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When an informationally complete measurement is not available, the reconstruction of the den-
sity operator that describes the state of a quantum system can be accomplish, in a reliable way,
by adopting the maximum entropy principle (MaxEnt principle), as an additional criterion, to ob-
tain the least biased estimation. In this paper, we study the performance of the MaxEnt method
for quantum state estimation when there is prior information about symmetries of the unknown
state. We explicitly describe how to work with this method in the most general case, and present
an algorithm that allows to improve the estimation of quantum states with arbitrary symmetries.
Furthermore, we implement this algorithm to carry out numerical simulations estimating the den-
sity matrix of several three-qubit states of particular interest for quantum information tasks. We
observed that, for most states, our approach allows to considerably reduce the number of indepen-
dent measurements needed to obtain a sufficiently high fidelity in the reconstruction of the density
matrix. Moreover, we analyze the performance of the method in realistic scenarios, showing that
it is robust even when considering the effect of finite statistics, and under the presence of typical
experimental noise.

I. INTRODUCTION

A fundamental problem that crosses the interdisci-
plinary field of quantum information science is estimat-
ing the unknown state of a quantum system [1]. This
task can be achieved by performing a quantum state to-
mography (QST), which consists of obtaining statistical
information about the state by measuring many copies
of the system in different basis. Ideally, when a set of
informationally complete measurements is available, the
density matrix of the initially unknown state can be uni-
vocally determined within experimental errors. However,
the number of independent measurements needed to per-
form a full QST scales exponentially with the number of
particles in the system, becoming impractical in many
circumstances of interest. In this context, quantum state
estimation techniques with partial information become of
great relevance [2–4].

The general inference method based on the maximum
entropy principle (MaxEnt principle) is considered as a
powerful method for estimating probability distributions
in a wide range of probabilistic models [5–13]. This prin-
ciple asserts that the most suitable probability distribu-
tion compatible with a given set of empirical data (or
constraints) is the one with the largest entropy [14, 15].
Moreover, by using the von Neumann entropy, which is
considered to be the quantum extension of the Shannon
entropy, it has been proven to be useful for a reason-
able estimation of a quantum state from incomplete data
[16–19].

As expected, the performance of the MaxEnt method
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in the quantum domain depends on the number of inde-
pendent measurements performed. In fact, the fidelity -
or any other measure of similarity- between the obtained
state and the one that is being estimated drops off as
the number of independent measurements decreases [18].
However, the loss of fidelity could be compensated in
those cases in which there is some a priori information
available about the system. For instance, the problem
of determining the MaxEnt state for generalized proba-
bilistic models under symmetry constraints was studied
in Ref. [20], and the specific set of equations that solves
the problem for the finite dimensional quantum case was
recently developed in Ref. [21]. This covers many situa-
tions of interest in which the experimenter has prior in-
formation about a particular symmetry of the state to be
determined. As examples, we can mention systems with
a known symmetric Hamiltonian and quantum protocols
involving symmetric states [22–24]. In particular, many
applications to quantum information tasks with spin sys-
tems [25, 26] or photons [27, 28] involve states which are
permutationally invariant.

In this paper, we study the performance of the MaxEnt
principle for estimating quantum states which are known
to possess symmetries. Tomographic methods adapted
to particular symmetries were studied in previous works.
For example, the case of permutationally invariant states
was addressed in [29, 30]. Such methods rely on the par-
ticular features of the symmetries involved and require
a data set that is informationally complete for the given
class of states. Using as a starting point the formalism
elaborated in [21], here we put the focus in developing
a reconstruction algorithm that works for arbitrary sym-
metries and in situations where the available information
is incomplete for performing a full tomography. We show
how to apply it, also assessing its performance in differ-
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ent examples of interest in quantum information theory.
Unlike other methods, our algorithm is general and only
needs, as extra inputs, the generators of the group that
represent the given symmetry (for symmetries based on
finite groups, as in the case of permutation symmetry), or
the generators of the Lie algebra associated to the group
(if the symmetry is based on connected Lie groups), with-
out any other dependence on the mathematical features
of the particular symmetry. This is an important point,
since the mathematical treatment of symmetries can be
cumbersome in many cases, requiring advanced knowl-
edge of group theoretical techniques and linear algebra.
On the contrary, our method allows to deal with arbitrary
symmetries in a simple and systematic way, by only iden-
tifying its generators, something that, in most cases, is
equivalent to the specification of the symmetry itself. As
a main result, we show that the way in which prior knowl-
edge about symmetries is incorporated into the MaxEnt
estimation, gives a substantial reduction in the number
of independent measurements needed for a reasonable re-
construction of the target state.

The paper is organized as follows: In Section II, we de-
scribe how to include the information about the symme-
try of the state to be estimated. In Section III, the Max-
Ent method with symmetries constraints is presented in
an algorithmic way, so that it can be easily applied in
practical situations and combined with other existing es-
timation techniques. Its performance is analyzed in Sec-
tion IV, by numerical simulations of the reconstruction
process of different class of three-qubit states. We start
by characterizing the performance of the standard quan-
tum MaxEnt technique on a sample of arbitrary states
randomly chosen. This is then compared to its perfor-
mance on samples of states with a particular symmetry,
for which thousands of permutationally invariant states
and Werner states, randomly chosen, are used as statisti-
cal samples. We highlight that, in average, the number of
measurements needed for a reasonable estimation of the
state grows considerably in the latest cases, i.e., the per-
formance of standard MaxEnt drops off when the source
of quantum states is biased. Next, we focus on analyz-
ing how the estimation of these states is improved with
the use of our algorithm based on the MaxEnt technique
with symmetries. As symmetric states of particular in-
terest for quantum information, the estimation of three-
qubit cat-like states and Dicke states, is also studied in
detail. In addition, we analyze the performance of the
method in the presence of simulated experimental noise
and finite statistic, compatible with photonic implemen-
tations. Finally, after discussing the main results and
open problems, we draw our conclusions in Section V.

II. FORMALISM

The MaxEnt principle in the quantum scenario postu-
lates that the most suitable state ρME compatible with
the available data is the one with largest von Neumann

entropy. In the standard formulation of the quantum
MaxEnt problem [16], the only information about the
target state ρ is given in terms of the expectation values
{ai} of a set of observables. The maximization problem
involves r Hermitian operators Ai (1 ≤ i ≤ r) which cor-
respond to the r observables to be measured, and thus
the constraints associated with such observables are

〈Ai〉 = Tr
(
Aiρ

ME
)

= ai, ∀ i = 1, . . . , r. (1)

The MaxEnt solution, i.e., the state that satisfies the
constraints and maximizes the von Neumann entropy, is
given by

ρME =
e
∑r

i=1 λiAi

Z
, (2)

where Z = Tr(e
∑r

i=1 λiAi), and the Lagrange multipliers,
{λi}ri=1, are given by the relations

ai =
∂

∂λi
lnZ, 1 ≤ i ≤ r. (3)

In this work, we will consider some prior information
given in terms of symmetries of the state. When this is
the case, the maximization problem also includes a group
G representing such symmetries. In this scenario, the
symmetric MaxEnt estimator (ρSME) must be invariant
under the action of the symmetry group, that is

Ugρ
SMEU†g = ρSME, (4)

for all g ∈ G, and Ug the unitary operator represent-
ing g. For quantum systems described by finite dimen-
sional Hilbert spaces, this problem can be reformulated as
that of finding the density matrix ρSME which maximizes
the von Neumann entropy and, besides the conditions of
Eq. (1), satisfies the following constraints [21]

〈[iQk, Oj ]〉 = Tr
(
i[Qk, Oj ]ρ

SME
)

= 0,

∀k ∈ I, ∀ j = 1, . . . ,m2, (5)

where {Oj}1≤j≤m2 is a basis of the space of Hermi-
tian operators associated to the Hilbert space H (with
dim(H) = m), {Qk}k∈I are the generators of the Lie
algebra L(G) of the group G, and I is a set of indexes
whose cardinal equals the dimension of L(G). Since
i[Qk, Oj ], is also an Hermitian operator, it is associated
with a new observable that will be called auxiliary observ-
able. Hence, the symmetry conditions are reformulated
in terms of, in principle, dim(L(G)) × m2 extra mean
values constraints equal to zero, and the solution has the
same form as in the standard quantum MaxEnt problem.
Explicitly, it is given by

ρSME =
e

(∑r
i=1 λiAi+

∑
k∈I

∑m2

j=1 γk,j [iQk,Oj ]
)

Z
, (6)

where Z = Tr

(
e

(∑r
i=1 λiAi+

∑
k∈I

∑m2

j=1 γk,j [iQk,Oj ]
))

, and

the Lagrange multipliers, {λi}ri=1 and {γk,j}j=1,...,m2

k∈I ,
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which satisfy the relations

ai =
∂

∂λi
lnZ, 1 ≤ i ≤ r,

0 =
∂

∂γk,j
lnZ, 1 ≤ j ≤ m2, k ∈ I. (7)

It is important to mention that, in general, the auxil-

iary observables {i[Qk, Oj ]}j=1,...,m2

k∈I will not be linearly
independent. In such a case, the largest linearly inde-
pendent set {i[Qk, Oj ] ≡ Ãi}1≤i≤R should be determined
before computing ρSME, which can be finally expressed
as

ρSME =
e(
∑r

i=1 λiAi+
∑R

i=1 λ̃iÃi)

Z̃
,

Z̃ = Tr
(
e(
∑r

i=1 λiAi+
∑R

i=1 λ̃iÃi)
)

(8)

ai =
∂

∂λi
ln Z̃, 1 ≤ i ≤ r,

0 =
∂

∂λ̃i
ln Z̃, 1 ≤ i ≤ R.

In many situations, the set of symmetry constraints,
given by Eqs. (5), significantly reduces the dimensional-
ity of the problem. These equations restrict the search of
the MaxEnt state to a lower dimensional space within the
set of density matricesM. In the general quantum Max-
Ent problem, the number of independent observables to
be measured in order to obtain a reasonable estimation
is less (or equal in the worst case) than the dimension
of M. Including prior information about symmetries al-
lows to take advantage of relevant information, without
the need to resort to extra measurements. This strategy
could significantly reduce the amount of experimental re-
sources required to obtain the same level of accuracy in
the estimation.

III. AN ALGORITHM FOR STATE
ESTIMATION WITH SYMMETRY

CONSTRAINTS

In this section we present a concrete algorithm for im-
plementing the formalism displayed in the previous sec-
tion. We provide a recipe for getting advantage of the
prior information encoded in terms of symmetries of the
state to be estimated. For a practical implementation
the steps to follow are:

• Identify the symmetries of the state to be esti-
mated. This step involves previous knowledge of
certain characteristics of the state or about the pro-
cess that generates it.

• If the symmetries of the state to be estimated can
be expressed using a continuous group G, identify a
basis {Q1, Q2, . . . , Qs} of the Lie algebra L(G). For
a discrete group, provide a list of all the operators
representing the action of the group generators.

• Choose a basis {Oj}1≤j≤m2 of the space of Hermi-
tian operators acting on the Hilbert space H.

• Compute the set of operators {i[Qk, Oj ]}j=1,...,m2

k∈I ,
representing the auxiliary observables. From this
set, extract the largest set of linear independent
operators {Ãi}1≤i≤R.

• Choose the set of observables {Ai}1≤i≤r to be mea-
sured. To add significant information, they have to
be linearly independent with regard to the auxiliary
observables {Ãi}1≤i≤R.

• Find the MaxEnt estimator using as inputs the
data obtained from the measured observables
{ai}1≤i≤r. The expectation values of the auxiliary
observables must be set to zero.

In Algorithm 1 we show the pseudo-code to obtain the
MaxEnt density matrix. It was implemented based on
gradient descent optimization algorithm.

Algorithm 1 MaxEnt with (or without) symmetries

Input: observables {Ai}1≤i≤r; mean values {ai}1≤i≤r;
generators {Q1, Q2, . . . , Qs} of L(G).

Output: MaxEnt density matrix ρSME
r (ρME

r ).

1: if symmetries are known then
2: Extract the maximal subset of LI auxiliary observables
{Ãi}1≤i≤R;

3: Add a maximal subset of observables {Ai}1≤i≤r so
that the resulting set is LI;

4: min
λ̄
{
r∑
i=1

(
Tr
(
Aiρ

SME
r (λ̄)

)
− ai

)2

+

R∑
i=1

Tr
(
Ãiρ

SME
r (λ̄)

)2

}.

5: else
6: Extract the maximal subset of LI observables
{Ai}1≤i≤r;

7: min
λ̄

r∑
i=1

(
Tr
(
Aiρ

ME
r (λ̄)

)
− ai

)2

.

8: end if

IV. CHARACTERIZING THE PERFORMANCE
OF THE MAXENT METHOD

In order to investigate the performance of the Max-
Ent method when symmetry constraints are considered,
we have carried out numerical simulations for the recon-
struction of three-qubit states [31]. We have considered
two types of states, both of relevance in quantum in-
formation: permutationally invariant states and Werner
states. For comparison reasons, we start by analyzing
the standard MaxEnt estimation, i.e., the MaxEnt esti-
mation method without symmetry constraints.
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MaxEnt method without symmetry constraints

Let us consider an informationally complete set of ob-
servables {Ai}1≤i≤q and a given target state ρ. Then,
we can compute the corresponding expectation values
aρi = Tr(ρAi), with 1 ≤ i ≤ q. To analyze the depen-
dence of the MaxEnt estimator on the amount of avail-
able data, we have considered a sequence {Sr}1≤r≤q of
sets of expectation values, defined as{

S1 = {aρ1}
Sr = Sr−1 ∪ {aρr} if 2 ≤ r ≤ q.

(9)

That is, each set in the sequence contains all the ex-
pectation values in the previous set, and one more, not
contained in the previous set. Intuitively, as the number
r grows, the quality of the estimate ρME

r should improve.
Indeed, for r = q, it is expected that ρME

r = ρ.
Representative examples of the performance of the

standard MaxEnt estimation are shown in Fig. 1. Algo-
rithm 1 (without symmetries) was used to estimate a set
of 1000 three-qubit pure states, randomly chosen and uni-
formly distributed throughout the Hilbert space, accord-
ing to the Haar measure. As informationally complete

set of observables we have used both the Pauli tensor-
product operators (Figs. 1(a) and 1(b)) and a SIC-POVM
(Fig. 1(c)), in order to also assess the dependence of the
estimation on the chosen set of measurement basis. To
quantify the quality of each estimation we have computed
the fidelity F ≡ Tr

(√√
ρρME
r
√
ρ
)

between the target
state and the estimated state [32], which is essentially
a measure of the geometrical proximity in the Hilbert
space. As a criterion of a good estimation, it is desirable
a fidelity value close to one. Each point of the plots shows
the fidelity of reconstruction obtained from the expecta-
tion values Sr, of a subset of r Pauli tensor-product or
SIC-POVM operators. For this random sample of states,
we see that it only takes between 25 and 35, out of a total
of 63, to reach an average fidelity value F̄ greater than
0.95. In each case, we also show the standard deviation
of the fidelity to account for how much the performance
of the MaxEnt estimation will depend on the particular
state to be inferred. In accordance with what is shown
in Ref. [18], our results indicate a good overall perfor-
mance of the standard MaxEnt method when is applied
to a sample of pure states with an uniform probability
distribution (unbiased source).

FIG. 1. Performance of the standard quantum MaxEnt estimation for three-qubit states. Each point in the figures represents
the fidelity of reconstruction F between a target state and the one obtained from an expectation value set Sr, corresponding to
a subset of r Pauli (a)-(b), or SIC-POVM (c) operators. We have run the algorithm for 1000 states randomly chosen according
to the Haar measure in the entire Hilbert space. The dot-dashed lines represent the mean value of F while the shaded area
indicates its standard deviation. All figures were built from the same sample of target states. From panel (a) to panel (b) the
ordering of the Pauli operators was changed.

It should be noted that, for r < q, the performance
of the estimation may depends on the different possibili-
ties of selecting a set of r observables. Indeed, when the
estimation is based on Pauli tensor-product operators,
there is a particular subset of these observables, which do
not add substantial information for most of the sampled

states. This can be inferred from the plateau observed in
the mean fidelity curve in Fig. 1(a), and the fact that the
sequence {Sr}1≤r≤q used in the estimation was the same
for all states. After identifying that subset of observables
(from observable 21 to 31 of the list described in [33]),
we performed the reconstruction of the same sample of
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states, but now using a different sequence {S̃r}1≤r≤q, so
that the average values of these observables appear at
the end of the sequence. The results obtained for the
new ordering are displayed in Fig. 1(b). The number of
observables needed to reach a mean fidelity greater than
0.95 has now been reduced from 35 to 25. However, when
the estimation is based on SIC-POVMs, a smooth and
ever-increasing behavior of the mean fidelity is observed
(Fig. 1(c)). It is reasonable to think that this behav-
ior is linked to the geometric structure of a SIC-POVM,
whose projections are oriented in equiangular directions
of the generalized Bloch sphere. Such a measurement
minimizes the informational overlap or redundancy, in
the sense that the information extracted from each sin-
gle measurement is maximum, and thus, they are less
biased than Pauli measurements. Hence, as the states to
be estimated are uniformly distributed in all possible di-
rections of the Hilbert space, the reconstruction performs
better when measurements are isotropically oriented as
in the case with SIC-POVMs.

But what happens if our source of quantum states has
a bias, so the states generated (and to be estimated)
are not uniformly distributed in the Hilbert space? On
the one hand, often the source will produce states with
well-defined properties inherent to the experimental re-
alization, which might be very far from those uniformly
generated. On the other hand, many tasks or algorithms
in quantum information processing require or (work opti-
mally) based on states that have a specific symmetry, or
result in such states. Then, for an experimenter dealing
with these kind of sources, the standard MaxEnt method
might be not so useful (or at least not optimum) in terms
of efficiency.

In the following subsections, we will illustrate, through
several examples, the importance of a detailed study of
the MaxEnt method in different scenarios. It will show,
quantitatively, how its performance drops off drastically
when the states to be estimated have a certain symme-
try, but this prior information is not taken into account in
the estimation process. At the same time, we show how
the estimation can be improved significantly when the
information about the symmetries of the state is incor-
porated, by appealing to the algorithm described in Sec-
tion III. Before discussing the results, we will explicitly
describe how to obtain the generators {Q1, Q2, . . . , Qs}
and the set of linear independent auxiliary observables
{Ãi}1≤i≤,R, for the examples to be considered here.

MaxEnt method with symmetry constraints

1. Permutationally invariant states

To fix ideas, we start by considering a source that gen-
erates permutationally invariant states. For pure states,
these are symmetric or antisymmetric under the ex-
change of any two particles of the system. For example,
given the tensor product state |ψ〉 = |ψ1〉 ⊗ . . . ⊗ |ψi〉 ⊗

. . . ⊗ |ψj〉 ⊗ . . . ⊗ |ψN 〉, for any pair i, j = 1, . . . , N , the
action of the permutation operator Pij (i 6= j) is defined
by

Pij |ψ〉 = |ψ1〉 ⊗ . . .⊗ |ψj〉 ⊗ . . .⊗ |ψi〉 ⊗ . . .⊗ |ψN 〉, (10)

Then, for any pair (i, j), a permutationally invariant
state |ψ〉 must satisfy the relation Pij |ψ〉 = ±|ψ〉, where
the “+” stands for bosons and the “−” for fermions. In
the most general case, a quantum system having permu-
tational symmetry is one whose state is described by a
density operator ρ(PI) that satisfies the relation

Pijρ(PI)Pij = ρ(PI), ∀ i, j = 1, . . . , N. (11)

Any other permutation of n ≤ N particles can be writ-
ten as a product of Pij ’s and therefore ρ(PI) is invariant
under a general n-particle permutation operation. These
operations form a discrete group, which has a finite set
of generators. For example, for a composite system of
N identical particles there are N − 1 generators, and we
can consider as a set of generators {Qk}1≤k≤N−1, the
one given by {P12, P13, P14, . . . , P1N}. In the computa-
tional basis, the matrix representation of the elements in
{P1,k+1}1≤k≤N−1 can be computed directly. Then, the
auxiliary observables given in Eq. (5) must be calculated
as:

{[iP1,k+1, Oj ]}j=1,...,2N×2N
k=1,...,N−1 . (12)

Not all the elements of the set in Eq. (12) are nec-
essarily linearly independent. In fact, for three qubits
there are 44 linearly independent auxiliary observables
that form the set {Ãi}1≤i≤,R needed to run the MaxEnt
(with symmetries) algorithm described in Algorithm 1.

2. Werner states

We analyze here how to proceed with the family of
Werner states [34, 35]. In the case of a system composed
of N qubits, these states can be defined as those that are
invariant under the action of the group

GN = {⊗NU | U ∈ U(2)}, (13)

that is, a Werner state satisfies the relation

(⊗NU)ρ(W)(⊗NU)† = ρ(W), (14)

for all unitary operators U acting on the single-qubit
space. Thus, these states have the symmetry defined by
the action of the continuous group GN .

In order to find the generators of its Lie algebra L(GN ),
we will first analyze the case of two qubits. Let I2 be the
2×2 identity matrix. Since ia⊗I2 commutes with I2⊗ia,
for all ia ∈ L(U(2)), it is verified that

ei(a⊗I2+I2⊗a) = eia⊗I2eI2⊗ia = (eia ⊗ eI2)(eI2 ⊗ eia)

= eia ⊗ eia = U ⊗ U, (15)
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which shows that all the elements of L(G2) are of the
form ia⊗ I2 + I2 ⊗ ia, with ia ∈ L(U(2)). Similarly, the
expression ia⊗I2⊗I2⊗. . .⊗I2+I2⊗ia⊗I2⊗. . .⊗I2+I2⊗
I2⊗ia⊗I2⊗ . . .⊗I2+ . . .+I2⊗ . . .⊗I2⊗ia, where each of
the N terms in the sum has exactly N tensor products,

can be written as
⊗N

`=1 e
ia =

⊗N
`=1 U . Hence, any ele-

ment of L(GN ) belongs to the set {
∑N
`=1 ia

(`) ⊗ I2 | ia ∈
L(U(2))}, given the compact notation ia(`) ⊗ I2, which
means that ia is placed in the the `-th position of the
tensor product, and there is an identity matrix in each of
the other positions. As the set of matrices {I2, σx, σy, σz}
(i.e., the three Pauli matrices together with I2, and
which we will refer to as {σ0, σ1, σ2, σ3}) forms a basis
of L(U(2)), we can decompose ia in terms of this set,
obtaining

N∑
`

ia(`) ⊗ I2 =

3∑
k=0

αk(

N∑
`=1

iσ
(`)
k ⊗ σ0), (16)

which shows that the generators {Qk}1≤k≤4 of L(GN )

are given by the set {
∑N
`=1 σ

(`)
k−1 ⊗ σ0}1≤k≤4. Finally,

and after choosing a basis {Oj}1≤j≤2N×2N of Hermitian

operators acting on
⊗N C2, the auxiliary observables can

be computed as

{[i
N∑
`=1

σ
(`)
k−1 ⊗ σ0, Oj ]}

j=1,...,2N×2N
k=1,...,4 , (17)

from where the largest set of linear independent observ-
ables {Ãi}1≤i≤R should be extracted.

Numerical simulations and analysis results

In order to test their performance, we ran the algo-
rithms for the standard MaxEnt and MaxEnt with sym-
metry constraints to estimate states with two different
types of symmetries, namely, permutationally invariant
and Werner states. For each family, a set of 1000 states
was randomly chosen. For the sake of comparison, the
results of the estimation with and without taking into ac-
count the symmetries of the states are displayed in Fig. 2.

FIG. 2. Performance of the quantum MaxEnt estimation for three-qubit states by following the standard algorithm (blue) and
the algorithm that includes the knowledge of symmetries of the state (red). Each point in these figures represents the fidelity
of reconstruction between a permutationally invariant state, in panel (a) and panel (b), or a Werner state in panel (c) and
panel (d), and the one obtained from an expectation value set Sr, corresponding to a subset of r Pauli (panel (a) and panel
(c)) or SIC-POVM (panel (b) and panel (d)) operators. We have run the algorithm for 1000 states randomly chosen. The
dot-dashed lines represent the mean value of the fidelity while the shaded area indicates its standard deviation. All figures were
built from the same sample of target states.

Figures 2(a) and 2(b) show the fidelity of reconstruc-
tion of permutationally invariant states obtained from
the expectation values Sr, of a set of r Pauli tensor-
product operators or SIC-POVM operators, respectively.
It can be seen that even if for some states the perfor-
mance of the standard quantum MaxEnt method (blue
points) is still good, globally, it clearly drops off with
respect to the previous case (Figs. 1(a)-1(c)) where the
states to be estimated were randomly chosen from an
homogeneous sample (unbiased source). In the present

case, between 40 and 50 observables are needed to reach
a mean fidelity value greater than 0.95, which represents
about 15 extra observables to be measured compared to
the previous case. We can also observe a decrease in the
performance of the standard method when the estimation
is performed on a sample of Werner states (Figs. 2(c) and
2(d)). In this case, although the mean fidelity reaches a
value above 0.90 for a few observables, the growth of the
curve and its convergence to the optimal value are slow.

In all the previous examples we observe that, in com-
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parison with an unbiased source, more observables must
be considered in the standard MaxEnt estimation to
achieve, in average, an acceptable fidelity value in the
reconstruction of an unknown state that posses a cer-
tain symmetry (biased source). However, when symme-
try constraints are incorporated to the MaxEnt method
(red points), a different behavior of the fidelity as a func-
tion of the available set of expectation values Sr, is ob-
tained. For permutationally invariant states (Figs. 2(a)
and 2(b)), the information obtained from about 15 ob-
servables (out of a total of 63), is enough to reach a mean
fidelity value of 0.95, while for Werner states (Figs. 2(c)
and 2(d)), the same mean fidelity value is reached by
considering only 3 observables.

The above results clearly show that the variant of the
MaxEnt method studied here, allows to incorporate the
prior knowledge about the symmetries of the state, so
that, it can be used effectively for an optimal reconstruc-
tion (in terms of reduction of independent measurements)
of its density matrix. As expected, such reduction in the
number of independent measurements required to reach
a given accuracy in the estimation, will depend on the
particular symmetry. For example, by looking at the
Hermitian elements of the symmetric tensor-algebra of
order N , which is generated by d × d complex matrices
(see Eq. (10)), we find that the number of independent
real parameters needed to fully determine a permutation-
ally invariant state is given by

(
d×d+N−1

N

)
−1, which is

approximately O(Nd2−1) [36]. Furthermore, given that
the MaxEnt estimation technique is designed to work in
situations in which an informationally complete data set
is not available, in many cases, the number of measure-
ments needed for a reasonable estimation of the density
matrix will be even lower than the upper bound men-
tioned above. This represents a clear reduction in the re-
sources needed to estimate an unknown symmetric quan-
tum state when compared to the exponential growth of
the general case (∼ O(d2N )). In particular, for three-
qubits permutationally invariant states, we have d = 2
and N = 3, giving a total of 19 independent real param-
eters to obtain the density matrix. This is in agreement
with the number of expectation values of Pauli tensor-
product (Fig. 2(a)) and SIC-POVM (Fig. 2(b)) observ-
ables for which we have obtained a mean fidelity value
exactly equal to one. Moreover, with less measurement
data, we can still observe a quite good estimation of the
state (about 15 observables for a mean fidelity above
0.95).

It is worth mention that, in a quorum situation, i.e.,
when an informationally complete data set is available,
the results presented in this work are comparable with
tomographic methods designed for permutationally in-
variant states (see for example Refs. [29, 30, 37]). The
use of estimation techniques which are able to provide
good results even when the available information is far
from quorum, is essential in quantum information the-
ory. This is so, not only because the number of indepen-
dent measurements needed for a complete tomography

grows exponentially with the number of qubits (render-
ing it impractical in many situations), but also because
in some circumstances, it might not be possible to mea-
sure certain observables which are required for a given
tomographic scheme. In such situations, in which the
experimenter cannot perform all the experiments needed
for obtaining an informationally complete set of measure-
ments for a given state (or a family of states), the Max-
Ent principle should be considered as a good candidate
to obtain the least biased estimation. In this sense, our
algorithm becomes relevant allowing to easily combine
the prior knowledge about symmetries with the MaxEnt
principle.

Furthermore, unlike approaches tailored to particular
symmetries or families of states, the algorithm proposed
here works for arbitrary symmetries. With this aim, we
also analyze the case of Werner states, defined by having
the symmetry given in Eq. (14). To completely determine
a Werner state, one can specify the mean values tr(ρVπ),
where {Vπ} is the set of matrices associated to the repre-
sentation of the permutation group [38]. Thus, in order to
compute how many independent parameters are associ-
ated to an N -qubit Werner state, one has to compute the
number of linearly independent matrices Vπ. It is easy
to check that for the case of three-qubit states, the set of
constraints in Eq. (5) reduces the estimation problem to
a 5-dimensional variety [35], which means a substantial
reduction in the number of independent measurements
to be performed with respect to a full tomography. As
shown in Figs. 2(c) and 2(d), where the prior information
about the symmetries of the state is incorporated to the
MaxEnt method, only five expectation values are needed
to achieve the maximum fidelity (F = 1), in agreement
with the previous analysis. Moreover, for most states,
less than five expectation values are enough in order to
obtain a fidelity above 0.95.

It is important to note that, beyond the global perfor-
mance of the method, the fidelity of reconstruction de-
pends critically on the particular state to be estimated.
Then, the average performance for a given family of
states might be quite different from that observed for
particular subfamilies. In what follows, we focus on two
subfamilies of permutationally invariant states, the so-
called cat-like states and Dicke states, both of interest
in quantum mechanics and for applications in quantum
information processing [23, 39–41].

Cat-like states are defined by the superposition

|CN,p〉 =
√
p|0〉⊗N +

√
1− p|1〉⊗N , (18)

with 0 ≤ p ≤ 1. As particular case, the generalized N -
qubit Greenberger–Horne–Zeilinger state [42], defined as
|GHZN 〉 = 2−1/2

(
|0〉⊗N + |1〉⊗N

)
, is a highly entangled

cat-like state corresponding to p = 1
2 . We have performed

the reconstruction, by using the MaxEnt algorithm with
and without symmetries, of different cat-like states with
p = 0.1, 0.2, 0.3, 0.4, 0.5. Besides, this set of values of
the parameter p corresponds to cat-like states with dif-
ferent degrees of entanglement. The obtained results for
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Pauli tensor product operators and SIC-POVM, are dis-
played in Figs. 3(a)-3(d). For these particular states, we

observe also a considerable reduction in the number of
observables needed for a good estimation, that is more
significant in the case of Pauli measurement basis.

FIG. 3. Performance of the quantum MaxEnt estimation for cat-like states of three qubits, |C3,p〉 =
√
p|000〉+

√
(1− p)|111〉.

Each point in these figures represents the fidelity of reconstruction obtained from an expectation value set Sr, corresponding
to a subset of r Pauli (panel (a) and panel (b)) or SIC-POVM (panel (c) and panel (d)) operators. We followed the standard
algorithm (panel (a) and panel (c)) and the algorithm that includes the knowledge of symmetries of the state (panel (b) and
panel (d)). We show the results for five different weights p.

A great improvement in the estimation was also ob-
served, when including the symmetries, for Dicke states.
The N -qubit Dicke states [43] with n excitations are de-
fined as

|DN,n〉 =

(
N

n

)−1/2∑
k

Pk
(
|0〉⊗N−n ⊗ |1〉⊗n

)
, (19)

where the summation is over all possible permutations
Pk. In particular, the Dicke states with n = 1 corre-
sponds to the generalized W-state, a relevant entangled
state which is in a different entanglement class than that
of the GHZ-state. The results obtained, with and with-
out symmetries, are displayed in Figs. 4(a)-4(d).

FIG. 4. Performance of the quantum MaxEnt estimation for three-qubit Dicke states, |D3,n〉 =(
3
n

)−1/2∑
k Pk

(
|0〉⊗3−n ⊗ |1〉⊗n

)
. Each point in these figures represents the fidelity of reconstruction obtained from an

expectation value set Sr, corresponding to a subset of r Pauli (panel (a) and panel (b)) or SIC-POVM (panel (c) and panel
(d)) operators. We followed the standard algorithm (panel (a) and panel (c)) and the algorithm that includes the knowledge
of symmetries of the state (panel (b) and panel (d)). We show the results for four different Hamming weights n.

All the examples studied in this subsection (Fig. 2- Fig. 4) have a particular symmetry. When analyzing the
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cases of a random sample of Werner or permutationally
invariant states (Fig. 2), we find that there are no sub-
stantial differences in the smoothness of the fidelity plots
for the estimation based on SIC-POVMs compared to
that based on Pauli operators. Contrarily, in the exam-
ple of randomly chosen states according to the Haar mea-
sure displayed in Fig. 1, the performance of the method
depends substantially on the order of the Pauli opera-
tors. A similar behavior is observed for particular sub-
families of permutationally invariant states in Figs. 3(a)
and 3(b), 4(a) and 4(b): there are several observables
that do not add substantial information for those states.
These examples suggest that, when resorting to the Max-
Ent principle to estimate a quantum state being far from
the quorum situation, in some cases, the measurement
scheme based on Pauli operators could be optimized by
finding an optimum subset of them satisfying that, for
a given level of accuracy in the estimation, a minimum
number of observables is needed. However, this would
require extra computational resources to find, prior to
the measurement process or in an adaptive measurement
scheme, the optimum set for the particular type of states
to be estimated. On the one hand, we can say that, in
general, the performance seems to be less dependent on
the ordering of the chosen observables and the type of
states to be estimated, when measurements are based
on SIC-POVMs (in the sense that the fidelity curves are
smoother). On the other hand, given that the number
of possible orderings of a list of operators scales as the

factorial of its length, the inclusion of symmetries to the
estimation of MaxEnt renders the optimization of the set
of observables to be used more efficient, since it must be
performed on a reduced set of them.

Reliability in the presence of noise

For the purpose of studying how the MaxEnt method
with symmetries will perform in a realistic scenario, we
have numerically implemented the estimation process in
the presence of different levels of experimental noise, also
including the effects of the finite statistics that results
from the finite size of the sample.

As an example of realistic errors in the state prepara-
tion, we can consider that the generation process is af-
fected by white noise, which mixes the multi-qubit pure
state |ψ〉 with the maximally mixed state I/2N :

ρnoise (|ψ〉, η) = (1− η)|ψ〉〈ψ|+ η

2N
I, (20)

where the value of the real parameter η is a measure
of the noise level, related to the purity of the state as

Tr(ρ2noise) = (2N−1)
2N

(η − 1)2 + 1
2N

. Besides, in the quan-
tum tomographic scenario, measurements are performed
on N independently and identically prepared copies of
the unknown quantum state.

FIG. 5. Performance of the MaxEnt estimation method with symmetry constraints in the presence of realistic experimental
noise. Each point in these figures represents the value of the fidelity in the reconstruction of a three-qubit permutationally
invariant state based on the SIC-POVM. Panel (a) corresponds to an ideal state preparation (η = 0, or equivalently, a purity
state equal to 1), a number of dark counts per pulse λdc = 2× 10−4, and different number of trials per experiment N = 1× 104

(blue), 3 × 104(red), 5 × 104 (orange). In panel (b), we have kept the same number of trials that in panel (a) (N = 1 × 104

(blue), 3× 104(red), 5× 104 (orange)) but considering a purity state equal to 0.97 and λdc = 5× 10−4. In panel (c), the results
were obtained for fix values λdc = 1× 10−4 and N = 104 while varied the value of the purity state (0.95 (blue), 0.97 (red), 0.99
(green), 1.0 (orange)). The algorithm was run for 100 states randomly chosen. The dot-dashed lines represent the mean value
of the fidelity and the shaded area indicates its standard deviation.

Then, for each observable Ai, the expectation value of
the target state, aρi = Tr(ρAi), is approximated by the

relative frequency fi = ni/N , experimentally obtained,
where ni is the number of trials that resulted in a click of
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the detectors. In agreement with typical experimental se-
tups based on optical platforms [44, 45], we have assumed
a source consisting of a pulsed attenuated laser, that
emits weak coherent states at the single-photon level. In
this context, it is reasonable to assume that the statis-
tics of the photon emission process and the dark counts,
caused by self triggering effects in the photon detectors,
are Poissonian. In such a case, the probability of detect-
ing a photon in the mode |ψk〉 is given by

Pk(1 count) = 1− exp−µpk−λdc , (21)

where pk = Tr(ρnoise|ψk〉〈ψk|) is the corresponding ideal
probability, while µ and λdc are the mean number of pho-
tons and dark counts, per pulse, respectively. For a fix
number of trials (or pulses) N , the detected counts fol-
low a binomial distribution governed by a mean number
of counts n̄k = N (1− exp−µpk−λdc).

By incorporating all those features in our codes, we
have obtained the results displayed in Fig. 5. The nu-
merical simulations where performed for a value µ = 0.18
that results in 84% of empty pulses and about 2% of
pulses with more than one photon. In all cases we have
first generated 100 pure states randomly chosen from a
sample of permutationally invariant states, as our desired
ideal state |ψ〉. From these, noisy states with different de-
gree of purity were prepared according to Eq. (20). The
estimation process was run taking into account the sym-
metry of the states and the expectation values of a num-
ber of r SIC-POVM operators. Then, the fidelity F be-
tween ρSME

r and ρnoise is calculated. In Fig. 5(a) we can
see the effect of the finite statistic on the estimation of
pure states (η = 0), when the number of dark counts per
pulse is λdc = 2×10−4. This last value is consistent with
typical experimental situations, i.e., a pulse duration in
the order of microseconds and a single photon detector
module operating in the range of 100 dc/sec. In Fig. 5(b)
we show the estimated states for the same statistics that
in Fig. 5(a) but for a higher noise level both in the prepa-
ration stage, where now the initial states have a purity
of 0.97, and in the detection stage where λdc = 5× 10−4.
Finally, in Fig. 5(c), it is shown how the quality of the es-
timation is affected by a noisy preparation of the states
for a given number of trials (N = 1 × 104) and dark
counts (λdc = 1 × 10−4). It can be seen that the mean
fidelity increases for higher level of noise in the prepara-
tion stage, i.e., when the purity of the states is reduced.
This is consistent with the principle in which is based
our estimation method: as the simulations were carried
out with the addition of white noise to the pure target
state, the prepared state will not be pure and therefore
its entropy will increase, but also it will be the one that
maximizes the entropy for a given level of noise, since
that noise is introduced without any bias. Hence, the
MaxEnt estimator performs better when such a model
of noise (white noise) begins to be dominant over other
types of noise models.

According to these results we conclude that, while for
some states the performance of the MaxEnt estimation

under symmetry constraints is clearly affected by noise,
the mean value of the fidelity behaves in a quite robust
way, and a similar behavior is observed for the standard
deviation. This means that, with a high probability, the
method would allow to obtain a reasonable fidelity be-
tween the prepared and the estimated state, in realistic
scenarios that are relevant for quantum information pro-
cessing tasks.

V. CONCLUSIONS

In this work we have presented an algorithm which
performs the quantum MaxEnt estimation incorporating
symmetry constrains. The method works for arbitrary
symmetries of the state to be estimated, having as in-
puts the generators of the symmetry under consideration,
without any additional dependence on other mathemati-
cal features of the underlying group. We have illustrated
how it works and studied its performance in different ex-
amples of interest for quantum information tasks. The
fact that the method is presented in an algorithmic way
allows us to carry out a systematic study for different
families of states and measurement bases. We carried
out numerical experiments to validate the technique and
showed that the estimator is robust against typical ex-
perimental noises, such as those present in the generation
of the states, those due to the imperfections of the mea-
surement devices, and those originated in the statistics
obtained when dealing with finite samples.

Although we restricted our attention to multi-qubit
systems and showed the results for the case of three
qubits, the method is completely general and can be used
to estimate the state of higher-dimensional systems. Our
work generalizes previous tomographic methods specially
developed to the reconstruction of quantum states with
a particular symmetry. In general, those methods allow
to reduce the number of measurements required with re-
spect to a standard QST. But even so, they are based on
a set of informationaly complete measurements related
to the subspace with the given symmetry. In our case,
the estimation process consists in an inference method
based on the MaxEnt principle. Therefore, even when
we do not have access to all the measurements for a com-
plete reconstruction, we can still find an estimation (the
most reliable one) of the unknown state. As our results
clearly show, the inclusion of the prior information en-
coded in the symmetries could significantly improve such
estimation for a given number of observables measured.

While it is usually reported that the MaxEnt method
has a good performance for quantum state estimation,
our results reveal that the notion of “good performance”
requires further specification. In fact, in scenarios where
the source generates states with a given symmetry and
this is not taken into account, the performance of the
standard MaxEnt method drops off in comparison to
the case where the source generates states which are
uniformly distributed over the Hilbert space (unbiased
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source). This important point was not discussed in pre-
vious publications. In addition, we have shown that the
performance strongly depends on the set of observables
to be measured and the particular state to be estimated.
This opens the problem of optimizing (or adaptatively
acquired) the measurement set based on previous knowl-
edge about the source, as can be done, for example, fol-
lowing the procedures presented in Refs. [46, 47]. Even
so, by including the symmetry information of the state
in the MaxEnt method, the number of measurements
needed for a good estimation is considerably less than
that needed for a standard QST, having as an upper
bound the number needed in other methods specially
developed for a particular symmetry (as is the case of
permutationally invariant states). However, finding the
estimated state becomes computationally hard as the di-
mension of the system grows, due to the nonlinear op-
timization problem associated to the MaxEnt method.
For this reason, faster techniques as variational methods
have been considered [48]. In any case, the study of the
MaxEnt method is important in itself, because it oper-
ates at the heart of statistical inference: it provides the
least biased option compatible with the available infor-
mation. Also, it works as the reference for other recon-
struction techniques with incomplete data, since these

are proposed under the assumption that they produce
similar results to those of MaxEnt [18].

Finally, it is important to remark that the MaxEnt
method with symmetry constraints could be combined
with other methods for quantum state estimation For
example, it is natural to use the MaxEnt method in con-
nection with the maximum likelihood estimation in order
to systematically select the most likely estimator with the
largest entropy [17], a subject that we will address in a
future work [49].
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[29] G. Tóth, W. Wieczorek, D. Gross, R. Krischek,

C. Schwemmer, and H. Weinfurter, Phys. Rev. Lett. 105,
250403 (2010).

[30] T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer,
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G. B. Xavier, G. Lima, and A. Delgado, Phys. Rev. Lett.
115, 090401 (2015).

[45] Q. P. Stefano, L. Rebón, S. Ledesma, and C. Iemmi, Opt.
Lett. 44, 2558 (2019).

[46] B. Qi, Z. Hou, Y. Wang, D. Dong, H.-S. Zhong, L. Li,
G.-Y. Xiang, H. M. Wiseman, C.-F. Li, and G.-C. Guo,
npj Quantum Information 3, 1 (2017).

[47] N. Cao, J. Xie, A. Zhang, S.-Y. Hou, L. Zhang, and
B. Zeng, arXiv preprint arXiv:2005.01540 (2020).

[48] T. O. Maciel, A. T. Cesário, and R. O. Vianna, Interna-
tional Journal of Modern Physics C 22, 1361 (2011).

[49] I. Corte, M. Losada, D. Tielas, F. Holik, and L. Rebón,
in preparation (01-20-2022).

[50] A. W. Harrow, The church of the symmetric subspace
(2013), arXiv:1308.6595 [quant-ph].

https://doi.org/10.1080/09500349414552171
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.63.042111
https://doi.org/10.1103/PhysRevA.63.042111
https://doi.org/10.1103/PhysRevA.87.012109
https://doi.org/10.1103/PhysRevA.87.012109
https://doi.org/10.24355/dbbs.084-200511080100-544
https://doi.org/10.1103/PhysRevA.102.042610
https://doi.org/10.1103/PhysRevA.102.042610
https://doi.org/10.1007/s11128-014-0816-9
https://doi.org/10.1007/s11128-014-0816-9
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1364/OL.44.002558
https://doi.org/10.1364/OL.44.002558
https://arxiv.org/abs/1308.6595

	Performance of the quantum MaxEnt estimation in the presence of physical symmetries
	Abstract
	I Introduction
	II Formalism
	III An algorithm for state estimation with symmetry constraints
	IV Characterizing the performance of the MaxEnt method
	 MaxEnt method without symmetry constraints
	 MaxEnt method with symmetry constraints
	1 Permutationally invariant states
	2 Werner states

	 Numerical simulations and analysis results
	 Reliability in the presence of noise

	V Conclusions
	 Acknowledgments
	 References


