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Abstract Privacy amplification (PA) is an essential part in a quantum key
distribution (QKD) system, distilling a highly secure key from a partially
secure string by public negotiation between two parties. The optimization ob-
jectives of privacy amplification for QKD are large block size, high throughput
and low cost. For the global optimization of these objectives, a novel privacy
amplification algorithm is proposed in this paper by combining multilinear-
modular-hashing and modular arithmetic hashing. This paper proves the se-
curity of this hybrid hashing PA algorithm within the framework of both in-
formation theory and composition security theory. A scheme based on this
algorithm is implemented and evaluated on a CPU platform. The results
on a typical CV-QKD system indicate that the throughput of this scheme
(261Mbps@2.6 × 108 input block size) is twice higher than the best existing
scheme (140Mbps@1× 108 input block size). Moreover, this scheme is imple-
mented on a mobile CPU platform instead of a desktop CPU or a server CPU,
which means that this algorithm has a better performance with a much lower
cost and power consumption.
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1 Introduction

PA is the art of distilling a highly secure key from a partially secure string
through public discussion between two parties [1]. The current main applica-
tion domain of PA is quantum key distribution.

Quantum key distribution (QKD) is a notable technique which exploits the
principle of quantum mechanics to perform the information theoretical secure
key distribution between two remote parties, named Alice and Bob [2]. The
performance and practicability of a QKD system have improved rapidly in
recent years, and the QKD system has been applied in engineering and com-
mercialization [16,19]. The current trends of a QKD system are improving
the performance, such as transmission distance, key rate and the cost reduc-
tion [5,13]. A QKD system has two major parts: a quantum optical subsystem
for the preparation, transmission and measurement of quantum states; a post-
processing subsystem to guarantee the correctness and security of the final
secure key [7]. One of the essential part in the post-processing subsystem is
privacy amplification which guarantees the security of the final secure key.

The development demand of a QKD system leads to a trilemma in PA as
indicated in Fig. 1. A PA scheme is supposed to have large block size, high
throughput and low cost. However, the trilemma in PA means these objectives
cannot be achieved perfectly at the same time. For example, a PA scheme with
large block size and high throughput always costs high computing resources.
The optimization methods for a PA scheme by changing computing platform
and implementation method only improve certain indicator. A really effective
optimization method solving the trilemma is to design a new PA algorithm.

The new PA algorithm designed in this paper is aimed to combine the ad-
vantages of two popular PA algorithms, Toeplitz hashing PA [4,6,11,12,15,18]
and modular arithmetic hashing PA [14,17]. The strength of Toeplitz hashing
PA is that the input key can be split and handled separately. The strength
of modular arithmetic hashing PA is that the input key can be compressed
from a binary sequence to a 2B−nary sequence. More specifically, the optimal
computation complexity of Toeplitz hashing PA is O(n log n). The calculation
amount of Toeplitz hashing PA with splitting is approximately C∗

⌈
n
r

⌉
∗r log r,

where n is the input key length, r is the output key length, and C is a constant.
The optimal computation complexity of modular arithmetic hashing PA is the
same O(n log n). The calculation amount of modular arithmetic hashing PA
with compressing is approximately C ∗ (n/B) log(n/B). Therefore, this paper
aims to design a new algorithm to combine and utilize these two advantages.

A new PA algorithm based on multilinear-modular-hashing (MMH) and
modular arithmetic hashing (MH) is designed to implement the aforemen-
tioned optimization. Multilinear-modular-hashing is a well-known universal
hashing family for fast message authentication. The most significant feature
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Large Block Size

High Throughput Low Cost

Fig. 1 The trilemma in privacy amplification

Table 1 The comparison of computation and advantage of different PA algorithms

PA Algorithm Advantage Calculation Amount
Calculation
Comparison

Toeplitz
Hashing PA

spliting the input key
and handle it separately

C ∗
⌈
n
r

⌉
∗ r log r B ∗X

Modular
Arithmetic
Hashing PA

transforming the input key
from binary sequence
to 2B−ary sequence

C ∗ (n/B) log(n/B) log(n/B)/ log(r/B) ∗X

MMH-MH PA combination of both C ∗
⌈
n
r

⌉
∗ (r/B) log(r/B) X

of this hashing family is that it can not only split and separately handle the
input key but also compress the input key from a binary sequence to a 2B−ary
sequence. The computation complexity of MMH is similarly O(n log n). How-
ever, the calculation amount of MMH is much lower, approximately C ∗

⌈
n
r

⌉
∗

(r/B) log(r/B). MMH cannot be used to design PA algorithms directly be-
cause the output set of MMH is a fixed finite field instead of a binary se-
quence of variable length. The output of a PA algorithm is required to be a
variable length binary sequence because the secure degree of input partially
secure string always changes real-time, especially in a QKD system. To ad-
dress this issue, modular arithmetic hashing is combined with MMH to design
the new PA algorithm, named MMH-MH PA algorithm. The security analy-
sis of MMH-MH PA is accomplished with composition security, and we have
confirmed that MMH-MH PA can achieve the same security with Toeplitz
hashing PA and modular arithmetic hashing PA. A comparison of advantage
and computation of different PA algorithms is indicated in Table 1. We assume
the calculation amount of MMH-MH PA is X, and evaluate the calculation
amount of the other PA algorithms to show the advantage of MMH-MH PA.

We design an implementation scheme of MMH-MH PA on CPU platform to
evaluate its performance. Because QKD protocols can be divided into discrete
variable QKD (DV-QKD) and continuous variable QKD (CV-QKD) according
to different working principles [16,18,19], the key parameters of a typical DV-
QKD system [16] and a typical CV-QKD system [19] are referred for the
evaluation. Three conclusions are obtained from the results: 1. the throughput
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of MMH-MH PA is higher than other PA schemes on CPU. 2. the computing
resource cost of MMH-MH PA is lower than existing schemes. 3. the final key
rate of a QKD system with MMH-MH PA is better than the common case -
108 input block size PA.

The rest of this paper is organized as follows. The MMH-MH PA algorithm
is put forward in Section 2. We analyze the security of the MMH-MH PA
algorithm in Section 3. We evaluate the performance of the MMH-MH PA
algorithm and analyze the evaluation results in Section 4. Lastly, we draw
conclusions about MMH-MH PA algorithm for future work in Section 5.

2 Related Works

We introduce the definition and advantages of multi-linear modular hashing
in this section. First, we discuss the reason why multi-linear modular hashing
cannot be directly used for PA. Then we address the problem by introducing
modular arithmetic hashing.

2.1 Multi-linear Modular Hashing

The definition of multi-linear modular hashing is indicated as follows:

Definition of Multi-linear Modular Hashing Let p be a primer and let k be an
integer k > 0. Define a family of multi-linear modular hashing functions from
Zkp to Zp as follows:

MMH :=
{

ga : Zkp → Zp
∣∣a ∈ Zkp } (1)

where the function ga is defined for any a = 〈a1, · · · , ak〉, x = 〈x1, · · · , xk〉,
ai, xi ∈ Zp,

ga (x) := a · x mod p =

k∑
i=1

aixi mod p (2)

The MMH family is a universal hashing family. Its collision probability δ
is 1/|Zp|(See Appendix A), and the proof can be found in [3].

From the structure of the function ga in MMH, three advantages can be
found: first, it can split and separately handle the input data like Toeplitz
hashing; second, the input key can be compressed from a binary sequence
to a 2B-nary sequence; third, its main part is large number multiplications,
which means it can be accelerated by algorithms such as the Schönhage and
Strassen algorithm, GNU multiple precision (GMP) library. However, the main
problem with the use of MMH directly for PA is the output set of MMH is a
fixed finite field Zp. The expected output form of a PA algorithm is a variable
length bit sequence based on the secure degree of the input sequence. To solve
this problem, modular arithmetic hashing is introduced to compensate for the
drawback of MMH.
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2.2 Modular Arithmetic Hashing

The definition of multi-linear modular hashing is indicated as follows:

Definition of Modular Arithmetic Hashing Let α and β be two strictly positive
integers, α > β. Define a family modular arithmetic hashing of functions from
2α to 2β as follows:

MH := {hb,c : Z2α → Z2β |b, c ∈ Z2α , gcd(b, 2) = 1} (3)

where the function hb,c is defined as follows:

hb,c(x) := (b · x+ c mod 2α)
/

2α−β (4)

Modular Arithmetic Hashing is also a universal hashing, and the output
set of modular arithmetic hashing is a variable length bit sequence. Therefore,
it can be combined with MMH to design a new PA algorithm.

3 MMH-MH PA Algorithm Design and Security Analysis

The multi-linear modular hashing-modular arithmetic hashing (MMH-MH)
PA algorithm is proposed and discussed in this section. Since there is no similar
previous PA algorithm, the security analysis of the MMH-MH PA algorithm is
very important. The security analysis of the MMH-MH PA proves that it can
produce secure key of the same length and provide the same degree of secure
within the framework of both information theory and composition security
theory.

3.1 MMH-MH PA Algorithm Design

The Multilinear Modular Hashing-Modular Arithmetic Hashing (MMH-MH)
PA algorithm is a new combined PA algorithm, which splits the input sequence
with MMH and outputs a variable length bit sequence with MH.The main steps
of the MMH-MH PA algorithm include:

0. calculate the parameters of MMH-MH PA algorithm p and k;
1. split the input bit sequence and map it to a prime field Zp;
2. randomly choose function of MMH with input random number a and

run the function on the output of step 1;
3. randomly choose function of MH with input random numbers b and c

and run the function on the output of MMH, then output a specified length
bit sequence.

It should be noted that the prime p of the prime field Zp in step 1 is
recommended to be a Mersenne prime. The form of a Mersenne prime is Mγ =
2γ−1. All known Mersenne prime is listed in [9]. Mersenne prime provides two
benefits: first, the process of converting input data x from a binary field to a
prime field is very simple. The special case is xi = 2γ −1, the data xi = 2γ −1
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Fig. 2 The main steps of a MMH-MH PA algorithm

should be cast away and reloaded. Second, x mod Mγ = bx/2γc + x mod 2γ ,
so modulus operation can be simplified. The main step of the MMH-MH PA
algorithm can be further understood in Fig. 2. Algorithm 1 described the
complete procedure of the MMH-MH PA algorithm.

Algorithm 1 MMH-MH PA algorithm

Input: Input Data: x ∈ Z2k×γ . Random numbers:a ∈ Zkp , b, c ∈ Z2γ , gcd(b, 2) = 1.
//p = Mγ = 2γ − 1

Output: z ∈ Z2β //γ > β
1: x = 〈x1, · · · , xk〉 //split data x
2: a = 〈a1, · · · , ak〉 //split data a
3: if xi = 2γ − 1(i = 1, ..., k) then
4: break; //Reload data xi
5: else
6: for i = 0 to k do
7: yi = ai × xi
8: end for

9: y =
k∑
i=1

yi mod p /*MMH function: y = ga(x)*/

10: z = (b · y + c mod 2α)
/

2α−β /*MH function: z = hb,c(y)*/
11: end if
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A significant difference between the MMH-MH PA algorithm and existing
PA algorithms is that the MMH-MH PA algorithm utilizes different universal
hashing twice as opposed to the previous one-time method. Therefore, it is
unclear if security risk exists in the MMH-MH PA algorithm. To verify its
security, we analyze the security of the MMH-MH PA algorithm within the
framework of information theory and composition security.

3.2 Security Analysis of the MMH-MH PA algorithm

To analyze the security of the new PA algorithm, eavesdropping behavior of
the eavesdropper, named Eve, is assumed first under classical information.
Then we prove that the MMH-MH PA algorithm can produce secure key of
the same length and provide the same degree of security within the framework
of information theory and composition security theory.

3.2.1 Eavesdropping Assumption of the Eavesdropper

Suppose that x ∈ X is chosen uniformly at random by two parties, Alice and
Bob. The eavesdropper, Eve, is given the value of w = e(x), where e : X →W
is an eavesdropping function. For each w ∈ W , define cw = |e−1(w)|. The
probability distribution pw on X, given the value w, is the following:

pw(x) =

{
1
cw

if x ∈ e−1(w)

0 if x /∈ e−1(w)
(5)

3.2.2 Information Theory Security Analysis

The use of information theory is the most common method to analyze the
security of PA.The secure evaluation standard based on information theory is
the mutual information between output of PA z and Eve’s information w, i.e.

I(z : w). More precisely, it is I(qz : ew, ug, uh), where qz = q(z|g, h) means the
probability distribution qz induced on Z, and the whole expression means the
average mutual information over all possible values w, MMH functions g and
MH functions h. It holds that

I(qz : ew, ug, uh) = H(qz)−H(qz|ew, ug, uh) ≤ H(qz)−HRen(qz|ew, ug, uh),

where H means the Shannon entropy, and HRen means the Renyi entropy
(See Appendix B). H(qz) holds H(qz) ≤ log2 |Z|. HRen(q|ew, ug, uh) can be
deduced by two useful lemmas, which have been proved in [10]:

Lemma 1 HRen(p|uf ) ≥ −log2(δ + ∆p), where δ means the collision proba-
bility of the hashing family (See Appendix A).
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Lemma 2 Suppose F1 is a δ1 − U(D1;N,M1) hash family of functions from
X to Y1, and F2 is a δ2 − U(D2;M1,M2) hash family of functions from Y1
and Y2. For any f1 ∈ F1,f2 ∈ F2, define f1 ◦ f2 : X → Y2 by the rule
f1 ◦ f2(x) = f2(f1(x)). Then

f1 ◦ f2 : f1 ∈ F1, f2 ∈ F2)

is a (δ1 + δ2)−U(D1, D2;N,M2) hash family.

Theorem 1 Let x ∈ X is chosen randomly and w ∈ W is the output of
w = e(x). g is a function chosen by uniform distribution ug from MMH family
G and h is a function chosen by uniform distribution uh from MH family H.
The collision probability of G and H is δg and δh. Perform y = g(x) and
z = h(y), then the following relation holds

HRen(qz|ug, uh, ew) ≥ −log2(
|Z|
|X|

+ δg + δh),

where qz is the probability distribution of z ∈ Z.

Proof For all w ∈ W , px|w is an uniform distribution, and ∆px|w = |W |/|X|.
When lemma 1 is applied, it holds that

HRen(qz|uf , ew) ≥ −log2(
|W |
|X|

+ δf ).

And when lemma 2 is applied, the collision probability of the composition con-
struction with MMH and MH is δg+δh. Then it is clear thatHRen(qz|ug, uh, ew) ≥
−log2( |W ||X| + δg + δh).

According to theorem 1, the mutual information holds that

I(qz : ew, ug, uh) ≤ |Z|+ log2(
|W |
|X|

+ δg + δh).

Suppose that x,w,z is all binary form, i.e. |X| = 2n, |Y | = 2m, |Z| = 2t,
And δg = 1/2γ , δh = 1/2m. Then the mutual information holds that

I(qz : ew, ug, uh) ≤
(
2t−n+m + 2m−p

)/
ln 2.

When m = n − t − s, s is called security coefficient in information theory
secure analysis in PA. And let m << γ in MMH-MH PA design, the following
relation holds,

I(qz : ew, ug, uh) ≤ 2−s
/

ln 2.

This is a well-established conclusion in the previous PA algorithm security
analysis. It shows that MMH-MH PA has the equivalent security with the
common PA algorithm (e.g. Toeplize-based PA and modular arithmetic hash-
ing PA) under information theory.



An efficient hybrid hash based PA algorithm for QKD 9

3.2.3 Composition Security Analysis

Composition security is a popular security analysis tool in QKD, so we use
it to analyze the security level of our PA algorithm. The secure evaluation
standard based on security analysis is the Statistical distance (Definition 1)
between the conditional probability distribution of PA output given the eaves-
dropping information w and the uniform distribution of perfect key, as defined
in Definition 2.

Definition 1 Let p and q be two probability distributions on the set X. The
statistical distance between p and q, denoted d(p, q), is defined as follows:

d(p, q)=
1

2

∑
x∈X
|p(x)− q(x)|.

Definition 2 Let px be a probability distribution of random variable x on
the set X, pw be a probability distribution of random variable w on the set
W and u be uniform distribution, and let ε > 0. x is said to be ε-secure with
respect to pw if d(px|w, u) ≤ ε.

With the proof in Section 3.2.2, the upper bound of collision probablity
∆qz|ug,uh,ew can be obtained easily,

∆qz|ug,uh,ew ≤ 2−m + 2t−n+2−γ .

Then we give the relationship between the collision probability and the
statistical distance with uniform distribution of a probability distribution with
the following lemma, which is proved in [10]:

Lemma 3 Let (Y, p) be a probability space. Then

d(p, u) ≤
√
∆p|Y | − 1/2.

Then the following relation holds

d(qz|ug, uh, ew, u) ≤
√

2m+t−n + 2m−γ/2.

Similarly, when m = n− t−s, and let m� γ when MMH-MH PA is designed,
the following relation holds

ε ≤ 2
−s
2 −1.

This means the output key of MMH-MH PA can be 2
−s
2 −1-secure under com-

position security, when output lentgh is m = n− t− s.
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Table 2 Parameters of a typical DV-QKD system and a typical CV-QKD system

A Typical DV-QKD System[16] A Typical CV-QKD System[19]

Parameters Values Parameters Values
system clock frequency f 1 GHz transmission distance l 50 km
transmission distance l 10 km excess channel noise Vε 0.005

u, v, w1 0.4, 0.1, 0.0007 electric noise Vel 0.041
pu, pv , pw2 96.9%, 1.6%, 1.4% η5 0.606

ηδ
3 22.5% reconciliation efficiency β 0.95

SPD dark count rate Y0 4.5−6 security parameter of PA ε 10−10

SPD system error eδ 3%
pZ , pX

4 96.7% 3.4%
security parameter of PA ε 10−10

1 u, v, w: photon fluxes for signal, decoy and vacuum pulses
2 pu, pv , pw: respective probabilities for signal, decoy and vacuum pulses
3 ηδ: photon detector (SPD) detection efficiency
4 pZ , pX : Z and X basis probabilities
5 η: homodyne detector efficiency

4 Implementation and Simulation

To evaluate the actual performance of the MMH-MH PA algorithm, we used
the parameters of a typical DV-QKD system [16] and a typical CV-QKD sys-
tem [19] to design and evaluate the MMH-MH PA scheme, and the parameters
are listed in Table 2.

To design a MMH-MH PA scheme for a specific QKD system, two key
parameters need to be confirmed. One is the unit block size γ, and the other
is the block number k. The input block size of PA n is equal to γ × k and
expected to be as large as possible. Raising the unit block size γ increases
the computation cost and decreases the throughput. The block number k is
expected to be as large as possible, but it is restricted by the compression
ratio of the QKD system. So we calculated the compression ratio of QKD
systems for evaluation to confirm the block number k. Then we designed the
MMH-MH PA schemes with different unit block size γ and evaluated their
performance in three aspects: 1. throughput at different input block sizes; 2.
the computational resource consumption of this scheme; 3. the final secure key
rate of a system with this scheme.

As previously mentioned, the block number k is restricted to the com-
pression ratio of the QKD system. The compression ratio of a DV-QKD sys-
tem can be calculated by r = βIAB − IAE(e1 +∆n) (See [16] for more de-
tails) and the compression ratio of a CV-QKD system can be calculated by
r = βIAB − χBE − ∆n (See [8] for more details). Then the block number k
of the MMH-MH PA scheme can be confirmed according to the compression
ratio, k ≤ 1

r . The results are listed in Table 3.

First, we evaluated the throughput of MMH-MH PA schemes with different
block size n = k×γ on typical QKD systems. We compared these results with
existing PA schemes on similar platforms in Fig. 3, and key parameters of
these schemes are listed in Table 4. The experiment results indicate that the
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Table 3 MMH-MH PA Parameter k for typical QKD systems

System Compression Ratio r Block Number of MMH-MH PA k
Typical DV-QKD system [16] 0.2957 3
Typical CV-QKD system [19] 0.0972 10

106 107 108 109

Input Block Size (bit)

20

40
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300
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800
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oc
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ng
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bp

s)

MMH-MH PA for CV-QKD

MMH-MH PA for DV-QKD

Modular Hash PA [14]

Toeplitz-NTT PA [16]

HiLS PA [11]

Fig. 3 The throughput comparison between MMH-MH PA scheme and exiting schemes

existing best PA scheme is implemented on a high performance CPU i9-9900k,
and our scheme reaches nearly twice throughput on a common mobile CPU
i5-7300HQ. So our scheme is able to reach higher throughput with lower cost.
More specifically, the lower cost of our scheme can be reflected on: 1. the
low cost CPU platform (fewer cores and lower basic frequency) used for the
scheme; 2. the lower memory resource cost and the lower actual memory used.
The higher performance and lower cost of our scheme verify the computing
advantages of the MMH-MH PA algorithm.

Table 4 Key parameters of the compared schemes

PA scheme Hash Based Method Platform
Number

of cores

Basic

Frequency
Memory

Actual

Memory

Used

MMH-MH PA
MMH

+MH
GMP multiply Intel i5-7300HQ 4 2.20 GHz 8GB 120MB

Modular Hash PA[14]
Modular

Hash
GMP multiply Intel i9-9900k 8 3.60GHz 16GB 220MB

Toeplitz NTT PA [16] Toeplitz NTT
Intel Xeon E5-2620v2

+ Intel Xeon Phi 7120A

8

+61

2.10GHz

+1.24GHz

16GB

+128GB
–

HiLS PA[11] Toeplitz FFT Intel E5-2640 v3 × 2 8×2 2.10GHz 128GB –
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Fig. 4 the Final Key Rate of QKD Systems with MMH-MH PA

The following simulation experiment shows the influence of our scheme on
the final key rate of a QKD system. When the scheme throughput can satisfy
the system demand, the main factor on the final key rate in PA is the input
block size n. In our scheme, the input block size is n = k × γ. It can reach
2 × 108 in the typical DV-QKD system and 8 × 108 in the typical CV-QKD
system. In most QKD systems, n = 108 is common. We compare the final key
rates of the QKD system with our scheme, the infinite size and the common
input size in Fig. 4. The final key rate of the QKD system with our scheme
is better than the usual size. The improvement is more obvious in the CV-
QKD system because the finite-size-effect is more serious in CV-QKD. This
result can also be reached with the scheme in [11], while our scheme saves
more computing resource and avoids the possible truncation error caused by
floating point FFT of the scheme in [11].

According to the above simulation experiment, the scheme with the MMH-
MH PA algorithm shows better performance, lower cost and a positive effect
on the final key rate of the entire system. Among these advantages, we regard
low cost as the most competitive advantage for the near-term QKD system.
It can improve the system performance and practicability in the resource con-
sumption sensitivity scene, such as chip-based QKD systems.

5 Conclusion

In this research, a new PA algorithm, named MMH-MH PA, is proposed to
improve the overall performance of PA. This algorithm not only performs
better but also consumes fewer computing resources. The experiment results
show that the MMH-MH PA algorithm: 1. provides higher throughput at larger
block size than existing CPU PA algorithms, especially on a CV-QKD system;
2. the final key rate of a system with the MMH-MH PA algorithm is extremely
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close to the one with an infinite size PA; 3. the MMH-MH PA algorithm costs
fewer computing resources. We regards the third point as the most outstanding
advantage of MMH-MH PA for current QKD systems. It provides higher final
key rate and lower cost for a QKD system. It is particularly important for
the resource sensitive QKD systems, such as a chip-based QKD system. In
the future, we will design a FPGA-based PA scheme based on the MMH-MH
PA. We believe this scheme will significantly improve the performance of a
chip-based QKD system.
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Foundation of China under Grant No. 62071151, 61301099.

References

1. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy Amplification by Public Discussion.
SIAM Journal on Computing 17(2), 210–229 (1988)

2. Bennett, Charles and Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. Theoretical Computer Science - TCS 560, 175–179 (1984)

3. Halevi, S., Krawczyk, H.: MMH: Software message authentication in the Gbit/second
rates. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 1267, 172–189 (1997)

4. Li, Q., Yan, B.Z., Mao, H.K., Xue, X.F., Han, Q., Guo, H.: High-Speed and Adaptive
FPGA-Based Privacy Amplification in Quantum Key Distribution. IEEE Access 7,
21482–21490 (2019)

5. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao,
Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang,
J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q.,
Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang,
J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature (2017)

6. Liu, B., Zhao, B., Yu, W., Wu, C.: FiT-PA: Fixed scale FFT based privacy amplification
algorithm for quantum key distribution. Journal of Internet Technology 17(2), 309–320
(2016)

7. Mao, H., Li, Q., Han, Q., Guo, H.: High Throughput and Low Cost LDPC Reconciliation
for Quantum Key Distribution. Quantum Information Processing 2 (2019)

8. Milicevic, M., Feng, C., Zhang, L.M., Glenn Gulak, P.: Key reconciliation with low-
density parity-check codes for long-distance quantum cryptography. arXiv (April), 1–23
(2017)

9. Sloane, N.J.A.: Mersenne primes. [EB/OL]. https://oeis.org/A000668
10. Stinson, D.R.: Universal hash families and the leftover hash lemma, and applications to

cryptography and computing. Journal of Combinatorial Mathematics and Combinato-
rial Computing 42, 3–31 (2002)

11. Tang, B.Y., Liu, B., Zhai, Y.P., Wu, C.Q., Yu, W.R.: High-speed and Large-scale Privacy
Amplification Scheme for Quantum Key Distribution. Scientific Reports 9(1), 1–8 (2019)

12. Wang, X., Zhang, Y., Yu, S., Guo, H.: High-speed implementation of length-compatible
privacy amplification in continuous-variable quantum key distribution. IEEE Photonics
Journal 10(3), 1–9 (2018)

13. Xia, X.X., Zhang, Z., Xie, H.B., Yuan, X., Lin, J., Liao, S.K., Liu, Y., Peng, C.Z., Zhang,
Q., Pan, J.W.: LED-based fiber quantum key distribution: toward low-cost applications.
Photonics Research 7(10), 1169 (2019)

14. Yan, B., Li, Q., Mao, H., Xue, X.: High-Speed Privacy Amplification Scheme Using
GMP in Quantum Key Distribution. IEEE Photonics Journal 12(3), 1–13 (2020)

15. Yang, S.S., Bai, Z.L., Wang, X.Y., Li, Y.M.: FPGA-Based Implementation of Size-
Adaptive Privacy Amplification in Quantum Key Distribution. IEEE Photonics Journal
9(6) (2017)

https://oeis.org/A000668


14 Yan Bingze et al.

16. Yuan, Z.L., Plews, A., Takahashi, R., Doi, K., Tam, W., Sharpe, A.W., Dixon, A.R.,
Lavelle, E., Dynes, J.F., Murakami, A., Kujiraoka, M., Lucamarini, M., Tanizawa, Y.,
Sato, H., Shields, A.J.: 10 Mb / s quantum key distribution. Journal of Lightwave
Technologyechnology 8724(c), 1–7 (2018)

17. Zhang, C.M., Li, M., Huang, J.Z., Li, H.W., Li, F.Y., Wang, C., Yin, Z.Q., Chen,
W., Han, Z.F., Treeviriyanupab, P., Sripimanwat, K.: Fast implementation of length-
adaptive privacy amplification in quantum key distribution. Chinese Physics B 23(9),
1–6 (2014)

18. Zhang, H.F., Wang, J., Cui, K., Luo, C.L., Lin, S.Z., Zhou, L., Liang, H., Chen, T.Y.,
Chen, K., Pan, J.W.: A real-time QKD system based on FPGA. Journal of Lightwave
Technology 30(20), 3226–3234 (2012)

19. Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C.,
Zhang, X., Wang, Z., Li, M., Zhang, X., Zheng, Z., Chu, B., Gao, X., Meng, N., Cai, W.,
Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50 km commercial
fiber. Quantum Science and Technology 4(3), 0–12 (2019)

A Universal Hashing Family

A (D;N,M) hashing family is a set F of D functions that f : X → Y for each f ∈ F ,
|X| = N and |Y | = M .

A (D;N,M) hashing family F is δ-universal hashing means for two distinct elements
x1, x2 ∈ X,there exists at most δD functions f ∈ F such that f(x1) = f(x2). The parameter
δ is the collision probability of the hash family.

B Renyi Entropy and Collision Probability

Let (X, px) be a probability space. The Renyi entropy of (X, px), denoted HRen(px), is
defined to be

HRen(px) = −log2∆px

where ∆px denotes the collision probability of the probability distribution px, is defined by

∆px =
∑
x∈X

(p(x))2.

A property of the Renyi entropy is useful in this paper:

Lemma 4 Let (X, px) be a probability space. HRen(px) ≤ H(px).
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