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Abstract: In this paper, we propose a two-party semiquantum summation protocol, where two classical users can accomplish the summation of their private 

binary sequences with the assistance of a quantum semi-honest third party (TP). The term ‘semi-honest’ implies that TP cannot conspire with others but is able to 

implement all kinds oof attacks. This protocol employs logical qubits as traveling particles to overcome the negative influence of collective-dephasing noise and 

needn’t make any two parties pre-share a random secret key. The security analysis turns out that this protocol can effectively prevent the outside attacks from Eve 

and the participant attacks from TP. Moreover, TP has no knowledge about the summation results. 
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1  Introduction  
As a fundamental branch of quantum secure computation, the problem of secure quantum summation can be described as 

follows: n users, nP,,P,P 21  , who possess the private inputs nXXX ,,, 21  , respectively, want to securely compute the summation 

of nXXX ,,, 21  , i.e., ( )nXXXsum ,,, 21  , on the basis that none of nXXX ,,, 21  is leaked out without being discovered. Recently, 

many researchers have shown their great interests on secure quantum summation so that it has been greatly developed. For 

instance, Heinrich not only introduced it into integration [1] but also considered quantum Boolean summation with repetitions 

under the worst-average setting [2]. Moreover, numerous secure quantum summation schemes [3-16] have appeared. However, 

each of these quantum summation schemes in Refs.[3-16] requires all parties to have complete quantum capabilities.  

Recently, based on the well-known BB84 protocol [17], Boyer et al. [18-19] suggested the completely novel concept named 

as semi-quantum cryptography which doesn’t have the demand that all parties must possess full quantum capabilities. In a 

semi-quantum cryptography protocol, the classical party is always restricted within the four operations, i.e., sending the qubits, 

reordering the qubits, generating the qubits in the Z basis (i.e., 0 1， ) and measuring the qubits in the Z basis. [18-19] It is 

apparent that in a semi-quantum cryptography scheme, the classical party is free from the preparation and measurement of 

quantum superposition states and quantum entangled states. An important question naturally arises: whether there exists 

semiquantum summation or not? In the year of 2021, Zhang et al. [20] gave a positive answer to this question by putting forward 

the first semiquantum summation scheme. Note that Zhang et al.’s scheme in Ref.[20] is the only semiquantum summation 

scheme at present. But it doesn’t consider the negative influence of noise so that it is only adaptive for the ideal noiseless quantum 

channel. In practice, photons are inevitably affected by the fluctuation of the birefringence in optical fiber, hence the negative 

influence of noise cannot be ignored. The channel noise can be considered as the collective noise, because photons travel inside a 

time window which is shorter than the variation of noise and are influenced by the same noise. [21] Hence, how to design a 

semiquantum summation scheme feasible for the collective noise quantum channel is urgent to solve.  

Based on the above analysis, this paper concentrates on designing a semiquantum summation scheme immune to the 

collective-dephasing noise, which is one of the main kinds of collective noise. Compared with Zhang et al.’s semiquantum 

summation scheme [20], our scheme is more practical in reality, since it can resist the collective-dephasing noise; and our scheme 

has better privacy, since TP has no knowledge about the summation results. 

 

2  Preliminary knowledge 

0 and 1 are the horizontal polarization and the vertical polarization of photon, respectively. When facing with the 

collective-dephasing noise, the former is kept unchanged, while the latter is turned into 1ie 
, where is the parameter of 

collective-dephasing noise fluctuating with time. [22] 0 01dp = and 1 10dp = are two logical qubits immune to the collective- 

dephasing noise. [22] Naturally, ( ) ( )
1 1

0 1 01 10
2 2

dp dp dp =  =  are also resistant against this kind of noise. [23] It is 

apparent that  0 , 1dp dp dpZ = and  ,dp dp dpX = + − are two logical measuring bases under this kind of noise.  

In addition, obviously, the four logical Bell entangled states defined as Eqs.(1-4) [24], are also resistant against this kind of 

 
*Corresponding author: 

 E-mail：happyyty@aliyun.com(T.Y.Ye) 

mailto:happyyty@aliyun.com(T.Y.Ye)


 2 

noise, where ( )
1

00 11
2

  =  and ( )
1

01 10
2

  =  are four Bell entangled states. After being imposed with twice Bell 

state measurements on the first and the third physical qubits and on the second and the fourth physical qubits, respectively, these 

four logical Bell states can be clearly discriminated among each other. [24] In this paper, for the sake of convenience, this kind of 

quantum measurement is simply called as double Bell basis measurement.  
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According to Eq.(1) and Eq.(3), it has 

( )
123412343412 2

1 ++ +=++ dpdpdpdp ,                                     (5) 

which means that if
3412

dpdp ++ is performed with double Bell basis measurement, it will be collapsed into
13 24

 + + , 

13 24
 − − ,

13 24
 + + or

13 24
 − − with equal probability. Moreover, it can be obtained from Eqs.(1-4) that  

                           ( )
123412343412 2

1
00 −+ += dpdpdpdp ,                                      (6) 

( )
123412343412 2

1
10 −+ += dpdpdpdp ,                                       (7) 

( )
123412343412 2

1
01 −+ −= dpdpdpdp ,                                       (8) 

( )
123412343412 2

1
11 −+ −= dpdpdpdp .                                       (9) 

 

3  The proposed two-party semiquantum summation protocol                           
Suppose that there are two classical users with limited quantum capabilities, Alice and Bob. Alice’s private binary string is 

denoted as  

( )nxxxX ,,, 21 = ,                                           (10) 

while Bob’s private binary string is represented as   

( )nyyyY ,,, 21 = .                                           (11) 

Here,  1,0, jj yx , nj ,,2,1 = . Alice and Bob want to calculate the modulo 2 summation of their private binary strings over the 

collective-dephasing noise quantum channel with the aid of a semi-honest third party (TP). A semi-honest TP is supposed to have 

the ability to perform all kinds of attacks but is not allowed to collude with anyone else [25]. A genuine two-user secure 

semiquantum summation protocol with a semi-honest TP should satisfy the following requirements [5]: 

①Correctness. The summation result of two users’ private binary strings should be correct; 

②Security. Two users’ private binary strings cannot be leaked out to an outside eavesdropper without being detected. 
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③Privacy. Each user’s private binary string should be kept secret from TP.  

Recently, Zhang et al. [26] designed a semiquantum key distribution (SQKD) protocol robust against the collective-dephasing 

noise; Lin et al. [27] put forward a semiquantum private comparison (SQPC) protocol by using the quantum states + , where 

( )
1

0 1
2

+ = + . Inspired by Refs.[26,27], we design the following semiquantum summation protocol to compute the modulo 

2 summation of Alice and Bob’s private binary strings over the collective-dephasing noise quantum channel.  

Step 1: TP generates ( ) nqdrn 242 =+++  particles all in the state of dp+ . Here, dr, are integers greater than 0;  is some 

fixed parameter greater than 0; and ( )4q r d = + + + . Then, TP divides these particles into two sequences,  nqsssS 1
2
1

1
11 ,,, =  

and  nqsssS 2
2
2

1
22 ,,, = , where is1 and is2 denote the i th particle in 1S and 2S , respectively, and nqi ,,2,1 = . Finally, TP sends the 

particles of 1S and 2S to Alice and Bob one by one, respectively. Except the first particle, TP sends out the next one only after 

obtaining the previous one. 

Step 2: For each received particle in 1S ( 2S ), Alice (Bob) immediately randomly performs one of the following two 

operations: directly reflecting it back to TP with no disturbance (i.e., the CTRL operation) or measuring it with the dpZ basis and 

resending the same state as found to TP (i.e., the SIFT operation) . After Alice’s (Bob’s) operations, 1S ( 2S ) is turned into '
1S ( '

2S ). 

TP stores '
1S ( '

2S ) in a quantum memory. 

Step 3: TP picks out the i th particle in '
1S and the i th particle in '

2S to form the i th particle group, where nqi ,,2,1 = . For 

checking the transmission security towards an outside eavesdropper Eve, TP randomly chooses nr groups from these particle 

groups, and tells Alice and Bob the positions of the chosen particle groups. Among these chosen particle groups, Alice (Bob) tells 

TP the positions of particles where she (he) chose the CTRL operations, the positions of particles where she (he) chose the SIFT 

operations as well as her (his) measurement results.  

For the particles on which Alice (Bob) performed the CTRL operations, TP measures them with the dpX basis. TP computes 

the error rate of CTRL particles by judging whether her measurement results are dp+ or not. The protocol is kept on only when 

the transmission of CTRL particles is secure. 

For the particles on which Alice (Bob) performed the SIFT operations, TP measures them with the dpZ basis. TP computes 

the error rate of SIFT particles by judging whether her measurement results are identical to Alice’s (Bob’s) corresponding 

measurement results or not. The protocol is kept on only when the transmission of SIFT particles is secure. 

Step 4: Alice and Bob ask TP to perform the double Bell basis measurement on each of the remaining ( )++ dn 4 particle 

groups and announce them her corresponding measurement result. After confirming that TP have announced them all of the 

double Bell basis measurements on the remaining ( )++ dn 4 particle groups, Alice and Bob randomly choose nd groups from the 

remaining ( )++ dn 4 particle groups to check the honesty of TP. For the particle group on which both Alice and Bob performed 

the CTRL operations, if TP’s measurement result is not
13 24

 + + ,
13 24

 − − ,
13 24

 + + or
13 24

 − − , according to Eq.(5), 

Alice and Bob will think that TP is dishonest. For the particle group on which both Alice and Bob performed the SIFT operations, 

Alice and Bob check whether TP’s measurement result satisfies Eqs.(6-9) or not; if the result is negative, Alice and Bob will think 

that TP is dishonest. For example, if Alice and Bob’s measurement results are
12

0dp
and

34
0dp

, respectively, according to Eq.(6), 

TP’s measurement result should be
13 24

 + + ,
13 24

 − − ,
13 24

 + − or
13 24

 − + ; otherwise, Alice and Bob will conclude 

that TP is dishonest. The protocol is kept on only when TP is found to be honest in the end. 

Step 5: For the remaining ( )+4n particle groups, Alice (Bob) tells Bob (Alice) the positions of particles where she (he) 
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performed the SIFT operations. Note that there are ( )
44

1
4




n
nn +=+ particle groups where both Alice and Bob performed the 

SIFT operations. Alice and Bob choose the first n ones from these
4

n
n


+ particle groups to generate their private keys. The 

private key generating rule is that: if Alice’s (Bob’s) measurement result on the corresponding particle from the j th particle group 

is dp0 , her (his) j th bit of private key, a
jk ( b

jk ), will be 0; and if Alice’s (Bob’s) measurement result on it is dp1 , a
jk ( b

jk ) will be 

1. Here, nj ,,2,1 = ; ],,,[ 21
a
n

aa
A kkkK = and ],,,[ 21

b
n

bb
B kkkK = are Alice and Bob’s private keys, respectively. Then, Alice (Bob) 

also derives a private bit string TC from TP’s measurement results on these n particle groups according to the following rule: if 

TP’s measurement result on the j th particle group is
13 24

 + + ,
13 24

 − − ,
13 24

 + − or
13 24

 − + , t
jk will be 0; and if it 

is
13 24

 + + ,
13 24

 − − ,
13 24

 + − or
13 24

 − + , t
jk will be 1. Here, t

jk is the j th bit of TC , and nj ,,2,1 = . Afterward, 

Alice (Bob) calculates j
a
j

a
j xkc = ( j

b
j

b
j ykc = ), where  is the modulo 2 summation, and nj ,,2,1 = . Alice (Bob) 

sends AC ( BC ) to Bob (Alice) via the classical channel, where ],,,[ 21
a
n

aa
A cccC = ( ],,,[ 21

b
n

bb
B cccC = ). Finally, Alice (Bob) 

calculates t
j

b
j

a
jj kccr = , where nj ,,2,1 = , and obtains the summation result R , where ],,,[ 21 nrrrR = .  

For the sake of clarity, the relations among different parameters for summation are listed in Table 1. 

Table 1  Relations among different parameters for summation 

jx  
jy  Alice’s 

measurement 

result on the 

corresponding 

particle from 

the j  th 

particle group 

Bob’s 

measurement 

result on the 

corresponding 

particle from 

the j  th 

particle group 

a

jk  b

jk  a

jc  
b

jc  TP’s double Bell basis measurement result on the j th 

particle group 

t

jk  jr  
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1dp
 1dp

 1 1 0 0 
13 24

 + + ,
13 24

 − − ,
13 24

 + − ,
13 24

 − +  0 0 

 

Obviously, TP needs to have full quantum capabilities. Both Alice and Bob only implement the following actions: ① 

measuring the particles with the dpZ basis; ② preparing the particles in the dpZ basis; ③ sending the particles. According to 

Refs.[18-19], the Z basis is regarded to be classical, so the dpZ basis is naturally classical. Consequently, both Alice and Bob only 

need limited quantum capabilities. In other words, this protocol is a semiquantum summation protocol. 

 

4  Correctness analysis 

In the proposed protocol, after receiving AC ( BC ) from Alice (Bob), Bob (Alice) calculates
t
j

b
j

a
jj kccr = , where 

nj ,,2,1 = . According to Eqs.(6-9), it is apparent that  

0= t
j

b
j

a
j kkk .                                           (12) 

Hence, it has 

( ) ( ) ( ) ( )t
j

b
j

a
jjj

t
jj

b
jj

a
j

t
j

b
j

a
jj kkkyxkykxkkccr ===

j jx y=   .                (13) 

It can be concluded that the output correctness of the proposed protocol can be guaranteed.  

 

5  Security analysis 

(1) Outside attack 

An outside attacker, Eve, may try her best to extract X ( Y ) from AC ( BC ). Apparently, she should obtain AK ( BK ) 

beforehand. Without loss of generality, here take Eve’s trying to get AK for example to analyze the outside attack. 

Measure-resend attack. Eve measures the particles in 1S from TP to Alice in Step 1 with the dpZ basis and sends the new 

particles in the same states she found to Alice. However, she will be caught as she has no access to Alice’s choices of operations 

in Step 2. Concretely speaking, for one particular particle chosen for detection, the probability that Alice chooses the CTRL 

operation is
2

1
; hence, the probability that Eve can be caught is

4

1

2

1

2

1
= , since TP has a

2

1
probability to get the wrong 

measurement result dp− on the particle reflected by Alice. For nr particle groups chosen for the security check in Step 3, the 

probability of Eve’s being discovered becomes

nr









−

4

3
1 , which will converge to 1 if the value of nr is large enough. 

Intercept-resend attack. Eve intercepts the particles in 1S from TP to Alice in Step 1, sends the fake particle sequence 

ES1 she prepared in the dpZ basis beforehand to Alice; Eve intercepts ES1 after Alice’s operations and sends 1S to TP. For one 

particular particle chosen for detection, the probability that Alice chooses the SIFT operation is
2

1
; hence, the probability that Eve 

can be caught is
4

1

2

1

2

1
= , as there is a

2

1
probability that Alice’s measurement result on Eve’s fake particle is not same to TP’s 

measurement result on the genuine one. For nr particle groups chosen for the security check in Step 3, the probability of Eve’s 

being discovered becomes

nr









−

4

3
1 . 

Double CNOT attack. Eve may perform the first CNOT operations, defined as  

1110101101010000 +++=CNOT ,                              (14) 

on the particles in 1S and her own ancillary particles in the state of dp0 in Step 1. Here, the first physical qubit of each particle 

in 1S acts as the control qubit while two physical qubits of each ancillary particle play the role of target qubits. In order to escape 

the security check in Step 3, Eve has to perform the second CNOT operations on the particles in '
1S and her own ancillary particles 

in Step 2. Here, the first physical qubit of each particle in '
1S acts as the control qubit while two physical qubits of each ancillary 
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particle play the role of target qubits. If Eve can know Alice’s choices of operations in Step 2 exactly through the double CNOT 

attacks, she will further perform the SIFT operations on the particles where Alice has implemented the same operations, in order 

to obtain AK without being discovered. However, Eve cannot discriminate Alice’s choices of operations at all. Concretely speaking, 

after the first CNOT operation, the composite system composed by one particle in 1S and the ancillary particle dp0 is turned into 

( )
AE

dp
E

dp
A

dp
E

dp
A

dp
E

dp
A

dpCNOT +=+=+ 1100
2

1
0 ,                         (15) 

where the subscripts A and E represent Alice’s particle and Eve’s ancillary particle, respectively. If Alice chooses the CTRL 

operation, after Eve’s second CNOT operation, the composite system will be changed into 

E
dp

A
dp

EA
dpCNOT 0+=+ .                                      (16) 

If Alice chooses the SIFT operation and obtains the measurement result dp0 ( dp1 ), according to Eq.(15), Eve’s ancillary particle 

will be collapsed into dp0 ( dp1 ). After Eve’s second CNOT operation, the composite system is evolved into 

E
dp

A
dp

E
dp

A
dpCNOT 0000 = , if Alice’s measurement result is dp0 ,                       (17) 

E
dp

A
dp

E
dp

A
dpCNOT 0111 = , if Alice’s measurement result is dp1 .                        (18) 

According to Eqs.(16-18), no matter what operation Alice chooses in Step 2, after the second CNOT operation, Eve’s ancillary 

particle is always in the state of dp0 . In other words, Eve cannot discriminate Alice’s choice of operation through her ancillary 

particle.  

It is worthy of emphasizing that if Eve doesn’t perform the second CNOT operation, Eve’s CNOT attack will inevitably be 

detected in Step 3, as TP has a
2

1
probability to get the wrong measurement result dp− for the particle chosen for detection on 

which Alice have performed the CTRL operation, according to Eq.(1) and Eq.(15). 

Trojan horse attacks. As the travelling particles are transmitted in a circular way, the Trojan horse attacks from Eve should 

be paid special attention to, such as the invisible photon eavesdropping attack [28] and the delay-photon Trojan horse attack 

[29-30]. It has been verified that the signal receiver can use a filter to resist the former attack and a photon number splitter (PNS) 

to defeat the latter attack [30-31].  

(2) Participant attack 

Gao et al. [32] firstly warned against the participant attack in the year of 2007 when designing a quantum cryptography 

protocol. It is natural that a m -user quantum summation protocol cannot resist the collusion attack from 1m − users. The reason 

lies in that: when 1m − users conspire together, they can easily derive the private input of the left user from the summation result. 

With regard to the proposed protocol, Alice (Bob) can easily deduce outY ( X ) from R . As a result, we only need to consider the 

participant attack from the semi-honest TP. 

Apparently, if TP wants to derive X ( Y ) from AC ( BC ), she will need to get AK ( BK ) beforehand. In order to achieve this 

goal, TP may launch the following attacks.  

Attack I: TP may generate all particles in the dpZ basis and transmits them to Alice and Bob in Step 1; moreover, TP always 

announces the genuine double Bell basis measurement results to Alice and Bob in Step 4. In this way, if TP’s cheating behavior 

successfully passes the honesty check in Step 4, she will easily obtain AK and BK in Step 5. However, TP’s cheating behavior is 

inevitably discovered by Alice and Bob during the honesty check in Step 4. Concretely speaking, for one particle group chosen for 

TP’s honesty check, according to Eqs.(5-9), if both Alice and Bob choose the CTRL operations, TP will be detected with the 

probability of
2

1
; if both Alice and Bob choose the SIFT operations, TP will be detected with the probability of 0; and if only one 

chooses the CTRL operation, TP will be automatically not detected, since there is no check for this case. Thus, for one particle 

group chosen for TP’s honesty check, the probability that TP will be detected is
8

1

2

1

2

1

2

1
= . For nd particle groups chosen for 

TP’s honesty check, the probability that TP will be detected is

nd









−

8

7
1 , which will converge to 1 if the value of nd is large 

enough. 

Attack II: TP measures all particles in the remaining ( )++ dn 4 particle groups with the dpZ basis instead of the double Bell 

basis, and announces the fake double Bell basis measurement results to Alice and Bob in Step 4, in hope of escaping the honesty 

check. However, TP’s cheating behavior is undoubtedly detected as she cannot exactly know Alice and Bob’s choices of 
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operations in Step 2. Concretely speaking, for one particle group chosen for TP’s honesty check, according to Eqs.(6-9), if TP’s 

measurement result is dpdp 00 or dpdp 11 , TP will randomly announce the fake measurement result
13 24

 + + ,
13 24

 − − , 

13 24
 + − or

13 24
 − + ; and if TP’s measurement result is dpdp 10 or dpdp 01 , TP will randomly announce the fake 

measurement result
13 24

 + + ,
13 24

 − − ,
13 24

 + − or
13 24

 − + . As a result, if both Alice and Bob choose the SIFT 

operations, TP will be detected with the probability of 0; and if both Alice and Bob choose the CTRL operations, TP will be 

detected with the probability of
2

1
. Thus, for one particle group chosen for TP’s honesty check, the probability that TP will be 

detected is
8

1

2

1

2

1

2

1
= . For nd particle groups chosen for TP’s honesty check, the probability that TP will be detected is 

nd









−

8

7
1 . 

It can be concluded that TP’s attack is inevitably discovered by the honesty check in Step 4 when she ties to extract Alice and 

Bob’s private keys. 

 

6  Discussions and conclusions 

We firstly discuss the qubit efficiency [33] defined as 

c

p v
 =

+
,                                              (19) 

where c is the total number of classical bits for summation; q is the total number of consumed qubits; and v is the total number of 

classical bits needed for summation. Here, the classical bits consumed for eavesdropping check are not taken into account. In this 

protocol, both the length of Alice’s private binary string and the length of Bob’s private binary string are n , hence, we have nc = ; 

TP needs to generate nqdrn 2)4(2 =+++  particles all in the state of dp+ , while both Alice and Bob need to prepare
2

nq
 

particles in the dpZ basis when implementing the SIFT operations, hence, we have nq
nq

nqp 622
2

22 =+= ; TP needs to 

publish Alice and Bob her double Bell basis measurement results on the n particle groups used for summation, while Alice and 

Bob need to send AC and BC to the other via the classical channel, respectively, hence, we have 6v n= . Consequently, it can be 

obtained that
( )

1

6 6 6 4 6

n

nq n r d



= =

+ + + + +
. 

We compare this protocol with the only existing semiquantum summation protocol [20] in detail and list the comparison 

result in Table 2. In Table 2, with respect to this protocol, the two-qubit entangled state quantum resource refers to the state dp+ ; 

both TP’s single-qubit measurements and communicants’ single-qubit measurements refer to the dpZ basis measurements, as 

the dpZ basis measurement is composed by two composite Z basis measurements; and TP’s two-qubit entangled state 

measurements refer to the dpX basis measurements and the double Bell basis measurements. As for the protocol of Ref.[20], the 

single-qubit state quantum resource refers to the state + ; communicants’ single-qubit measurements refer to the Z basis 

measurements; TP’s single-qubit measurements refer to the X basis ( ,+ − ) measurements and the Z basis measurements; and 

TP’s three-qubit entangled state measurements refer to the GHZ-type basis measurements. In addition, in the protocol of Ref.[20], 

the length of the private binary string from jP is n , where 1,2,3j = ; TP needs to generate ntdrn 3)32(3 =+++  particles all in 

the state of + , while jP needs to generate
2

nt
particles in the Z basis when choosing the SIFT operations; and jP needs to 

send jC to TP through the classical channel; hence, we have nc = ,
2

9
3

2
3

ntnt
ntp =+= and 3v n= . Consequently, the qubit 

efficiency of the protocol of Ref.[20] is
( )

2

9 9 32 6
3

2

n

r d
nt n




= =
+ + + +

+

. From Table 1, it can be concluded that this protocol 

takes advantages over the protocol of Ref.[20] on the aspects of quantum measurement of TP, privacy of summation result 
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towards TP and practical feasibility. 
Table 2  Comparison results of this protocol and the previous semiquantum summation protocol 

 The protocol of Ref.[20] This protocol 

Characteristic measure-resend measure-resend 

Number of communicants three two 

Quantum resource single-qubit states two-qubit entangled states 

Quantum measurement of TP  single-qubit measurements and 

three-qubit entangled state 

measurements 

single-qubit measurements and 

two-qubit entangled state measurements 

Quantum measurement of communicants single-qubit measurements single-qubit measurements 

Type of TP semi-honest semi-honest 

TP’s knowledge about the summation result Yes No 

Usage of quantum entanglement swapping No No 

Usage of unitary operations No No 

Usage of pre-shared key No No 

Summation type modulo 2 addition modulo 2 addition 

Computation way  bit-by-bit bit-by-bit 

Qubit efficiency 

( )

2

9 32 6r d + + + +
 

( )

1

6 4 6r d + + + +
 

Quantum channel ideal noiseless quantum channel collective-dephasing noise quantum channel 

In conclusion, in this paper, a two-party secure semiquantum summation protocol is constructed, which needn’t require two 

communicants to possess full quantum capabilities. In this protocol, two classical communicants can successfully calculate the 

summation of their private binary sequences with the assistance from a quantum semi-honest TP, who is permitted to perform all 

kinds of attacks at her own will except colluding with anyone else. This protocol needn’t pre-share a random key between any two 

parties. This protocol resists the collective-dephasing noise by adopting logical qubits within decoherent free space as traveling 

particles. It has been validated that this protocol can overcome both the outside attacks from Eve and the participant attacks from 

TP. Moreover, this protocol can guarantee that TP has no knowledge about the summation results. In the future, we will 

concentrate on studying how to design the semiquantum summation protocol feasible over other noisy quantum channels, such as 

the collective-rotation noise channel, the amplitude damping channel, etc. As two classical communicants can know each other’s 

private binary sequence, this protocol cannot be directly applied into SQPC [27,34-38]. In the future, we will also study how to apply 

semiquantum summation into the other semiquantum secure computation, such as SQPC, semiquantum key agreement (SQKA) 

[39-41], etc. 
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