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Abstract

This article explores the concurrence in a two-qubit Heisenberg XXX model with Dzyaloshinskii-
Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions. The concur-
rence expression was developed using the physical variables connected with the chosen system. Our
results indicate that the temperature, the spin coupling constant, the x-components of the DM and
KSEA interactions may all play a role in determining the degree of intricacy between states. Addi-
tionally, these findings imply that the separability of states is obtained at high-temperature domains
or by switching the spin coupling. In contrast, the entanglement of states may be achieved at low
temperatures or by using high values of the x-components of the DM and KSEA parameters. Fur-
thermore, the DM and KSEA interactions have an identical effect on the concurrence behaviors at
high temperatures.
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1 Introduction

Because of its nonlocality [1–3], entanglements have become an important tool in quantum information
processing [4,5], including quantum computing [6,7], quantum cloning [8] and teleportation [9]. Using
the Heisenberg model as a basic system, entangled states may be generated and controlled. This model
has been used to simulate a wide range of physical phenomena, including quantum dots [10], nuclear
spins [11], optical lattices [12], and superconductors [13]. Entanglement in a Heisenberg system with
spin is more important because of several magnetic properties of high-spin quantum systems, such as
the Haldane gap [14, 15]. It has been shown that the Heisenberg model in the two-site system has a
thermal entanglement for a given spin, such as the spin-1/2 chain [16], spin-1 chain [17], and (1/2, 3/2)

mixed-spin chain [18].
Many quantum entanglement measurements have been established. The most important of which

is that of Bennett et al., who developed quantitative measures of quantum entanglement in bipartite
systems, first for pure states [19] and then for hybrid states [20]. These measures utilize entropy and
do not use the extremization technique to get the optimum working ensemble. Because extremization
is notoriously tricky to deal with theoretically, the authors could only obtain a precise formula for
entanglement formation in Bell-diagonal states [21]. Wootters then proved Hill and Wootters’ theory,
which offers a clear prescript for assessing the entanglement of any two-qubit system [22]. The Wootters
formula requires the solution of a fourth-degree algebraic problem, requiring tedious Ferrari formulas.
Thus, concise formulations for multiple quantum states are required for practical reasons.

Researchers in quantum information have recently begun to investigate the Dzyaloshinskii-Moriya
(DM) interaction, which was discovered by Dzyaloshinskii and Moriya and named after them. The
scientific community has shown a significant interest in the DM interaction, which is thought to be one
of the most effective regulating characteristics of quantum entanglement. Condensed matter systems
with correlated components have recently received much interest. As a result, recent work has focused
on quantifying and characterizing quantum correlations in Heisenberg spin-chain models with DM
interaction [23–25]. The results show that the DM interaction may control quantum correlations. The
non-classical thermal correlations of the two-qubit Heisenberg chain subjected to a transverse magnetic
field and DM interaction were also investigated using the local quantum uncertainty (LQU) [26].
Pourkarimi investigated the influence of the DM interaction on quantum discord in the Heisenberg XY
spin chain model [27]. His findings indicate that quantum discord is more persistent than quantum
entanglement in the presence of the DM interaction. G. L. Kamta et al. explore the entanglement of
a two-qubit anisotropic Heisenberg XY chain in thermal equilibrium at temperature T in an external
magnetic field B. They produce entanglement for any finite T through the combined influences of
anisotropic interactions and a magnetic field B by adjusting its strength [28]. Sun et al. demonstrated
that increasing the DM interaction value increases the quantum discord of the two-qubit Heisenberg
XYZ spin chain model [29]. N. Canosa et al. examine the entanglement of general mixed states of
a two-qubit Heisenberg XYZ chain in a magnetic field and its detection through different criteria.
The exact separability and weaker conditions implied by the disorder and the von Neumann entropic
criteria are analyzed [30].

In the fundamental study, [31, 32], it was discovered that there is symmetric helical coupling asso-
ciated with the DM interaction. It is ignored since the symmetric helical interaction is significantly
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weaker than the DM interaction. Kaplan discovers this symmetric helical interaction between local
spins in the single-band Hubbard model with spin-orbit couplings (SOC) [33]. Following that, Shekht-
man, Entin-Wohlman, and Aharony demonstrate that the mild ferromagnetism of La2CuO4 may be
explained by this non-zero symmetric helical interaction [34]. As a result, the symmetric helical in-
teraction was named the Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interaction. Thermal
quantum entanglement and discord have been investigated in a two-qubit XYZ Heisenberg model with
DM, and KSEA interactions in an inhomogeneous magnetic field [35]. The two-qubit Heisenberg XYZ
model with the interactions of DM and KSEA in thermal equilibrium was studied by A. V. Fedorova et
al. [39]. They derived analytical formulas for the LQU, and local quantum Fisher information (LQFI)
uses available expressions for the entropic quantum discord. By using the correlation functions and
chiral order factors, H. Fu et al. investigated the impact of the KSEA interaction on the ground state
features of three kinds of spin chains in a transverse field by using the correlation functions and chiral
order factors [37].

Low-dimensional magnetism physics has recently focused on finding novel magnetic compounds
and refining their properties to fulfil emerging technology demands. Knowing that integrable models
of magnetism in low-dimensional materials are based on the homogeneous Heisenberg XXX model
and its anisotropic version XXZ [38]. Motivated by the cited works and the utility of Heisenberg XXX
models, we investigated the thermal entanglement in a two-qubit homogeneous Heisenberg XXX model
with x-component of DM and KSEA interactions.

The organization of this paper is as follows. In section 2, in detail, we present the theoretical
model of our system subjected to DM and KSEA interactions. In addition, we determine the ground
states and their entanglement at absolute zero temperature. Section 3 will be devoted to the thermal
quantum entanglement and concurrence expression with some limiting cases. In section 4, numerical
studies will be performed to highlight the system behavior. Finally, the paper is closed with a findings
overview and our perspectives on the studied system.

2 Theoretical model

We consider a two-qubits Heisenberg XXX model with DM and KSEA interactions of a one-half
isotropic Heisenberg XXX model. The Hamiltonian of the system can be written as:

H = HH +HDM +HKSEA (1)

where the first term refers to Heisenberg exchange couplings, the second one denotes the DM interac-
tion, and the third one represents the KSEA interaction. Generally, the DM Hamiltonian HDM [31,32]
can be expressed as follows

HDM = D. (σ1 × σ2) (2)

= Dx (σy1σ
z
2 − σz1σ

y
2) +Dy (σx1σ

z
2 − σz1σx2 ) +Dz (σx1σ

y
2 − σ

y
1σ

x
2 )
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where D = (Dx, Dy, Dz) reflects the DM interaction vector and σx,y,z represents the Pauli spin matri-
ces. However, the KSEA Hamiltonian [33,34] may be expressed as

HKSEA = σ1.Γ.σ2 (3)

= (σx1 , σ
y
1 , σ

z
1)

 0 Γz Γy

Γz 0 Γx

Γy Γx 0


 σx2

σy2
σz2


= Γx (σy1σ

z
2 + σz1σ

y
2) + Γy (σx1σ

z
2 + σz1σ

x
2 ) + Γz (σx1σ

y
2 + σy1σ

x
2 )

where Γ denotes the traceless symmetric tensor. Thus, both the DM and KSEA interactions are
generally composed of three components. In the present work, we thought to investigate the effect
of x-component interactions on thermal entanglements. To do this, we restrict ourselves to the case
where the DM and KSEA interactions occur along the x-axis. Then, our Hamiltonian can be reads as

H = J (σx1σ
x
2 + σy1σ

y
2 + σz1σ

z
2) +Dx

(
σynσ

z
n+1 − σznσ

y
n+1

)
+ Γx

(
σynσ

z
n+1 + σznσ

y
n+1

)
(4)

where J represents the real coupling constant for the spin interaction. Antiferromagnetic chains are
when the value of J > 0, while ferromagnetic chains are those in which the value of J < 0. It should be
noted that Dx signifies the x-component of the DM interaction, while Γx denotes the x-component of
the KSEA interaction. The Hamiltonian (4) can be expressed in the standard computing basis |00 >,
|01 >, |10 >, |11 > as

H =


J −iΓx + iDx −iΓx − iDx 0

iΓx − iDx −J 2J iΓx + iDx

iΓx + iDx 2J −J iΓx − iDx

0 −iΓx − iDx −iΓx + iDx J

 (5)

The eigenvalue equation’s solution yields to the eigenvalues

ε1,2 = J ± 2Γx (6)

ε3,4 = −J ± 2η (7)

where η =
√
D2
x + J2, and the related eigenvectors

|ϕ1〉 =
1

2
|00〉 − i

2
|01〉 − i

2
|10〉+

1

2
|11〉 (8)

|ϕ2〉 =
1

2
|00〉+

i

2
|01〉+

i

2
|10〉+

1

2
|11〉

|ϕ3〉 = − 1√
2

sin(θ1)|00〉 − i√
2

cos(θ1)|01〉+
i√
2

cos(θ1)|10〉+
1√
2

sin(θ1)|11〉

|ϕ4〉 = − 1√
2

sin(θ2)|00〉+
i√
2

cos(θ2)|01〉 − i√
2

cos(θ2)|10〉+
1√
2

sin(θ2)|11〉

where θ1,2 are defined by

θ1,2 = arctan

(
Dx

η ∓ J

)
(9)

First, we address the entanglement of the system’s ground state at absolute zero temperature, which
is necessary before we can explore thermal quantum entanglements. It is reasonable to suppose that
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the ground state entanglement occurs in both the antiferromagnetic and ferromagnetic instances since
the energies are the exchange coupling J functions.

In order to highlight the dependency of the ground state energy on KSEA coupling constant Γx,
we explore three significant cases. The first one is Γx > 0. Using equations (6) and (7), the ground
state energies can be written as

ε2 = J − 2Γx, if Γx > J + η (10)

ε4 = −J − 2η, if Γx < J + η

Consequently, for Γx > J + η, the ground state it will be the entangled state |ϕ2〉, regardless of the
sign of J , and when Γx < J + η, the ground state is the entangled state |ϕ4〉 independently of the
sign of J . Because |ϕ2〉 and |ϕ4〉 are maximally entangled at low temperatures, thus conducting to the
maximum concurrence of C = 1 is achieved.

In the second case, independently of the sign of J for Γx < 0, the ground state energies are given
by

ε1 = J + 2Γx, if Γx < −J − η (11)

ε4 = −J − 2η, if Γx > −J − η

where |ϕ1〉 and |ϕ4〉 are the corresponding maximally entangled states leading to the maximum con-
currence C = 1.

However, in the last case where Γx = 0, the ground state energies are dependent on the sign of J .
In addition, if J < 0, those energies are given by

ε1 = ε2 = J, if J < −η (12)

ε4 = −J − 2η, if J > −η.

In contrast, for J > 0, the ground state energy is given by

ε4 = −J − 2η, for any value of η (13)

For the antiferromagnetic chains, the significant ground state is |ϕ4〉. It was also the ground state for
ferromagnetic chains when J fulfilled the condition J + η > 0, leading to maximal concurrence C = 1.
To complete this investigation, we illustrate the three cases discussed above in the phase diagram
shown in Fig. 1.

3 Thermal quantum entanglements

After determining our system’s spectrum, using the density matrix ρ(T ) to depict the system’s state
on thermal equilibrium at a given temperature T . The expression of ρ(T ) is presented by

ρ(T ) =
1

Z
e−βH (14)

where
Z = Tre−βH (15)

4



-10 -5 0 5 10
-10

-5

0

5

10

η

Γ x

Γ x
=η
+J

Γ
x =-η-J

φ4〉

φ1〉

φ2〉

(a)

-10 -5 0 5 10
-10

-5

0

5

10

η

J

J=-η
φ1〉=φ2〉

φ4〉

(b)

Fig. 1. (Color online) Phase diagram at T = 0 of a two qubits XXX Heisenberg model. (a) Γx 6= 0 for J = 1, (b) Γx = 0.

Where Z is the canonical ensemble partition function and β = 1/kBT is the inverse thermodynamic
temperature, where kB is the Boltzmann’s constant, which is treated as unity in the following for
simplicity. That will be succeeded by using the spectral decomposition of the Hamiltonian (5), which
allows the thermal density matrix ρ(T ) to be represented as

ρ(T ) =
1

Z

4∑
l=1

e−βεl |φl〉〈φl| (16)

The density matrix of the system, as discussed before in thermal equilibrium, may be represented in
the normal computational basis by inserting (6) and (8) into equation (16) and obtaining

ρ(T ) =
1

Z


a iµ iν c

−iµ b d −iν
−iν d b −iµ
c iν iµ a

 (17)

the elements matrix is represented by the equations

a =
1

4

(
2e−βε3 sin2 (θ1) + 2e−βε4 sin2 (θ2) + e−βε1 + e−βε2

)
(18)

b =
1

4

(
2e−βε3 cos2 (θ1) + 2e−βε4 cos2 (θ2) + e−βε1 + e−βε2

)
c =

1

4

(
−2e−βε3 sin2 (θ1)− 2e−βε4 sin2 (θ2) + e−βε1 + e−βε2

)
d =

1

4

(
−2e−βε3 cos2 (θ1)− 2e−βε4 cos2 (θ2) + e−βε1 + e−βε2

)
µ = −1

4

(
−e−βε3 sin (2θ1) + e−βε4 sin (2θ2) + e−βε1 − e−βε2

)
ν = −1

4

(
e−βε3 sin (2θ1)− e−βε4 sin (2θ2) + e−βε1 − e−βε2

)
5



Consequently, the partition function is clearly described by

Z = 2eβJ cosh (2βη) + 2e−βJ cosh(2βΓx) (19)

This matrix ρ is examined in order to find out how much entanglement is linked with it.

R = ρSρ∗S (20)

where ρ has a complex conjugate in the form of ρ∗, and S is determined by the formula

S = σy ⊗ σy (21)

where σy denotes the Pauli matrix, and the R matrix may be obtained by a simple calculation by

R =


R11 R12 R13 R14

R∗12 R22 R23 R∗13

R∗13 R23 R22 R∗12

R14 R13 R12 R11

 (22)

where the R components matrix are denoted by

R11 = a2 + c2 + µ2 + ν2 (23)

R22 = b2 + d2 + µ2 + ν2

R14 = 2ac+ 2µν

R12 = i(µ(a+ b) + ν(c+ d))

R13 = i(ν(a+ b) + µ(c+ d))

R23 = 2bd+ 2µν

To grasp the meaning of R, consider that TrR, which ranges from 0 to 1, measures the degree of
equality between ρ and ρ∗, which indicates how closely ρ approximates a mixture of generalized Bell
states. Additionally, the eigenvalues of R are invariant under local unitary transformations of the
individual qubits, which qualifies them to be included in a formula for entanglement, as entanglement
must also be invariant under such transformations. Using (22) and (23), one can check quickly that
the square roots of the eigenvalues of the matrix R are given by

λ1 =

(
(a− c)2 + (b− d)2 + 2(µ− ν)2 − (a+ b− c− d)

√
(a− b− c+ d)2 + 4(µ− ν)2

2Z2

) 1
2

(24)

λ2 =

(
(a− c)2 + (b− d)2 + 2(µ− ν)2 + (a+ b− c− d)

√
(a− b− c+ d)2 + 4(µ− ν)2

2Z2

) 1
2

λ3 =

(
(a+ c)2 + (b+ d)2 + 2(µ+ ν)2 − (a+ b+ c+ d)

√
(a− b+ c− d)2 + 4(µ+ ν)2

2Z2

) 1
2

λ4 =

(
(a+ c)2 + (b+ d)2 + 2(µ+ ν)2 + (a+ b+ c+ d)

√
(a− b+ c− d)2 + 4(µ+ ν)2

2Z2

) 1
2
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When attempting to quantify the amount of entanglement associated with ρ, we take into consid-
eration the concurrence [21,22], which may be described as follows:

C = max

[
0, 2 max (λ1, λ2, λ3, λ4)−

4∑
i=1

λi

]
(25)

The expression mentioned above is significant in determining the extent of entanglement between
states; however, the concurrence values are included in the range from zero, which represents an
unentangled state, to one, which signifies a maximally entangled state. After deriving the concurrence
expression, which is implicitly reliant on the coupling constant J , the x-components of the DM and
KSEA interactions, and the temperature T . Consequently, we now have all of the components necessary
to examine the behavior of the proposed system concerning the previously specified quantities. Before
beginning the numerical section, it is needed to explore a few limiting cases to simplify the expression
of concurrence and understand the behavior of our system.

The first limiting case concerns the high-temperature regime. To make things easier, we will use
the same formulas for the various expressions in the previous section, assuming that J = Γx = Dx = 1.
The eigenvalues of the matrix R are represented in the following manner:

λ1 '
(

1

8

(
1− 2

√
2
)
β +

1

16

) 1
2

(26)

λ2 '
(

1

8

(
2
√

2 + 1
)
β +

1

16

) 1
2

λ3 '
(

1

16
− 3β

8

) 1
2

(27)

λ4 '
(
β

8
+

1

16

) 1
2

Following a comparison of the eigenvalues of R at high temperature, the expression of concurrence, in
this case, maybe expressed by the relationship

C ' max

(
0,

1

2

((
2
√

2 + 1
)
β − 1

))
(28)

When T approaches a substantial value, the expression of concurrence reveals that C → 0 makes the
system states separable and not entangled at high temperatures.

Strong exchange coupling J is the second limiting case where we consider that J � Γx and J � Dx.
As a result, the quantities θ1 and θ2 have the values θ1 ' π/2 and θ2 ' Dx/2J , respectively, and the
eigenvalues of the matrix R are dependent on the signature of J . For an antiferromagnetic system
(J > 0), the eigenvalues of the matrix R are represented by

λ1 ' 1

(2 cosh(2βΓx) + e4βJ + 1)
(29)

λ2 ' e4βJ

(2 cosh(2βΓx) + e4βJ + 1)

λ3 ' 1

(2 cosh(2βΓx) + e4βJ + 1)

λ4 ' 1

(2 cosh(2βΓx) + e4βJ + 1)

7



and consequently, the expression of concurrence is given by

C ' max

(
0,

e4βJ − 3

(2 cosh(2βΓx) + e4βJ + 1)

)
(30)

If we look at the previous concurrence, it is easily possible to see that when J → +∞ , the value of the
concurrence is C → 1, which indicates that the states are maximally entangled. For J → 0, it is clear
that the concurrence tends to 0, which suggests that the state’s system has become more separable.
For a ferromagnetic system (J < 0), the expression of concurrence is expressed by

C ' max

(
0,− e4βJ + 1

(2 cosh(2βΓx) + e4βJ + 1)

)
(31)

The previous concurrence can have a value of C → 1 when J → −∞, indicating that the states are
most entangled. When J → 0, it is evident that the concurrence goes to 0, meaning that the state’s
system has become more separable.

Finally, the last limiting case is studying strong DM and KSEA interactions. In this perspective,
we assume that Dx � J and Γx � J , which implies that the quantities θ1 and θ2 take on the values
of θ1 = θ2 ' π/4, and as a result, the eigenvalues of the matrix R are expressed in the following form

λ1 ' e−βDx

(2 (cosh (2βDx) + cosh (2βΓx)))
1
2

(32)

λ2 ' eβDx

(2 (cosh (2βDx) + cosh (2βΓx)))
1
2

λ3 ' e−βΓx

(2 (cosh (2βDx) + cosh (2βΓx)))
1
2

λ4 ' eβΓx

(2 (cosh (2βDx) + cosh (2βΓx)))
1
2

It is clear that the (32) depends on Γx and Dx. Therefore, the expression of concurrence is also
dependent on the Γx and Dx. For Γx > Dx, the concurrence is expressed by

C ' max

(
0,

√
2 (sinh (βΓx)− cosh (βDx))

(cosh (2βDx) + cosh (2βΓx))
1
2

)
(33)

The last equation shows that the concurrence tends toward asymptotic value C ' 1 for strong KSEA
interaction parameters Γx, which means that the states are maximally entangled in this case. For
Γx → 0, the concurrence tends to 0, which indicates that the states are separated for this set of limits.
In the second case, for Γx < Dx, the concurrence takes the form

C ' max

(
0,

√
2 (sinh (2βDx)− cosh (2βΓx))

(cosh (2βDx) + cosh (2βΓx))
1
2

)
(34)

When Dx → +∞, the concurrence takes the value C ' 1, which indicates that the states are entangled.
Inversely, when Dx → 0, the concurrence approaches 0, reflecting states’ separability for this specific
condition.

To illustrate the suggested model’s overall performance, we will devote the following section to a
numerical evaluation of the concurrence C, described below. Following that, we supplied a few plots in
terms of the parameters of the considered system, such as temperature, spin coupling exchange, DM,
and KSEA interactions, and we will have further discussions to conclude this.
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4 Numerical results

This section of the paper will quantitatively investigate several features of entanglement in a two-qubit
Heisenberg XXX chain with x-components of DM and KSEA interactions. First, we will examine
concurrence as a function of temperature T and the constant coupling exchange for the spin interaction
J by setting the x-component of DM and KSEA interactions to the value Dx = Γx = 1. Second, we will
set the coupling constants for the spin coupling exchange and the x-component of the KSEA interaction
to Γx = J = 1 and plot the concurrence C as a function of the x-component of the DM interaction Dx.
Finally, we investigate the concurrence’s behavior regarding the x-component of the KSEA interaction
with fixed values J = Dx = 1. For simplicity, the values kB = ~ = 1 shall be assumed.

J=0.4

J=0.6

J=0.8
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J



(a) (b)

Fig. 2. (Color online) (a) The concurrence versus logarithmic temperature for different J . (b) The concurrence versus of
constant coupling for different T (Γx = Dx = 1).

In Fig. 2, we display the concurrence C in terms of logarithmic temperature Log(T ) for various
coupling constants for the spin interaction J = 0.4, 0.6 and 0.8 (Fig. 2.a). And versus coupling
constant for the spin interaction J for different values of temperature T = 0.4, 0.6 and 0.8 (Fig.
2.b). From Fig. 2.a, one can observe threshold temperatures Tc beyond which the entanglement
disappears. The critical temperature Tc is also impacted by the parameter J , such that Tc and J grow
in proportion. Something more significant is that in the low-temperature and precisely in the interval
0 < Log(T ) < 0.3, although the value of J rises, the entanglement stays equal to 1, this means that
in the vicinity of T = 0, the temperature is significant in front of the coupling. In addition, with the
increase in temperature, we can achieve long-lasting entanglement by increasing the coupling between
the spin (the blue curve).In Fig. 2.b, for J = 0, we have a degeneracy for the ground state seen in the
line delimiting separate ground states in Fig. 1.b. In this case, the ground state is a statistical mixture
of the two states |ϕ2〉 and |ϕ4〉 which has zero concurrences. For small values of J , the entanglement
of the ferromagnetic and antiferromagnetic chains increases in the same way. According to Fig. 2.b,
we can see that the concurrence C for an antiferromagnetic system tends towards one rapidly for large
values of J . In contrast, for a ferromagnetic chain and large values of |J |, the concurrence tends
towards one, but, in comparison to antiferromagnetic systems, this progress is being made slowly. In
conclusion, our system’s states are more entangled at low temperatures or for large values of |J |; but,
at high temperatures or for J = 0, the system’s states are more separable.

In Fig. 3, we plot the concurrence C in terms of x-component Dx at low temperature for T = 1,
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(a) (b)

Fig. 3. (Color online) The concurrence versus x-component of DM interaction for different T (J = 1 and Γx = 1).

2 and 3 (a) and at high temperature for T = 10, 20 and 30 (b). From Fig. 3, the first observation is
that the concurrence is symmetrical for Dx = 0. The concurrence tends to a fixed value C = 1 for the
high absolute value of the x-component of DM interaction even as the temperature rises. Moreover,
for Dx = 0, we notice that the C presents a minimum at low temperature, which disappears with the
decrease in temperature and vice versa, confirmed by the previous study in section (3). In addition,
we note that the entanglement increases symmetrically, and with the decrease in temperature, we may
get a short time entanglement. Otherwise, the concurrence shows an interval T-dependent, where C
stays zero at high temperatures near Dx = 0. Hence, an increase in temperature indicates a widening
of this interval. Then we can conclude that the state’s system is influenced by the DM interaction, in
which the large values of Dx make the system more entangled. At high temperatures for small values
of Dx, the system becomes less entangled, and the system’s states become completely separable.

T=1

T=2

T=3

-15 -10 -5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Γx

 T=10

T=20

T=30

-100 -50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Γx



(a) (b)

Fig. 4. (Color online) The concurrence versus x-component of KSEA interaction for different T (J = Dx = 1).

In Fig. 4, we display the concurrence C in terms of the x-component of the KSEA interaction Γx

at low temperature for T = 1, 2 and 3 (a) and high temperature for T = 10, 20, and 30 (b). In Fig.
4.b, the first finding is that for Γx = 0, the concurrence is symmetrical. For the large absolute value of
the x-component of the KSEA interaction at the low temperature shown in Fig. 4.a, the concurrence
tends to a constant value of C = 1 even as the temperature increases, i.e., the system’s ground state
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for Γx > 0 is a maximally entangled state ϕ2 (the yellow area in Fig. 1.a), whereas for Γx < 0, the
ground state is ϕ1 (the green area in Fig. 1.a), which is likewise a maximally entangled state, implying
that C = 1. Furthermore, for 2 < Γx < 3 (−3 < Γx < −2), the ground state of the system is an equal
mixture of the doublet states ϕ2 and ϕ4 (ϕ1 and ϕ4), seen in the lines delimiting distinct ground states
in Fig. 1.a, thus involving to C = 0. Additionally, we see that entanglement rises symmetrically, and
thus with a drop in temperature, we may encounter a brief temporal entanglement. Otherwise, the
concurrence displays an interval in which C remains zero at high temperatures near Γx = 0, and the
width of this interval is dependent on the temperature. Thus a temperature rise suggests a lengthening
of this interval. In conclusion, the KSEA interaction influences the state’s system. Large values of
Γx make the system more entangled, while small values of Γx make the system less entangled at high
temperatures, implying that the system’s states become separable. Furthermore, at high temperatures,
the DM and KSEA interactions have the same impact on the concurrence ( Fig. 3.b and Fig. 4.b.)

5 Conclusion and perspectives

Concurrence, a measure of entanglement, is investigated in a two-qubit Heisenberg XXX chain with
x-components of DM and KSEA interactions. The Hamiltonian model is given, and through math-
ematical calculations, the eigenstates entanglement has been determined, and the thermal state at a
finite temperature is explicitly derived. The entanglement of the ground state at zero temperature
limits and the associated phase diagram has been discussed. Afterwards, we obtained the concurrence
expression, which depends on the spin’s coupling exchange constant J , the DM and KSEA interac-
tions’ x-components, and the temperature T . Subsequently, we have studied various limits. Indeed,
we analyzed the case at high temperature, the strong and weak spin coupling exchange J compared
to the couplings of DM and KSEA. The behaviors of the concurrence-measured entanglements for our
study have been investigated numerically. In this paper, we have concluded that temperature T , the
x-components of the DM and KSEA interactions, may all play a role in determining the degree of
intricacy between the states to a greater or lesser extent. Moreover, it is possible to infer from these
results that the separability of the states can be obtained in the high-temperature domains, J = 0, or
at high temperature for small values of the constants of DM or KSEA interactions. Again, the entan-
glement of the states can be obtained for large values x-components of the DM and KSEA interactions
or low temperature. Moreover, DM and KSEA interactions similarly affect concurrence behaviors at
high temperatures.

Still some interesting questions to be addressed. Can we use the studied system to investigate
entanglement’s dynamic behaviors and describe the basic features of the quantum entanglement at a
finite time [40]? A related question arose, what about other correlation measurements to study? These
issues and associated questions are under consideration.
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