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We report a set of monogamy constraints on one-tangle, two-tangles, three-tangles and four-way
correlations of a general four-qubit pure state. It is found that given a two-qubit marginal state
ρ of a four qubit pure state |Ψ4〉, the non-Hermitian matrix ρρ̃ where ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy),
contains information not only about the entanglement properties of the two-qubits in state ρ but
also about three tangles involving the selected pair as well as four-way correlations of the pair of
qubits in |Ψ4〉. To extract information about tangles of a four-qubit state |Ψ4〉, the coefficients
in the characteristic polynomial of matrix ρρ̃ are analytically expressed in terms of 2 × 2 matrices
of state coefficients. Four-tangles distinguish between different types of entangled four-qubit pure
states.

I. INTRODUCTION

Entanglement is not only a necessary ingredient for processing quantum information [1] but also has important ap-
plications in other areas such as quantum field theory [2], statistical physics [3], and quantum biology [4]. Multipartite
entanglement is a resource for multiuser quantum information tasks. Bipartite entanglement is well understood as
there is concise result to entanglement classification problem. For bipartite systems, the notion of maximally entan-
gled states is independent of the specific quantification of entanglement. However, since the mathematical structure
of multipartite states is much more complex than that of bipartite states, the characterization of multipartite en-
tanglement is a far more challenging task [5]. Even the identification of maximally entangled states in multi-party
systems is highly non-trivial.

Walter et al. [6] used an algebraic geometry approach to show that single particle states are a rich source of
information on multiparticle entanglement. In a recent letter [7], we have shown that two-qubit subsystems of an
N-qubit state contain information about the correlations beyond two-qubit entanglement. In this context, four-
qubit pure states offer an interesting case study, since a good part of residual correlations can be identified as
contributions from seven four-tangles as defined in this article. One of the key features of multipartite correlations
that separates quantum-ness from classicality is monogamy of entanglement. Monogamy of quantum entanglement
refers to shareability of entanglement in a composite quantum system. Monogamy relation for entanglement of three-
qubit states, known as CKW inequality, was reported in a seminal paper by Coffman, Kundu, and Wootters [8].
Recent efforts to find monogamy relations satisfied by tangles of four-qubit states include refs. [9–14]. A detailed
analysis of residual correlations for four-qubit pure states, yields monogamy constraints, reported in this article.

One-tangle is known to quantify the entanglement of a single qubit with the rest of the composite system in an
N -qubit pure state, whereas two-tangle (or concurrence as defined in ref. [15, 16] ) is a measure of entanglement
of two qubits. One tangle, defined as τ1|2...N = 2

(
1− Tr

(
ρ2
))

, quantifies essentially the mixedness of single-qubit
marginal state ρ. Likewise, mixedness of a two-qubit marginal state of an N−qubit pure state is due to 2−way, 3−way,
....,N−way correlations of two qubits with N − 2 qubits. In [7], it has been shown, analytically, that two-tangle can
be written as the difference of two terms, where the first term contributes to one-tangle while the second term is
a function of degree 8, 12 and 16 local unitary invariant functions of state coefficients. Since two-tangle and the
first term are calculable quantities, the difference gives quantitative information about correlations beyond two-way
correlations. Reported monogamy constraints are functional relations satisfied by entanglement of a single qubit to
the rest of the system (one-tangle), the entanglement of two-qubit marginal states (two-tangles), entanglement of
three-qubit marginal states due to three-way correlations (three-tangles), and the residual correlations written as
functions of four-qubit unitary invariant functions of state coefficients (four-tangles). By identifying quantitatively
the contributions of three-tangles and four-tangles to correlations beyond two-tangles, it is possible to know how
entanglement is distributed in subsystems of the four-qubit pure state. Monogamy of entanglement has potential
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applications in areas of physics such as quantum key distribution [17–19], classification of quantum states [20–22],
frustrated spin systems [23, 24], and even black-hole physics [25].

Monogamy constraints are closely related to classification of entangled states. Four-tangles, when used to label
the entanglement classes of ref. [26] along with three-tangles and two-tangles unambiguously distinguish between
different types of entanglement due to four-way correlations. In the case of four-qubit states, information from single
particle states [6] already points to different entanglement types in four-qubit pure states, however, information from
two-qubit subsystems quantifies the entanglement of the states due to four-way correlations in each class.

Two-tangle, one-tangle, three-tangle and necessary unitary invariants are defined in Section II through Section VI,
with our main results presented in Sections VII, VIII and IX. Analysis of tangles of a four-qubit GHZ state and Cluster
state are in Sections X and XI. Monogamy of four-qubit correlations in a special subset of four-qubit states La,ia,(ia)2
is discussed in section XII. Tangle based classification of four-qubit states is discussed in section XIII. Section XIV on
entanglement transfer using a simple circuit model illustrates how two-way correlations of a pair of qubits leaks into
environment through successive interactions of one of the qubits of the pair. Concluding remarks follow in section
XV.

II. DEFINITION OF TWO-TANGLE

Two-tangle or concurrence, a well known measure of two-qubit entanglement [15, 16] is an entanglement monotone.
A generic two-qubit pure state in computational basis reads as

|Ψ12〉 =
∑
i1,i2

ai1i2 |i1i2〉 ; (im = 0, 1), (1)

where ai1i2 are the state coefficients. The indices i1 and i2 refer to the state of qubits A1 and A2, respectively.
Entanglement of qubit A1 with A2 is quantified by two-tangle defined as

τ1|2 (|Ψ12〉) = 2 |a00a11 − a10a01| . (2)

Consider the action of a unitary transformation U j = 1√
1+|x|2

[
1 −x∗
x 1

]
on qubit Aj . We can verify that

U1τ1|2 (|Ψ12〉) = U2τ1|2 (|Ψ12〉) = τ1|2 (|Ψ12〉) . (3)

Two-tangle of a mixed state ρ =
∑
i

pi

∣∣∣φ(i)
12

〉〈
φ

(i)
12

∣∣∣ is constructed through convex roof extension as

τ1|2 (ρ) = 2 min{
pi,φ

(i)
12

}∑
i

pi

∣∣∣a(i)
00 a

(i)
11 − a

(i)
10 a

(i)
01

∣∣∣ . (4)

Specifically, two-tangle [15, 16] of a two-qubit state ρ12 is given by

τ1|2 (ρ) = max
(

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
, (5)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of non-Hermitian matrix ρρ̃ with ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy). Here
∗ denotes complex conjugation in the standard basis and σy is the Pauli matrix. In the most general case, the
characteristic polynomial of ρρ̃ has the form

x4 − x3n4 + x2n8 − xn12 + n16 = 0 (6)

where the coefficients nd are given by

n4 = tr (ρρ̃) ;n8 (ρ) =
1

2

(
(trρρ̃)

2 − tr (ρρ̃)
2
)

; (7)

n12 =
1

6

(
(trρρ̃)

3 − 3tr (ρρ̃) tr (ρρ̃)
2

+ 2tr (ρρ̃)
3
)

; (8)

n16 = det (ρρ̃) . (9)



3

Matrix elements of a two-qubit mixed state ρ are degree-two functions of state coefficients of the pure state from which
ρ has been obtained. As such a given coefficient nd (ρ) is a unitary invariant function of state coefficients of the pure
state of which ρ is a part. The subscript d refers to the degree of the invariant. Defining C (ρ) =

√
λ1−
√
λ2−
√
λ3−
√
λ4,

we can verify that for C (ρ) = ± |C (ρ)| the coefficient n4 satisfies the relation

n4 = |C (ρ)|2 +

√
4n8 + 8

√
n16 ± 8

√
f16, (10)

where f16 ≥ 0 is defined as

f16 =
√
n16 |C (ρ)|2

(
n4 − |C (ρ)|2

)
+ n12 |C (ρ)|2 , , (11)

To obtain Eq. (10) we used the expressions for the coefficients nd (d = 4, 8, 12, 16) in terms of eigenvalues of matrix
(ρρ̃) and the condition λ1 ≥ λ2 ≥ λ3 ≥ λ4. Derivation of Eq. (10) is given in Appendix A. Since by definition
τ1|2 (ρ) = max (0, C (ρ)), we may rewrite Eq. (10) as

n4 − τ2
1|2 (ρ) =

√
4n8 + χ±12, (12)

where

χ+
12 = 8

√
n16 + 8

√
f16, (13)

and

χ−12 = 8
√
n16 − 8

√
f16 + 2n4 |C (ρ)|2 − |C (ρ)|4 . (14)

This is an important relation between coefficients nd and two-tangle.

III. TWO-TANGLES AND ONE-TANGLE OF AN N-QUBIT PURE STATE

Expressions for one-tangle as well as polynomial coefficients of degree four and eight in terms of state coefficients of
an N-qubit pure state are written down, in this section. A general N−qubit pure state in computational basis reads
as

|Ψ12...N 〉 =
∑

i1,i2,...,N

ai1i2...iN |i1i2...iN 〉 ; im = 0, 1. (15)

Here ai1i2...iN are complex state coefficients and the indices i1, i2, ..., iN refer to the state of qubits at locations A1,
A2,..., AN , respectively. State of qubit pair A1Aj is ρ1j = Tr2,...,j−1,j+1,...N (|Ψ12...N 〉 〈Ψ12...N |) with matrix elements
given by

(ρ1j)i1ijk1kj =
∑
I

ai1ijIa
∗
k1kjI , (16)

where index I = {i2i3...ij−1ij+1...iN} with associated value Iv ≡
N∑
m=2
m 6=j

2m−2im. Writing the characteristic polynomial

for ρ1j ρ̃1j it is found that for qubit pair A1Aj in state ρ1j ,

n4 (ρ1j) = 2
∑
I≤J

|D1jIJ +D1jJI |2 , (17)

where

D1jIJ = a0(ij=0)Ia1(ij=1)J − a1(ij=0)Ja0(ij=1)I . (18)

A simplified notation I < J is being used when Iv < Jv. The functions (D1jIJ +D1jJI) are invariant with respect
to unitary transformations on the focus qubit and qubit j and depending on the value of I and J represent a sum of
determinants of 2−way, 3−way,..., N−way matrices of dimension 2. One-tangle defined as τ1|2...N = 4 det (ρ1) where
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ρ1 = TrA2...AN
(|Ψ12...N 〉 〈Ψ12...N |) and (ρ1)i1k1 =

∑
ij ,I

ai1ijIa
∗
k1ijI

quantifies the entanglement of qubit A1 with rest

of the system. One can verify that

τ1|2...N = 4

N∑
j=2

(∑
I

|D1jII |2 +
∑
I<J

|D1jIJ |2
)
. (19)

Comparing Eq. (17) and Eq. (19), we obtain

τ1|2...N =

N∑
j=2

(n4 (ρ1j)−X1j) , (20)

where the quantity X1j defined as

X1j = 2
∑
I<J

(
D1jIJD

∗
1jJI +D∗1jIJD1jJI

)
, (21)

represents coherences. The sum of coherences,
∑N
j=2X1j , turns out to be zero for N -odd and is equal to sum of

unitary invariants of degree two for N -even.
The coefficient n8 (ρ1j), written in terms of state coefficients reads as

n8 (ρ1j) =
∑

I,J,K,L

∣∣∣∣ (D1jIJ +D1jJI) (D1jKL +D1jLK)
− (D1jIL +D1jLI) (D1jKJ +D1jJK)

∣∣∣∣2 . (22)

While the coefficient n4 (ρ1j) is a sum of squares of moduli of two-qubit invariants, the coefficient n8 (ρ1j) is a sum of
squares of three-qubit invariants.

IV. TANGLES OF A THREE-QUBIT PURE STATE AND MONOGAMY OF ENTANGLEMENT

For a three-qubit system, the entanglement measures are known to satisfy CKW inequality [8]. In this section, we
establish the relation between coefficients nd (ρ) and entanglement measures of a three-qubit pure state

|Ψ123〉 =
∑
i1,i2,i3

ai1i2i3 |i1i2i3〉 , (im = 0, 1) . (23)

Using the notation of ref. [27], the determinants of negativity fonts for the state |Ψ123〉 are defined as D00
(A3)i3

=

a00i3a11i3 − a10i3a01i3 (two-way), D00
(A2)i2

= a0i20a1i21 − a1i20a0i21 (two-way), and D00i3 = a00i3a11i3+1 − a10i3a01i3+1

(three-way). This set of determinants is the same as that obtained by substituting j = 2, 3 and I ≡ {0, 1}, in Eq. (18).
For example, taking A1 as focus qubit D12i3i3+1 = D13i2i2+1 = D00i3 . One-tangle, defined as τ1|23 (|Ψ123〉) = 4 det (ρ1)
where ρ1 = TrA2A3

(|Ψ123〉 〈Ψ123|), quantifies the entanglement of qubit A1 with qubits A2 and A3. Three tangle [8]
of |Ψ123〉 is equal to four times the modulus of a unitary invariant polynomial of degree four that is

τ1|2|3 (|Ψ123〉) = 4 |I3,4 (|Ψ123〉)| , (24)

where

I3,4 (|Ψ123〉) =
(
D000 +D001

)2 − 4D00
(A3)0

D00
(A3)1

=
(
D000 −D001

)2 − 4D00
(A2)0

D00
(A2)1

. (25)

Three-tangle of the mixed state ρ123 is defined as the average of pure state three-tangles, minimized over all complex

decompositions
{
pi,
∣∣∣φ(i)

123

〉}
of ρ123 that is

τ1|2|3 (ρ123) = min{
pi,
∣∣∣φ(i)

123

〉}∑
i

piτ1|2|3

(∣∣∣φ(i)
123

〉)
. (26)

Here pi is the probability of finding the normalized three-qubit state
∣∣∣φ(i)

123

〉
in the mixed state ρ123.



5

The relation between a matrix element of the state ρ12 = TrA3
(|Ψ123〉 〈Ψ123|) and state coefficients is given by

(ρ12)i1i2j1j2 =
∑
i3
ai1i2i3a

∗
j1j2i3

. Similarly for ρ13 = TrA2
(|Ψ123〉 〈Ψ123|), we have (ρ13)i1i3j1j3 =

∑
i2
ai1i2i3a

∗
j1i2j3

.

One can verify that C (ρ1j) ≥ 0 for (j = 2 and 3), while

n8 (ρ1j) =
1

16
τ2
1|2|3 (|Ψ123〉) , n12 (ρ1j) = n16 (ρ1j) = 0, (27)

and

τ1|23 (|Ψ123〉) = n4 (ρ12) + n4 (ρ13) . (28)

From Eq. (12), the two-tangle of the state ρ1j reads as

τ2
1|j (ρ1j) = n4 (ρ1j)−

1

2
τ1|2|3 (|Ψ123〉) ; (j = 2, 3) . (29)

Substituting the value of coefficients n4 (ρ1j) from Eq (29) into Eq. (28), the tangles for |Ψ123〉 satisfy the constraint
(CKW inequality):

τ1|23 (|Ψ123〉) = τ2
1|2 (ρ12) + τ2

1|3 (ρ13) + τ1|2|3 (|Ψ123〉) . (30)

In other words, with qubit A1 as focus qubit the sum of two-tangles and three-way correlations in |Ψ123〉 is equal to
τ1|23 (|Ψ123〉). Analogous relations can be found by taking A2 or A3 as the focus qubit. It implies that stronger the
entanglement of a qubit pair in a three-qubit pure state, the weaker is entanglement of the pair with the rest of the
system. This also implies that if three-way correlations are maximal that is τ1|2|3 (|Ψ123〉) = 1 = τ1|23 (|Ψ123〉), then

τ2
1|2 (ρ12) = τ2

1|3 (ρ13) = 0.

V. ONE-TANGLE OF A FOUR-QUBIT PURE STATE

In this section, we consider the case where two-qubit state is a marginal state of four-qubit composite system in a
pure state. An understanding of distribution of quantum correlations in a pure state with more than three qubits is a
fascinating challenge. Our main objective is to find the relation between one-tangle of the state with qubit A1 as the
focus qubit, coefficients n4 (ρ1j) and n8 (ρ1j) (j = 2 to 4). To facilitate the calculation, the formalism of determinants
of negativity fonts is used to express n4 (ρ1j) and n8 (ρ1j) in terms of two-qubit, three-qubit and four-qubit unitary
invariant combinations of state coefficients. For more on definition and physical meaning of determinants of negativity
fonts, please refer to section (VI) of ref. [27]. A general four-qubit pure state reads as

|Ψ1234〉 =
∑

i1,i2,i3,i4

ai1i2i3i4 |i1i2i3i4〉 , (im = 0, 1) , (31)

where the state coefficients ai1i2i3i4 are complex numbers. The indices i1, i2, i3, i4 refer, respectively, to the
state of qubits A1, A2, A3, and A4. Taking qubit A1 as the focus qubit, for the purpose of this article the
determinants of negativity fonts of |Ψ1234〉 are defined as D00

(A3)i3
(A4)i4

= a00i3i4a11i3i4 − a10i3i4a01i3i4 (two-way),

D00
(A2)i2

(A4)i4
= a0i20i4a1i21i4 − a1i20i4a0i21i4 (two-way), D00

(A2)i2
(A3)i3

= a0i2i30a1i2i31 − a1i2i30a0i2i31 (two-way),

D00i3
(A4)i4

= a00i3i4a11,i3⊕1,i4 − a10i3i4a01,i3⊕1,i4 (three-way), D00i4
(A3)i3

= a00i3i4a11i3,i4⊕1 − a10i3i4a01i3,i4⊕1 (three-way),

D00i4
(A2)i2

= a0i20i4a1i21i4⊕1 − a1i20i4a0i21i4⊕1 (three-way), and D00i3i4 = a00i3i4a11,i3⊕1,i4⊕1 − a10i3i4a01,i3⊕1,i4⊕1

(four-way). All these determinants correspond to the set of D1jIJ obtained by substituting j = (2, 3, 4) and
I ≡ {00, 10, 01, 11}, in Eq. (18). To understand what does the determinant of a four-way negativity font repre-
sent, consider the state

|Ψ〉 = a0000 |0000〉+ a1000 |1000〉+ a0111 |0111〉+ a1111 |1111〉 , (32)

with D0000 = a0000a1111 − a1000a0111. It is easily verified that taking negativity of partial transpose of |Ψ〉 with
respect to qubit A1 as the entanglement measure, the entanglement of qubit A1 with the three remaining qubits due
to four-way correlations is 4

∣∣D0000
∣∣.

Matrix elements of the state ρ12 = TrA3A4
(|Ψ1234〉 〈Ψ1234|) are given by

(ρ12)i1i2j1j2 =
∑
i3i4

ai1i2i3i4a
∗
j1j2i3i4 . (33)
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We use Eq. (33) to express the characteristic polynomial of ρ12ρ̃12 in terms of state coefficients of |Ψ1234〉 and
identify the coefficient n4 (ρ12). Similarly one can obtain the coefficients n4 (ρ13) and n4 (ρ14) from the states ρ13 =
TrA2A4

(|Ψ1234〉 〈Ψ1234|) and ρ14 = TrA2A3
(|Ψ1234〉 〈Ψ1234|), respectively. Expression for n4 (ρ1j) (j = 2 to 4) in terms

of determinants of negativity fonts is given by Eq. (B14) in subsection B 2 of Appendix B.
One-tangle, τ1|234 (|Ψ1234〉) = 4 det (ρ1) with ρ1 = TrA2A3A4

(|Ψ1234〉 〈Ψ1234|), quantifies the entanglement of qubit
A1 with qubits A2A3A4. Using Eq. (20), it is easily verified that one-tangle satisfies the relation,

τ1|234 =

4∑
j=2

n4 (ρ1j)−
1

2

(
τ

(0)
1|2|3|4

)2

. (34)

In Eq. (34), the four-qubit tangle τ
(0)
1|2|3|4 is defined as

τ
(0)
1|2|3|4 = 2

∣∣D0000 +D0011 −D0010 −D0001
∣∣ . (35)

It is known to detect GHZ-like entanglement of a four-qubit state, vanishes on a W-like state of four qubits, however,
fails to vanish on product of two-qubit entangled states. Four-qubit invariant of degree two

I4,2 = D0000 +D0011 −D0010 −D0001 (36)

is the same as degree-two invariant H of ref. [28].

VI. THREE-TANGLES OF A FOUR-QUBIT STATE AND UNITARY INVARIANTS OF DEGREE
EIGHT

To decipher the nature of correlations represented by n4 (ρ1j) and n8 (ρ1j), we write the characteristic polynomial of
matrix ρ1j ρ̃1j in terms of the state coefficients of |Ψ1234〉 and identify the coefficients n4 (ρ1j), n8 (ρ1j), n12 (ρ1j) and
n16 (ρ1j). A rather lengthy analytical calculation reveals that when two-qubit state ρ1j is a marginal state of |Ψ1234〉
then the coefficient n4 (ρ1j) is a sum of squares of moduli of two-qubit invariants while the coefficient n8 (ρ1j) is a sum
of three-qubit invariants. Expressions for n4 (ρ1j) (Eq. (B14)) and n8 (ρ1j) (Eq. (B15)) are given in subsection B 2 of
Appendix B. The coefficient n8 (ρ1j) can, in turn, be rewritten as a sum of four-qubit unitary invariant combinations
of three-qubit invariants. This section deals with the relation between the three-tangle of a given triple in a four-
qubit pure state and the corresponding four-qubit invariant. It is shown in the following section, that the coefficient
n8 (ρ1j) , {j = 2, 3, 4}, is a function of two of the three-tangles τ1|j|k (ρ1jk) , {k = 2, 3, 4 : k 6= j} and four-tangles.

It has been shown in our earlier works that given a three-qubit marginal state of a four-qubit state, the upper bound
on three-tangle [29] depends on a specific unitary invariant [27] of the pure four-qubit state and genuine four-tangle of
the state [27, 30]. Using the definition of three-tangle of a mixed state (Eq. (26)), we identify the four-qubit invariant
which contains the three-tangle of a mixed state. For the state |Ψ1234〉, the three-qubit invariants corresponding to
I3,4 (|Ψ123〉) (Eq. (25)) read as

I4,0
A4

=
(
D000

(A4)0
+D001

(A4)0

)2

− 4D00
(A3)0(A4)0

D00
(A3)1(A4)0

. (37)

and

I0,4
A4

=
(
D000

(A4)1
+D001

(A4)1

)2

− 4D00
(A3)0(A4)1

D00
(A3)1(A4)1

. (38)

Here superscript in I4,0
A4

indicates that it is a three-qubit invariant of degree (4 + 0) that is each term is a product
of four of the state coefficients, all of which have i4 = 0, and none of them contains a state coefficient with i4 = 1.
Likewise, I0,4

A4
is a three-qubit invariant with each term being a product of four state coefficients all of which have

i4 = 1. The superscript contains information about the transformation properties of the invariant under the action

of a unitary U4 = 1√
1+|x|2

[
1 −x∗
x 1

]
on qubit A4. One can verify that I4,0

A4

(
U4 |Ψ1234〉

)
is a function of three-qubit

invariants contained in the set
{
I4−m,m
A4

: m = 0, 4
}

. Here superscript in element I4−m,m
A4

indicates that it is a three-

qubit invariant of degree four such that each term is a product of (4−m) state coefficients with i4 = 0, and m state
coefficient with i4 = 1.
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The form of elements of the set in terms of determinants of negativity fonts is given in subsection B 3 of Appendix
B. Four-qubit invariant that quantifies the three-way and genuine four-way correlations [27] of triple A1A2A3, reads
as

N
(123)
4,8 =

∣∣∣I4,0
A4

∣∣∣2 + 4
∣∣∣I3,1
A4

∣∣∣2 + 6
∣∣∣I2,2
A4

∣∣∣2 + 4
∣∣∣I1,3
A4

∣∣∣2 +
∣∣∣I0,4
A4

∣∣∣2 , (39)

whereas the degree-eight invariant that measures genuine four-way entanglement of the state |Ψ1234〉 is given by

I4,8 = 3
(
I2,2
A4

)2

− 4I3,1
A4
I1,3
A4

+ I4,0
A4
I0,4
A4
. (40)

First subscript in N
(123)
4,8 or I4,8 indicates that it is a four-qubit invariant while the second subscript indicates the

degree of the invariant.

On the other hand, for the mixed state ρ123 = TrA4
(|Ψ1234〉 〈Ψ1234|) =

∑
i=0,1

pi

∣∣∣φ(i)
123

〉〈
φ

(i)
123

∣∣∣, the three tangle (Eq.

(26)) is given by

[
τ1|2|3 (ρ123)

] 1
2 = 2 min{

pi,
∣∣∣φ(i)

123

〉}
{∣∣∣I4,0

A4

∣∣∣ 12 +
∣∣∣I0,4
A4

∣∣∣ 12} . (41)

It is known from ref. [29] that the upper bound on τ1|2|3 (ρ123), is given by

τup1|2|3 (ρ123) =

√
16N

(123)
4,8 − 1

6

(
τ

(1)
1|2|3|4

)2

, (42)

where τ
(1)
1|2|3|4 =

√
16 |12I4,8| is the genuine four-tangle defined in refs. [27, 30].

In general, for a selection of three qubits A1AjAk, where j = 2 to 4 and k = 2 to 4, with the appropriate

set of three-qubit invariants
{
I4−m,m
Ai

(|Φi〉) : m = 0, 4, i 6= j 6= k
}

, degree-eight invariant N
(1jk)
4,8 and three-tangle

τ1|j|k (ρ1jk) satisfy the inequality √
16N

(1jk)
4,8 − 1

6

(
τ

(1)
1|2|3|4

)2

≥ τ1|j|k (ρ1jk) . (43)

In case τ1|j|k (ρ1jk) = 0, 16N
(1jk)
4,8 = 1

6

(
τ

(1)
1|2|3|4

)2

. Expressions for N
(1jk)
4,8 and τ

(1)
1|2|3|4 are given in subsection B 4 of

Appendix B.

VII. WHAT DOES COEFFICIENT n8 (ρ1j) REPRESENT?

An analytical calculation reveals that for the two-qubit state, ρ12 = TrA3A4
(|Ψ1234〉 〈Ψ1234|), the coefficient n8 (ρ12)

is a sum of four-qubit invariants. Two of these four-qubit invariants are N
(123)
4,8 and N

(124)
4,8 . The coefficient n8 (ρ12)

also contains contribution from
∣∣∣3 (I4,2)

2 − P12

∣∣∣, where P1j , (j = 2 to 4) are already known from earlier works on

polynomial invariants [31]. Subscripts on P1j refer to the pair of qubits A1Aj . The invariant P1j is non zero if the
qubit pair A1Aj is entangled to the rest of the system in the four-qubit pure state |Ψ1234〉. Detailed form of these
invariants in terms of determinants of negativity fonts is given in subsection B 5 of appendix B. It is easily verified
that P1j , (j = 2 to 4) are not independent invariants because

P12 + P13 + P14 = 3 (I4,2)
2
. (44)

The exact expression for coefficient n8 (ρ12) reads as

n8 (ρ12) = N
(123)
4,8 +N

(124)
4,8

+
1

24

∣∣∣3 (I4,2)
2 − P12

∣∣∣2 +M4,8 (ρ12) , (45)
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where M4,8 (ρ12) is a sum of three-qubit invariants. Expression for M4,8 (ρ1j) is also given in subsection B 5 of
appendix B. Form of each term in M4,8 (ρ12) reveals that this four-qubit invariant is non-zero only on a four-qubit
state. Similarly the coefficients n8 (ρ13) and n8 (ρ14) read as

n8 (ρ13) = N
(123)
4,8 +N

(134)
4,8

+
1

24

∣∣∣3 (I4,2)
2 − P13

∣∣∣2 +M4,8 (ρ13) , (46)

and

n8 (ρ14) = N
(124)
4,8 +N

(134)
4,8

+
1

24

∣∣∣3 (I4,2)
2 − P14

∣∣∣2 +M4,8 (ρ14) , (47)

A comparison of n8 (ρ1j) {j = 2, 3, 4} with the upper bound on three-tangles from Eq. (43) shows that n8 (ρ1j) is
a function of two of the three-tangles τ1|j|k (ρ1jk) such that

4n8 (ρ1j) =
1

4

4∑
k=2;k 6=j

τ2
1|j|k (ρ1jk) + δ1j , (48)

where

δ1j ≥
1

12

(
τ

(1)
1|2|3|4

)2

+
1

8

(
τ

(2)
1|2|3|4 (ρ1j)

)2

+
3

32

(
τ

(3)
1|2|3|4 (ρ1j)

)2

. (49)

Here we have defined four-tangles, τ
(2)
1|2|3|4 (ρ1j) =

√
32M4,8 (ρ1j) and τ

(3)
1|2|3|4 (ρ1j) =

∣∣∣4 (I4,2)
2 − 4

3P1j

∣∣∣. The quantity

δ1j is a function of four-way correlations. Eq. (48) represents an interesting condition on how three-way and four-way
correlations are shared by qubits. For example, if 4n8 (ρ12) = 1

4 and τ2
1|2|3 (ρ123) = 1, then τ2

1|2|4 (ρ124) = 0 and

δ12 = 0.

VIII. CONSTRAINT ON THREE-TANGLES AND FOUR-TANGLES

We may note that the sum of degree eight coefficients constrains the amount of three-way and four-way correlations

in a four-qubit state. If N
(123)
4,8 , N

(124)
4,8 as well as N

(134)
4,8 are non-zero, then the sum 4

∑4
j=2 n8 (ρ1j) is found to satisfy

the constraint

4

4∑
j=2

n8 (ρ1j)−
1

2

(
τ2
1|2|3 (ρ123) + τ2

1|2|4 (ρ124) + τ2
1|3|4 (ρ134)

)
=

4∑
j=2

δ1j (50)

where the residue
∑4
j=2 δ1j is a function of four-way correlations characterizing the pure state |Ψ1234〉 and reads as

4∑
j=2

δ1j ≥
1

4
τ

(1)
1|2|3|4 +

3

32

4∑
j=2

(
τ

(3)
1|2|3|4 (ρ1j)

)2

+
1

8

4∑
j=2

(
τ

(2)
1|2|3|4 (ρ1j)

)2

. (51)

By construction τ
(3)
1|2|3|4 (ρ1j) is non-zero if and only if the qubit pair A1Aj in the four-qubit state is entangled to the

rest of the system. It is easily verified that
∣∣PA1A2

∣∣ =
∣∣PA3A4

∣∣, ∣∣PA1A3
∣∣ =

∣∣PA2A4
∣∣, and

∣∣PA1A4
∣∣ =

∣∣PA2A3
∣∣, as such,∑4

j=2

(
τ

(3)
1|2|3|4 (ρ1j)

)2

does not depend on the choice of focus qubit.

Four tangles τ
(0)
1|2|3|4 , τ

(1)
1|2|3|4, τ

(2)
1|2|3|4 (ρ1j) and τ

(3)
1|2|3|4 (ρ1j) are invariant with respect to a local unitary on anyone

of the four qubits. Just as a three-tangle is defined only on states with N ≥ 3, four-tangles are defined only on states

with N ≥ 4. Here, τ
(0)
1|2|3|4 is defined in terms of a degree-two invariant, while τ

(1)
1|2|3|4 is a function of a single four-qubit

invariant of degree eight. The genuine four-tangle τ
(1)
1|2|3|4 > 0 implies that each one of the qubits is entangled to the

three remaining qubits due to four-way correlations. A measurement on one of the four-qubits of a pure four-qubit
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state completely destroys the entanglement quantified by τ
(1)
1|2|3|4. Four-tangle τ

(1)
1|2|3|4 is the analog of three-tangle for

three-qubit states. On a W-state of four qubits we have τ
(1)
1|2|3|4 = 0.

To understand the role of four-tangle, τ
(2)
1|2|3|4 (ρ), we consider a simple four-qubit state on which τ

(2)
1|2|3|4 (ρ12) 6= 0

that is

|χ〉 = a0000 |0000〉+ a1101 |1101〉+ a1110 |1110〉 . (52)

One can verify that on |χ〉, three tangles take value τ1|2|3 (ρ123) = 4
∣∣∣(a0000a1110)

2
∣∣∣, τ1|2|4 (ρ124) = 4

∣∣∣(a0000a1101)
2
∣∣∣

and (
τ

(2)
1|2|3|4 (ρ12)

)2

= 4τ1|2|3τ1|2|4. (53)

On the other hand τ
(2)
1|2|3|4 (ρ13) = τ

(2)
1|2|3|4 (ρ14) = 0. Four-tangle τ

(2)
1|2|3|4 (ρ1j) is a sum of nine three-qubit invariants of

degree eight. It contains contributions from products of three-tangles of underlying three-qubit subsystems.

IX. CONSTRAINTS ON TANGLES OF A FOUR-QUBIT STATE

In the case of a three-qubit pure state monogamy relation is a relation between degree-four functions of state
coefficients that is one-tangle τ1|23 (|Ψ123〉), square of two-tangle τ2

1|j (ρ1j) and three-tangle τ1|2|3 (|Ψ123〉). Genuine

four-way entanglement [27, 30], however, is quantified by a degree-eight function of state coefficients. Consequently, we
have distinct sets of constraints to be satisfied by degree-four and degree-eight entanglement measures of correlations
of a four-qubit state. A constraint on one-tangle and two-tangles is obtained by subtracting the sum of two tangles
from Eq. (34) that is

S1 =

4∑
j=2

(
n4 (ρ1j)− τ2

1|j (ρ1j)
)
− 1

2

(
τ

(0)
1|2|3|4

)2

= τ1|234 −
4∑
j=2

τ2
1|j (ρ1j) , (54)

where S1 represents three- and four-way correlations.
The state ρ1j {j = 2, 3, 4} being a reduced state of ρ1jk {k = 2, 3, 4 : k 6= j} contains information about two-tangle

τ1|j (ρ1j), two of the three tangles τ1|j|k (ρ1jk), as well as four-way correlations. If for a two-qubit marginal state
ρ1j {j = 2, 3, 4} of |Ψ1234〉, then the relation analogous to Eq. (12) reads as

n4 (ρ1j) = τ2
1|j (ρ1j) +

√
4n8 (ρ1j) + χ± (ρ1j), (55)

with χ± (ρ1j) defined as in (Eqs. (13) and (14)) that is

χ+ (ρ1j) = 8
√
n16 (ρ1j) + 8

√
f16 (ρ1j) , (56)

and

χ− (ρ1j) = 8
√
n16 (ρ1j)− 8

√
f16 (ρ1j)

+ 2n4 (ρ1j) |C (ρ1j)|2 − |C (ρ1j)|4 . (57)

Recalling that for a two-qubit state n4 (ρ1j) = tr (ρ1j ρ̃1j) is a calculable quantity, we obtain a set of three conditions
to be satisfied by measures of two-way, three-way and four-way correlations. Substituting for coefficients n8 (ρ1j) from
Eqs. (48) into Eq. (55), we obtain the constraints:

(
n4 (ρ1j)− τ2

1|j (ρ1j)
)2

− 1

4

4∑
k=2,k 6=j

τ2
1|j|k (ρ1jk) = ∆1j , (58)
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where ∆1j = δ1j + χ± (ρ1j) and j = 2, 3, 4. Here δ1j ≥ 0 (Eq. (49)), n16 (ρ1j) ≥ 0 and f16 (ρ1j) ≥ 0 11) is valid. If
C (ρ1j) ≤ 0, then τ1|j (ρ1j) = 0 and Eq. (58) reduces to

n2
4 (ρ1j)−

1

4

4∑
k=2,k 6=j

τ2
1|j|k (ρ1jk) = ∆1j . (59)

Using Eq. (B14) and the definition of τ1|j|k (ρ1jk) (Eq. (26)), one may verify that for τ1|j (ρ1j) = 0, n2
4 (ρ1j) ≥

1
4

∑4
k=2,k 6=j τ

2
1|j|k (ρ1jk). As such, ∆1j ≥ 0 is satisfied independent of the value of two-tangle. The quantity ∆1j

represents four-way correlations involving the qubit pair A1Aj and the two remaining qubits of the four-qubit state.
However, χ− (ρ1j) may take negative values.

We notice that

4∑
j=2

(
n4 (ρ1j)− τ2

1|j (ρ1j)
)2

− 1

2

(
τ2
1|2|3 (ρ123) + τ2

1|2|4 (ρ124) + τ2
1|3|4 (ρ134)

)
=

4∑
j=2

∆1j (60)

where
∑4
j=2 ∆1j may be taken as a degree-eight measure of residual correlations in the state |Ψ1234〉. Substituting

for n4 (ρ1j)− τ2
1|j (ρ1j) from Eq. (55) into Eq. (54), the constraint on one tangle may be written as

τ1|234 +
1

2

(
τ

(0)
1|2|3|4

)2

−
4∑
j=2

τ2
1|j (ρ1j) =

4∑
j=2

√√√√1

4

4∑
k=2,k 6=j

τ2
1|j|k (ρ1jk) + ∆1j , (61)

where the right hand side is a function of three-tangles of marginal three-qubit states as well as four-tangles of the
pure four-qubit state. It is important to note that Eq. (61) is a relation between degree-four terms on left hand
side and square root of sum of degree-eight terms on right hand side. Four-qubit states also satisfy the constraint on
one-tangle reported in Eq. (47) of ref. ([13]) which involves only degree-four invariants. In that case, the contribution
to one-tangle from three-qubit correlations due to the triple A1AjAk is found to vary between 1

2τ1|j|k (ρ1jk) and
τ1|j|k (ρ1jk), which is consistent with Eq. (61). Furthermore, on a state which is a product state of a three-qubit
generic state with a single qubit, Eqs. (58) and (61) reduce to corresponding relations for three-qubits with the values
of indices j and k restricted to 2 and 3 that is

n4 (ρ1j)− τ2
1|j (ρ1j) =

1

2
τ1|2|3 (ρ123) ; (j = 2, 3) , (62)

and

τ1|234 −
3∑
j=2

τ2
1|j (ρ1j) = τ1|2|3 (ρ123) . (63)

Alternatively, after expanding the L. H. S of Eq. (61) we may rewrite the relation between tangles as

τ1|234 −
∑4
j=2 τ

2
1|j (ρ1j)− 1

2

∑4
j=2

(∑4
k=3,k>j τ

2
1|j|k (ρ1jk)

) 1
2

=
∑4
j=2

√
∆1j (1− f1j)− 1

2

(
τ

(0)
1|2|3|4

)2

,
(64)

where f1j is a function of

√
∆1j

∑4
k=3,k>j τ

2
1|j|k(ρ1jk)

√
∆1j+

√∑4
k=3,k>j τ

2
1|j|k(ρ1jk)

. Therefore the L.H.S of equation Eq. (64 represents four-way

correlations. To sum up, the tangles characterizing a four-qubit state satisfy the constraints represented by Eqs. (48,
50, 58, 60, 61) and Eq. (64). In the next subsections, we consider some examples to illustrate the validity of these
constraints.

X. FOUR-QUBIT GHZ STATE

Consider the maximally entangled four-qubit GHZ state

|GHZ〉 =
1√
2

(|0000〉+ |1111〉) . (65)
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Coefficients in the characteristic polynomial of the matrix ρ1j ρ̃1j are

n4 (ρ1j) =
1

2
, 4n8 (ρ1j) =

1

4
, (66)

n16 (ρ1j) = n12 (ρ1j) = 0; (j = 2, 3, 4). (67)

As such χ (ρ1j) = 0, 4n8 (ρ1j) = ∆1j (Eq. (48 ), and
∑4
j=2 ∆1j = 3

4 (Eq. (50)). While all two-tangles and three-tangles

are zero on this state, values of four-tangles are τ
(0)
1|2|3|4 = τ

(1)
1|2|3|4 = τ

(2)
1|2|3|4 (ρ1j) = 1, and τ

(3)
1|2|3|4 (ρ1j) = 2

3 . One-tangle

satisfies the relation

τ1|234 =

4∑
j=2

n4 (ρ1j)−
1

2

(
τ

(0)
1|2|3|4

)2

= 1. (68)

and since n4 (ρ1j) =
√

∆1j , one tangle represents only four-way correlations and satisfies Eq. (61).

XI. CLUSTER STATE

Much like the |GHZ〉 state, all two-tangles and three tangles are zero on the maximally entangled cluster state

|ΨC〉 =
1

2
(|0000〉+ |1100〉+ |0011〉 − |1111〉) , (69)

and τ1|234 = τ
(1)
1|2|3|4 = τ

(2)
1|2|3|4 (ρ12) = 1 while τ

(3)
1|2|3|4 (ρ12) = 2

3 . But differently from |GHZ〉, τ (0)
1|2|3|4 = τ

(2)
1|2|3|4 (ρ13) =

τ
(2)
1|2|3|4 (ρ14) = 0 and τ

(3)
1|2|3|4 (ρ13) = τ

(3)
1|2|3|4 (ρ14) = 1

3 . Therefore 4n8 (ρ1j) = δ1j , n4 (ρ1j) =
√

∆1j , χ
− (ρ1j) =

∆1j − δ1j , , and τ1|234 =
∑4
j=2 n4 (ρ1j). Table I lists the coefficients nd (ρ1j) for d = 4, 8, 12, 16 along with δ1j , and

χ− (ρ1j), for j = 2, 3, 4 for the state |ΨC〉. One can verify that four-tangles satisfy the relation (refer to Eq. (49))

4∑
j=2

δ1j =
1

4

(
τ

(1)
1|2|3|4

)2

+
1

8

(
τ

(2)
1|2|3|4 (ρ12)

)2

+
3

32

4∑
j=2

(
τ

(3)
1|2|3|4 (ρ1j)

)2

. (70)

TABLE I: The coefficients nd (ρ1j) for d = 4, 8, 12, 16 along with ∆1j , δ1j , χ1j , P
2
1j and τ

(2)

1|2|3|4 (ρ1j) for j = 2, 3, 4 for the state

|ΨC〉.

State |ΨC〉 n4 (ρ1j) n8 (ρ1j) n12 (ρ1j) n16 (ρ1j) δ1j χ− (ρ1j)

ρ12
1
2

1
16

0 0 1
4

0

ρ13
1
4

3
128

1
1024

1
65 536

3
32

− 1
32

ρ14
1
4

3
128

1
1024

1
65 536

3
32

− 1
32

Sum 1 7
64

7
16

− 1
16

It is interesting to compare the tangles of |ΨC〉 with the product of two-bell states that is

|ΨP 〉 =
1

2
(|00〉+ |11〉) (|00〉+ |11〉) . (71)

A simple calculation shows that τ1|234 = 1, τ2
1|2 (ρ12) = 1,(C12 = 1), τ2

1|3 (ρ12) = τ2
1|4 (ρ12) = 0, (C13 = C14 = − 1

2 ),

τ
(0)
1|2|3|4 (|ΨP 〉) = 1 while Four tangles τ

(1)
1|2|3|4 (|ΨP 〉) = τ

(2)
1|2|3|4 (ρ1j) = 0. It turns out that n8 (ρ1j) = 3

27 , n12 (ρ1j) = 1
210 ,

n16 (ρ1j) = 1
216 and f16 (ρ) = 1

212 for j = 3 and 4. Consequently, n4 (1j) = C2
1j indicating that the state does not have

three or four-qubit correlations. Recalling that

4∑
j=2

n4 (1j) = τ2
1|2 (ρ12) +

4∑
j=3

C2
1j , (72)
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and one tangle satisfies the relation corresponding to Eq. (61), we obtain

4∑
j=3

C2
1j =

1

2

(
τ

(0)
1|2|3|4 (|ΨP 〉)

)2

, (73)

clarifying that τ
(0)
1|2|3|4 (|ΨP 〉) does not quantify four-way correlations.

XII. STATES La,ia,(ia)2

A natural extension of CKW inequality to four-qubit states may be written as

τ1|234 ≥
4∑
j=2

τ2
1|j (ρ1j) +

4∑
(j,k)=2
k>j

τ1|j|k (ρ1jk) . (74)

Regula et al. [9] have shown that a subset of four-qubit pure states violates the inequality of Eq. (74). Based on
numerical evidence, the authors of [9] conjecture that four-qubit tangles satisfy a modified monogamy inequality,
which for four-qubits with A1 as focus qubit, (Eq. (9) in ref. [9]) reads as

τ1|234 (|Ψ1234〉) ≥
[
τ1|2 (ρ12)

]2
+
[
τ1|3 (ρ13)

]2
+
[
τ1|4 (ρ14)

]2
+
[
τ1|2|3 (ρ123)

] 3
2 +

[
τ1|2|4 (ρ124)

] 3
2 +

[
τ1|3|4 (ρ134)

] 3
2 . (75)

Here three tangles are raised to the power 3
2 , so that the “residual four tangle” may not become negative. Consider

the product of a three qubit entangled state with the fourth qubit in state |0〉, that is

|Ψs〉 = a0000 |0000〉+ a1110 |1110〉 , (76)

for which τ1|234 (|Ψ1234〉) = τ1|2|3 (ρ123) = 4 |a0000a1110|2. The inequality of Eq. (75) implies that the state |Ψs〉 has a

“residual four tangle” given by τ1|234 (|Ψ1234〉)−
[
τ1|2|3 (ρ123)

] 3
2 , which is not true. On the other hand Eq. (61) yields

τ1|234 = τ1|2|3 (ρ123) on the state |Ψs〉, as expected.
It was also pointed out by Regula et al. [9] that states with particularly large violations of the inequality represented

by Eq. (74) can be constructed by starting with the state Labc2 of ref. [26] with b = c and additionally imposing
b = c = ia with parameter a ≥ 0, that is

La,ia.(ia)2
= a

(
1 + i

2

)
(|0000〉+ |1111〉) + a

(
1− i

2

)
(|0011〉+ |1100〉)

+ ia (|0101〉+ |1010〉) + |0110〉 . (77)

For these states, one tangle τ1|234 = 8a2+16a4

(4a2+1)2
satisfies Eq. (34). All three tangles have the same value that is

τ1|2|3 = τ1|3|4 = τ1|2|4 = 8a3

(4a2+1)2
, genuine four-tangle τ

(1)
1|2|3|4 = 0 and

(
τ

(0)
1|2|3|4

)2

= 4a4

(4a2+1)2
. One can verify that (Eq.

(48))

4n8 (ρ12) =
1

4
τ2
1|2|3 +

1

4
τ2
1|2|4 +

1

8

(
τ

(2)
1|2|3|4 (ρ12)

)2

,

where τ
(2)
1|2|3|4 (ρ12) = 8

√
3a4

(4a2+1)2
and τ

(3)
1|2|3|4 (ρ12) = 0. However τ

(3)
1|2|3|4 (ρ13) = τ

(3)
1|2|3|4 (ρ14) = 4

√
5a4

(4a2+1)2
, while the value

of four-tangle τ
(2)
1|2|3|4 (ρ13) = τ

(2)
1|2|3|4 (ρ14) = 4a3

√
6a2+10

(4a2+1)2
consistent with 4n8 (ρ13) = 4n8 (ρ14). By using the values of

n4 (ρ1j) calculated from reduced two-qubit states,

n4 (ρ12) =
4
(
a4 + a2

)
(4a2 + 1)

2 ;n4 (ρ13) = n4 (ρ14) =

(
2a2 + 7a4

)
(4a2 + 1)

2 ,

net four-way correlations can be calculated from the constraint (Eq. (60)),

4∑
j=2

(
n4 (ρ1j)− τ2

1|j (ρ1j)
)2

− 1

2

(
τ2
1|2|3 + τ2

1|2|4 + τ2
1|3|4

)
=

4∑
j=2

∆1j .
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FIG. 1: Plot of one-tangle τ1|234 (black solid line), S1 = τ1|234−
∑4

j=2 τ
2
1|j (ρ1j) (Red dash), an estimate of residual correlations

S= S1 −
[
1
2

(
τ21|2|3 + τ21|2|4 + τ21|3|4

)] 1
2 (Dark Green Dash Dot), and partial four-way correlations R =

∑4
j=2 δ1j (blue dot-dot),

versus state parameter a for the states La,ia.(ia)2
.

Figure (1) displays one-tangle τ1|234, the sum of three-way and four-way correlations S1 = τ1|234 −
∑4
j=2 τ

2
1|j (ρ1j)

(Eq. (54)), estimated four-way correlations S = S1 −
[

1
2

(
τ2
1|2|3 + τ2

1|2|4 + τ2
1|3|4

)] 1
2

, and partial residual four-way

correlations quantified by R =
[∑4

j=2 δ1j

] 1
2

, versus state parameter a for the states La,ia.(ia)2
. We notice that S ≥ 0

and R ≥ 0 for all the values of a, as expected.

XIII. CLASSIFICATION OF FOUR-QUBIT STATES

Three-qubit states have been shown to belong to six equivalent classes under stochastic local operations and classical
communication (SLOCC) In [20]. However, N > 3, there are infinite SLOCC classes [33] , as such it is highly desirable
to partition the infinite classes into a finite number of families. [26], Verstraete et al. have shown that there are nine
families in four-qubit entanglement. Residue δ1j is greater or equal to weighted sum of four tangles. These tangles
are natural labels for fully entangled four-qubit states. Besides that, three tangles, and two-tangles of sub-systems
are helpful to understand the extent to which the states can be manipulated by local operations. In a recent articles
[34] a classification of four-qubit states based on graph states is given. The underlying spirit of this classification is
similar to ours, however our classification has the advantage that the entanglement quantifiers obey the monogamy
constraints listed in Eqs. (48,50,58,60,61,64).

We notice that the four qubit states may be grouped together in finite number of entanglement types by using a set
of unitary invariant functions of state coefficients to label the states. The set contains - two-tangles to quantify the
entanglement of two qubit sub-systems, τi|j|k to quantify entanglement of sub-systems due to three-way correlations,

and τ
(1)
1|2|3|4, τ

(2)
1|2|3|4 (ρ1j), and τ

(3)
1|2|3|4 (ρ1j) (j = 2− 4) to quantify entanglement due to four-way correlations. Besides

that we can also use the unitary invariant coefficients n12 (ρ1j) and n16 (ρ1j), j = 2, 3, 4, to distinguish between
different entanglement types. On the basis of these invariants, four-qubit entangled states lie in the following groups:

Group I - Two-qubit and three qubit subsystems are entangled. Some or all of the four-tangles are non-zero.

Group II - Three qubit subsystems are entangled. Some or all of the four-tangles are non-zero.

Group III - Two-qubit subsystems are entangled. Some or all of the four-tangles are non-zero.
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TABLE II: Entanglement measures for four-qubit entangled states. Class refers to group of states [26] which gives rise to
tangles when qubit A1 is the focus qubit. Qubit A1 is separable in class L03+103+1

.

Class⇒
Tangle ⇓

Labc2 Lab3 La4 L07⊕1 L05⊕3 La2b2 Gabcd La203⊕1

τ
(2)

1|2|3|4 (ρ1j) 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

τ
(1)

1|2|3|4 6= 0 0 0 0 0 6= 0 6= 0 6= 0

τ
(3)

1|2|3|4 (ρ13) 6= 0 6= 0 0 0 0 6= 0 6= 0 6= 0

τ
(3)

1|2|3|4 (ρ12) , τ
(3)

1|2|3|4 (ρ14) 6= 0 6= 0 6= 0 0 0 6= 0 6= 0 6= 0

τ1|3|4 6= 0 6= 0 6= 0 6= 0 0 0 0 0

τ1|2|3 6= 0 6= 0 6= 0 6= 0 6= 0 0 0 0

τ1|2|4 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 0 0

τ21|2 6= 0 6= 0 6= 0 0 0 6= 0 6= 0 6= 0

τ21|3 6= 0 6= 0 6= 0 0 6= 0 6= 0 6= 0 6= 0

τ21|2 6= 0 6= 0 6= 0 0 6= 0 6= 0 6= 0 6= 0

n16 (ρ12) 6= 0 6= 0 6= 0 0 0 6= 0 6= 0 0

n16 (ρ13) 6= 0 6= 0 0 0 0 6= 0 6= 0 0

n16 (ρ14) 6= 0 6= 0 6= 0 0 0 6= 0 6= 0 0

Group IV - Two-qubit subsystems are entangled. All of the four-tangles are zero. Four-way entanglement arises due to
pair-wise entanglement.

The states in the nine classes of four-qubit states [26] fit in Groups I, II and III. Table II is a list of tangles useful
to label eight classes of four-qubit entangled states [26]. The parameters characterizing the states are taken to have

distinct values. With the exception of L03+103+1
states, the four-tangle τ

(2)
1|2|3|4 (ρ1j) 6= 0 on nine classes of states listed

in ref. [26]. Class Labc2 contains states on which all four tangles, three tangles, and two-tangles are non-zero. States

in classes Lab3 , La4 , L07⊕1
, and L05⊕3

have τ
(1)
1|2|3|4 (ρ1j) = 0. State L05⊕3

is special in that the four-tangle τ
(2)
1|2|3|4 (ρ1j)

is product of three tangles. For states in Gabcd and La203⊕1
, three-qubit subsystems have zero three tangles. An

example of states in Group IV is maximally entangled W-state,∣∣∣W̃〉 =
1

2
(|0000〉+ |1100〉+ |1010〉+ |1001〉) .

All four-tangles and three-tangles are zero on state
∣∣∣W̃〉, and four-way entanglement is due to two-way correlations.

The state L03+103+1
does not have four-qubit entanglement.

XIV. ENTANGLEMENT TRANSFER TO ENVIRONMENT

If one of the two entangled qubits, interacts successively with environment qubits resulting in an increase in residual
correlations, then the entanglement of the pair tends to zero. Here we present a toy model that uses CNOT Gate to
generate additional correlations between qubit one and the environment represented by a product state of additional
qubits. For simplicity a single parameter model with two qubits, initially in pure state |Ψ12〉 = 1√

x

(
|00〉+

√
x− 1 |11〉

)
,

is considered. Environment qubits are in a product state
∏
j

|φj〉 where |φj〉 = 1√
x

(
|0〉+

√
x− 1 |1〉

)
, as such the

initial state of the system

|Ψ12〉 |E〉 =
1√
x

(
|00〉+

√
x− 1 |11〉

)
|φ3〉 |φ4〉 ... |φN 〉 ,

is an entangled state with one tangle τ1|2E = τ2
1|2 given by

τ2
1|2 =

4 (x− 1)

x2
= n4 (ρ12) ; n8 (ρ12) = 0;x 6= 0, 1.
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FIG. 2: Circuit model for entanglement transfer

A CNOT gate on qubit pair A1A3 generates three-way correlations with a decrease in two-tangle, while the value of

one-tangle is not changed. After this step the system is in state |Ψ123〉 |EN−1〉 and τ2
1|2 =

(
4(x−1)
x2

)2

. Next step is

applying a CNOT to qubit pair A1A4 with A4 as target qubit. Successive applications of CNOT, always with qubit
A1 as control qubit and one of the environment qubits as target qubit, do not change τ1|2E , but generate correlations
distributed over a larger number of qubits. One can verify that after M applications of CNOT (M varies from 1 to
N − 2), two tangles of the state satisfy

τ2
1|2 (ρ12) =

(
4 (x− 1)

x2

)M+1

; τ2
1|j (ρ1j) = 0 for j = 3 to N.

whereas residual correlations are given by

τ1|2E − τ2
1|2 (ρ12) =

4 (x− 1)

x2
−
(

4 (x− 1)

x2

)M+1

.

Fig. (3) displays τ1|2E , τ2
1|2 (ρ12) and residual correlations ∆ for M = 1 and M = 8 as a function of variable x.

One may notice that for x = 2, no entanglement transfer to additional qubits occurs. After eight steps most of the
two-way correlations have leaked to environment for x = 6. Notably, interaction with a single qubit (M = 1) which
generates only three-way correlations, results in τ2

1|2 (ρ12) = ∆ for x1 = 1.1716 and x2 = 6.8284.

XV. CONCLUDING REMARKS

Two-tangle (refs. [15, 16]) of a two-qubit mixed state ρ is a known function of eigenvalues of non Hermitian matrix
ρρ̃ where ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy). As shown in ref. [7] if the state ρ is known to be part of an N−qubit system in
a pure state then the non-Hermitian matrix ρρ̃ can be used to extract information about the correlations of the pair
of qubits with (N − 2) qubits in the state |ΨN 〉. In this article it is shown that if a two-qubit state is a marginal state
of a four-qubit pure state then the residual correlations are quantified by well defined unitary invariant functions of
state coefficients.
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FIG. 3: Plot of one-tangle τ1|234 (black solid line), τ21|2 (red dash), Residual correlations ∆ (blue dots) for M = 8 and τ21|2 (wine
dash dot), Residual correlations ∆ (navy blue dash dot dot) for M = 1.

Our main result is the set of constraints on one-tangle of a focus qubit, two-tangles, three-tangles and four-way
correlations, obtained by expressing the coefficients in the characteristic polynomial of ρρ̃ in terms of state coefficients
of a four-qubit pure state. The tangles characterizing a four-qubit state satisfy the constraints represented by Eqs.
(48, 50, 58, 60, 61) and Eq. (64). The residual four-qubit correlations obtained by subtracting two-tangles and
three-tangles as in Eqs. (58) represent contributions from all possible four-qubit entanglement modes. One tangle of
a four-qubit pure state satisfies the constraints given by Eqs. (61) and (64) independent of the class to which a given
four-qubit state belongs. In particular, these constraints are satisfied by the set of states La,ia.(ia)2

of ref. [26] that
violate the entanglement monogamy relation obtained by generalizing the CKW inequality. The difference between
one tangle and contributions from two-tangles and three-tangles in Eq. (64) represents the residual correlations
beyond three-way correlations present in a 4-qubit pure state.

Four tangles τ
(0)
1|2|3|4, τ

(1)
1|2|3|4, τ

(2)
1|2|3|4 (ρ1j) and τ

(3)
1|2|3|4 (ρ1j), (j = 2− 4), may be used to identify and label entangled

states that are equivalent under local unitary transformations. Local unitary equivalence is an important marker to
group together states with similar properties. Using the elements of the set containing two-tangles, three-tangles and
four-tangles to label four-qubit states the states in nine classes of four-qubit states [26], and W state are grouped
together in four-groups as shown in Table II. Using a simple circuit model, monogamy of entanglement is also shown
to result in loss of entanglement of a pair of qubits when one of the qubits interacts successively with environment
qubits.

This work reveals constraints on the sharing of entanglement at multiple levels and offers insight into quantification
of those features of quantum correlations, which only emerge beyond the bipartite scenario. It will be interesting to
investigate the interplay between the entanglement trade-off and frustration phenomena in complex quantum systems
[35]. Our approach also paves the way to understanding scaling of entanglement distribution as qubits are added to
obtain larger multiqubit quantum systems.

Appendix A: Derivation of Eq. (10)

To obtain Eq. (10) we use the expressions for the coefficients nd (ρ) (d = 4, 8, 12, 16) in terms of eigenvalues of
matrix (ρρ̃) , Eqs. (7), (8) and (9) along with the condition λ1 ≥ λ2 ≥ λ3 ≥ λ4 and C (ρ) =

√
λ1−

√
λ2−

√
λ3−

√
λ4,

that is
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n4 (ρ)− |C (ρ)|2 = (λ1 + λ2 + λ3 + λ4)−
(√

λ1 −
√
λ2 −

√
λ3 −

√
λ4

)2

= 2

√√√√( √
λ1

(√
λ2 +

√
λ3 +

√
λ4

)
−
(√
λ2

√
λ3 +

√
λ2

√
λ4 +

√
λ3

√
λ4

) )2

= 2

√√√√n8 (ρ) + 2
√
n16 (ρ) + 2C (ρ)

( √
λ1

√
λ2

√
λ3 +

√
λ1

√
λ2

√
λ4

+
√
λ1

√
λ3

√
λ4 −

√
λ2

√
λ3

√
λ4

)
(A1)

Furthermore, we can rewrite the expression given above as

n4 (ρ) = |C (ρ)|2 + 2

√√√√√ n8 (ρ) + 2
√
n16 (ρ)

+2C (ρ)

√
n12 (ρ) +

√
n16 (ρ)

(
n4 (ρ)− |C (ρ)|2

) . (A2)

Substituting C (ρ) = ± |C (ρ)| in Eq. (A2), the coefficient n4 (ρ) satisfies the relation

n4 (ρ) = |C (ρ)|2 + 2

√
n8 (ρ) + 2

√
n16 (ρ)± 2

√
f16 (ρ), (A3)

where

f16 (ρ) = |C (ρ)|2
(
n12 (ρ) +

√
n16 (ρ)

(
n4 (ρ)− |C (ρ)|2

))
. (A4)

Appendix B: Expressions for n4 (ρ1j), n8 (ρ1j),
{
I4−m,m
A4

: m = 0, 4
}
, N

(1jk)
4,8 and P1j in terms of two-qubit unitary

invariants

1. Notation

In this subsection we set up the notation used to express the relevant three and four-qubit invariants in terms of
two-qubit unitary invariants. In section (V) a general four-qubit pure state was written as

|Ψ1234〉 =
∑
i1,i2,i3

(ai1i2i30 |i1i2i30〉+ ai1i2i31 |i1i2i31〉) , (im = 0, 1) , (B1)

and the determinants of negativity fonts of the state defined as D00
(A3)i3

(A4)i4
= a00i3i4a11i3i4 − a10i3i4a01i3i4 (two-

way), D00
(A2)i2

(A4)i4
= a0i20i4a1i21i4 − a1i20i4a0i21i4 (two-way), D00

(A2)i2
(A3)i3

= a0i2i30a1i2i31 − a1i2i30a0i2i31 (two-way),

D00i3
(A4)i4

= a00i3i4a11,i3⊕1,i4 − a10i3i4a01,i3⊕1,i4 (three-way), D00i4
(A3)i3

= a00i3i4a11i3,i4⊕1 − a10i3i4a01i3,i4⊕1 (three-way),

D00i4
(A2)i2

= a0i20i4a1i21i4⊕1− a1i20i4a0i21i4⊕1 (three-way), and D00i3i4 = a00i3i4a11,i3⊕1,i4⊕1− a10i3i4a01,i3⊕1,i4⊕1- (four-

way). The notation for two-qubit unitary invariants for qubit pairs A1A2, A1A3, and A1A4 follows. The set of
invariants with respect to unitary transformations on qubits A1 and A2 are given by

E2 = D00
(A3)0(A4)0

, D2 = D00
(A3)1(A4)1

, C2 = D00
(A3)1(A4)0

, B2 = D00
(A3)0(A4)1

, (B2)

F2 = D000
(A4)0

+D001
(A4)0

, L2 = D000
(A4)1

+D001
(A4)1

, (B3)

G2 = D000
(A3)0

+D001
(A3)0

,K2 = D000
(A3)1

+D001
(A3)1

, (B4)

H02 = D0000 +D0011, H12 = D0001 +D0010. (B5)
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Two-qubit invariants with respect to unitaries on qubits A1 and A3 are denoted by

E3 = D00
(A2)0(A4)0

, D3 = D00
(A2)1(A4)1

, C3 = D00
(A2)1(A4)0

, B3 = D00
(A2)0(A4)1

, (B6)

F3 = D000
(A4)0

−D001
(A4)0

, L3 = D000
(A4)1

−D001
(A4)1

, (B7)

G3 = D000
(A2)0

+D001
(A2)0

,K3 = D000
(A2)1

+D001
(A4)1

, (B8)

H03 = D0000 −D0010, H13 = D0001 −D0011. (B9)

Invariants with respect to unitaries on qubits A1 and A4 read as

E4 = D00
(A2)0(A3)0

, D4 = D00
(A2)1(A3)1

, C4 = D00
(A2)1(A3)0

, B4 = D00
(A2)0(A3)1

, (B10)

F4 = D000
(A3)0

−D001
(A3)0

, L4 = D000
(A3)1

−D001
(A3)1

, (B11)

G4 = D000
(A2)0

−D001
(A2)0

,K4 = D000
(A2)1

−D001
(A4)1

, (B12)

H04 = D0000 −D0001, H14 = D0010 −D0011, (B13)

2. The coefficients n4 (ρ1j) and n8 (ρ1j)

The coefficient n4 (ρ1j) = tr (ρ1j ρ̃1j) is found to have the form

n4 (ρ1j) = 4
(
|Ej |2 + |Bj |2 + |Cj |2 + |Dj |2

)
+ 2

(
|Gj |2 + |Kj |2

)
+ 2

(
|Fj |2 + |Lj |2

)
+ |H0j +H1j |2 + |H0j −H1j |2 . (B14)

Maximum value of n4 (ρ1j) is one.

The degree eight coefficient n8 (ρ1j) = 1
2 (tr (ρ1j ρ̃1j))

2− 1
2 tr
(

(ρ1j ρ̃1j)
2
)

, which is a function of three-qubit invariants

reads as

n8 (ρ1j) =
∣∣G2

j − 4EjBj
∣∣2 +

∣∣K2
j − 4CjDj

∣∣2 +
∣∣F 2
j − 4EjCj

∣∣2
+
∣∣L2
j − 4BjDj

∣∣2 +
∣∣H2

0j − 4EjDj

∣∣2 +
∣∣H2

1j − 4BjCj
∣∣2

+ 2 |GjKj − FjLj |2 + 2 |H0jH1j −GjKj |2 + 2 |(H0jH1j − FjLj)|2

+ 2 |FjGj − 2EjH1j |2 + 2 |FjKj − 2CjH0j |2 + 2 |GjLj − 2BjH0j |2

+ 2 |KjLj − 2H1jDj |2 + 2 |H0jFj − 2EjKj |2 + 2 |H0jGj − 2EjLj |2

+ 2 |H0jKj − 2FjDj |2 + 2 |H0jLj − 2GjDj |2 + 2 |H1jFj − 2CjGj |2

+ 2 |H1jKj − 2CjLj |2 + 2 |H1jGj − 2BjFj |2 + 2 |H1jLj − 2BjKj |2 (B15)

One can verify that 0 ≤ 16n8 (ρ1j) ≤ 1.

3. Degree four three-qubit invariants
{
I4−m,m
A4

: m = 0, 4
}

Degree four three-qubit invariants of a four-qubit state relevant to constructing the upper bound on τ1|2|3 (ρ123) in
terms of two-qubit invariants for the pair A1A2 are listed below:
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I4,0
A4

= F 2
2 − 4E2C2; I0,4

A4
= L2

2 − 4B2D2, (B16)

I3,1
A4

=
1

2
F2 (H02 +H12)− (E2K2 + C2G2) , (B17)

I1,3
A4

=
1

2
L2 (H02 +H12)− (B2K2 +D2G2) , (B18)

and

I2,2
A4

=
1

6
(H02 +H12)

2 − 2

3
G2K2 +

1

3
F2L2 −

2

3
(E2D2 +B2C2) . (B19)

4. Degree eight invariants N
(123)
4,8 , N

(134)
4,8 and N

(143)
4,8

In order to write down the coefficients n8 (ρ1j),{j = 2− 4}, we need the form of N
(123)
4,8 , N

(134)
4,8 and N

(143)
4,8 . The

coefficients N
(123)
4,8 and N

(143)
4,8 are obtained by substituting, respectively, j = 2 and 4 in the following equation:

N
(1j3)
4,8 =

∣∣(F 2
j − 4EjCj

)∣∣2 + |(H0j +H1j)Fj − 2EjKj − 2CjGj |2

+
1

6

∣∣∣(H0j +H1j)
2 − 4GjKj + 2FjLj − 4BjCj − 4EjDj

∣∣∣2
+ |(H0j +H1j)Lj − 2GjDj − 2BjKj |2 +

∣∣L2
j − 4BjDj

∣∣2 , (B20)

whereas N
(124)
4,8 is given by

N
(124)
4,8 =

∣∣(G2
3 − 4E3B3

)∣∣2 + |(H03 +H13)G3 − 2E3L3 − 2B3F3|2

+
1

6

∣∣∣(H03 +H13)
2

+ 2G3K3 − 4F3L3 − 4E3D3 − 4B3C3

∣∣∣2
+ |(H03 +H13)K3 − 2F3D3 − 2C3L3|2 +

∣∣(K2
3 − 4C3D3

)∣∣2 . (B21)

5. Invariants P1j and M4,8 (ρ1j)

Invariants P1j are degree four functions of determinants of negativity fonts and read as

P1j = (H0j +H1j)
2 − 4FjLj − 4GjKj + 8EjDj + 8BjCj . (B22)

Term M4,8 (ρ1j) is a sum of three-qubit invariants, that is

M4,8 (ρ1j) = 2 |FjGj − 2EjH1j |2 + |((H1j −H0j)Gj + 2EjLj − 2BjFj)|2

+ 2 |GjLj − 2BjH0j |2 + |((H1j −H0j)Fj + 2EjKj − 2CjGj)|2

+
1

2

∣∣H2
1j −H2

0j + 4EjDj − 4BjCj
∣∣2

+ |((H1j −H0j)Lj + 2GjDj − 2BjKj)|2 + 2 |FjKj − 2CjH0j |2

+ |(H1j −H0j)Kj + 2FjDj − 2CjLj |2 + 2 |KjLj − 2DjH1j |2 . (B23)
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