k(1 + f(P̂ )), (18)

that finally leads to
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〈B̂2
GUP 〉 ≃ 4 + 4

(1 + f(P ))2

(1 + f(p))2
〈(
∑

i,j

aia
′
jǫijkσ̂

1
k)(

∑

l,m

blb
′
mǫlmnσ̂

2
n)〉,

≃ 〈B̂2
CHSH〉 (19)

+

(

8α2p2 + 16β2p4 + · · ·
)

〈(
∑

i,j

aia
′
jǫijkσ̂

1
k)(

∑

l,m

blb
′
mǫlmnσ̂

2
n)〉.

Therefore, up to the leading order, one easily finds 〈B̂2
GUP 〉 ≃ 8 + 8α2p2 +

16β2p4, for the Bell states leading to 〈(∑i,j aia
′
jǫijkσ̂

1
k)(

∑

l,m blb
′
mǫlmnσ̂

2
n)〉 =

1.
Now, to examine Eq. (19), let us consider the Stern-Gerlach experiment

described in [45,46]. This experiment includes atoms of p2 = 2.8×10−26(kg.m
s

)2

combined with |〈 B̂
2

GUP
−B̂2

CHSH

B̂2

CHSH

〉| ≃ α2p2 +2β2p4 to provide two upper bounds

on α (β) as α0 ≪ 1013 (β0 ≪ 1026), and α0 ≪ 1011 (β0 ≪ 1024) for the
splitting accuracies 10−1 [45], and 10−3 [46], respectively. Here, α0 ≡ αMpc

2

(β0 ≡ βM2
p c

4), Mp denotes the Planck mass, and the obtained upper bounds
are well comparable with previous reports [36,40,47].

4 Two qutrits

The corresponding operator for three outcomes, and its square, introduced in
Eq. (3), are rewritten in the GUP framework as

(Ĉ223)GUP = 2− 3(Â2 + B̂′2)

+
3

4
(ÂB̂ + Â2B̂ − Â′B̂ − Â′2B̂ − ÂB̂2 + Â′B̂2

+ ÂB̂′ − Â2B̂′ + Â′B̂′ + Â′2B̂′ + ÂB̂′2 − Â′B̂′2)

+
9

4
(Â2B̂2 − Â′2B̂2 + Â2B̂′2 + Â′2B̂′2), (20)

and

(Ĉ2
223)GUP = 3 + (1 + {{Â, Â′}})(1 + {{B̂, B̂′}}), (21)

respectively. Here, the operator Ô ∈ {Â, Â′, B̂, B̂′} contains three outcomes
{0, 1, 2}. For example, consider a particle with quantum mechanical momen-

tum p whose angular momentum meets algebra (10), the operator L̂z

1+βp2 leads

to outcomes 0, 1, 2 for states |0〉, |1〉, |2〉, respectively. Now, following Ref. [40],

one can find {{L̂i, L̂
′
j}} = (1 + βP̂ 2)2{{l̂i, l̂′j}}, and hence, {{Ôi, Ô

′
j}} =

(1+βP̂ 2)2

(1+βp2)2 {{l̂i, l̂′j}}. Bearing all of these points in mind, after some calculations,

we finally get
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〈(Ĉ2
223)GUP 〉 = 〈Ĉ2

223〉+ 4β2p4 〈{{â, â′}}+ {{b̂, b̂′}}+ 2{{â, â′}}{{b̂, b̂′}}〉
︸ ︷︷ ︸

〈Ĝ〉

+ O(β3), (22)

whenever all particles have the same momentum. Here, it is again clear that
〈(Ĉ2

223)GUP 〉 → 〈Ĉ2
223〉 as β → 0. Although, the usefulness of 〈Ĉ2

223〉 in studying
the non-locality is challenging [22], Eq. (22) clearly shows that 〈(Ĉ2

223)GUP 〉
differs from 〈Ĉ2

223〉 meaning that this operator may be employed to investigate

the predictions of QG. As an example, consider â = â′ = l̂z, b̂ = b̂′ = l̂z, and

the state |ψ〉 = |00〉+|11〉+|22〉√
3

|pp〉 where two particles have the same momentum

p (and thus P ). In this manner, {{l̂z, l̂z}} = 2l̂2z leading to 〈Ĉ2
223〉 ≃ 32 · 7, and

〈Ĝ〉 = 52, and we finally have 〈Ĉ2
223〉 6= 〈(Ĉ2

223)GUP 〉.

5 Conclusion

The belief that the world is non-local comes from the amazing EPR paper
[1] that motivated Bell to introduce his inequality. Indeed, a cornerstone of
the EPR argument is the role of HUP (commutation relations) in the emer-
gence of non-locality which emerges in the square of Bell operators. On the
other hand, it is believed that the quantum aspects of gravity affect HUP,
and according to this proposal, we tried to shed light on the relation between
non-locality and QG. Related experiments and studies may help us achieve a
better understanding of gravity, and its relation with non-locality, and quan-
tum mechanics. Indeed, the hopes to test the QG scenarios via studying its
relation with non-locality can be strengthened by increasing the accuracy of
related experiments such as the Stern-Gerlach apparatus.
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