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Abstract

Uncertainty relation is a fundamental issue in quantum mechanics and quantum infor-

mation theory. By using modified generalized variance (MGV), and modified generalized

Wigner-Yanase-Dyson skew information (MGWYD), we identify the total and quantum

uncertainty of quantum channels. The elegant properties of the total uncertainty of quan-

tum channels are explored in detail. In addition, we present a trade-off relation between

the total uncertainty of quantum channels and the entanglement fidelity, and establish

the relationships between the total uncertainty and entropy exchange/coherent informa-

tion. Detailed examples are given to the explicit formulas of the total uncertainty and

the quantum uncertainty of quantum channels. Moreover, utilizing a realizable experi-

mental measurement scheme by using the Mach-Zehnder interferometer proposed in [65],

we discuss how to measure the total/quantum uncertainty of quantum channels for pure

states.

Keywords: Quantum uncertainty · Quantum channel · Variance · Skew information

1 Introduction

The quantum uncertainty is closely related to quantum measurements. As an extremely

important issue in the quantum physics, the uncertainty relation has been initially put

forward by Heisenberg [1] and Robertson [2]. Uncertainty is usually quantified by variance

or entropies. The total uncertainty of the observable in quantum states is quantified by

variance, which is a mixture of classical uncertainty and quantum uncertainty [3–5].

Recently, Gudder [6] has introduced the modified variance of arbitrary operator (not

necessarily Hermitian). In addition, Dou and Du [7,8] have proposed a Heisenberg-type
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uncertainty relation and a Schrödinger-type uncertainty relation based on the modified

variance. Sun and Li [9] have proposed the total uncertainty of quantum channels in

terms of the modified variance.

The quantum uncertainty can be also described by skew information. The skew

information has been originally proposed by Wigner and Yanase [10], which is termed

as Wigner-Yanase (WY) skew information. While a more general quantity has been

suggested by Dyson, which is now called the Wigner-Yanase-Dyson (WYD) skew infor-

mation [10]. This quantity has been further generalized in [11] and termed as generalized

Wigner-Yanase-Dyson (GWYD) skew information. The relation among the WYD skew

information, GWYD skew information and uncertainty relations have been studied exten-

sively [12–14]. As is well known, the observables and Hamiltonians in quantum mechanics

are assumed to be Hermitian operators mathematically. The framework of non-Hermitian

quantum mechanics, however, has also been taken into account and has attracted much

attention [15]. Besides, many operators such as quantum gates [16], generalized quan-

tum gates [17] and the Kraus operators of a quantum channel [16] are not necessarily

Hermitian. Therefore, it is desirable to introduce the corresponding definitions of the

above-mentioned skew information for pseudo-Hermitian and/or PT-symmetric quantum

mechanics [18–23]. By considering an arbitrary operator which may be non-Hermitian,

Dou and Du [8] have introduced themodified Wigner-Yanase-Dyson (MWYD) skew infor-

mation, while Wu, Zhang and Fei [24,25] have further introduced the modified generalized

Wigner-Yanase-Dyson (MGWYD) skew information.

Quantum channels characterize the general evolutions of quantum systems [16, 26],

which include the quantum measurements as special cases. The past few years have wit-

nessed a great deal of researches on quantum channels [27–40]. The interaction between

a quantum system and the external environment would lead to information loss and

disturbance on the quantum states. Until now, many kinds of formulations have been es-

tablished on the trade-off relations between the information and the disturbance [41–50].

Schumacher [51] has introduced the entanglement fidelity which provides a measure of

how well the entanglement between a quantum system and an auxiliary system is pre-

served under the quantum channel.

The main purpose of this paper is to provide a quantification of the total as well

as the quantum uncertainties of quantum channels in terms of the modified generalized

variance (MGV) and MGWYD skew information, respectively. We give an extension

of the trade-off relation between the total uncertainty of quantum channels and the

entanglement fidelity. By recalling two important information quantities, the entropy

exchange [51] and coherent information [52], we also generalize the relations between the

total uncertainty of quantum channels and the entropy exchange/coherent information

introduced in [9] to a more general case.

The rest of the paper is formulated as follows. In Section 2, we introduce the
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total uncertainty of quantum channels based on MGV and prove that it satisfies several

fundamental properties. In Section 3, we generalize a trade-off relation between the

total uncertainty of quantum channels and the entanglement fidelity. Furthermore, by

using the general trade-off relation, we also explore the relationship between the total

uncertainty of quantum channels and the entropy exchange/coherent information. In

Section 4, we calculate the total and quantum uncertainty of some typical quantum

channels, and derive the explicit formulas of the uncertainties of the quantum channel in

Example 5 for two special classes of states, the Werner states and isotropic states. We

also illustrate the trade-off relation (18), inequalities (19) and (20) by using Example 6.

We use an experimentally feasible protocol given in [65] to measure the total/quantum

uncertainty of quantum channels for pure states. Some concluding remarks are given in

Section 5.

2 The total uncertainty of quantum channels based on MGV

Let H be a d-dimensional Hilbert space. Denote by B(H), S(H) and D(H) the

set of all bounded linear operators, Hermitian operators and density operators on H,

respectively. For ρ ∈ D(H) and K ∈ B(H), the modified generalized variance (MGV) of

the bounded linear operator K in ρ is defined by [24],

V α,β(ρ,K) =
1

2
(trρK†

0K0 + trρα+βK0ρ
1−α−βK†

0)

=
1

2
(trρK†K + trρα+βKρ1−α−βK†)− |trρK|2, α, β ≥ 0, α+ β ≤ 1 (1)

with K0 = K − trρK. Note that the modified generalized variance V α,β(ρ,K) is non-

negative and V α,β(ρ,K) is concave in ρ. Analogizing the idea in Ref. [4], V α,β(ρ,K) can

be also split into quantum and classical parts as [24],

V α,β(ρ,K) = Qα,β(ρ,K) + Cα,β(ρ,K), α, β ≥ 0, α+ β ≤ 1, (2)

where

Qα,β(ρ,K) =
1

2
tr([ρα,K0]

†[ρβ,K0]ρ
1−α−β)

=
1

2
(trρK†

0K0 − trραK0ρ
1−αK†

0 − trρβK0ρ
1−βK†

0 + trρα+βK0ρ
1−α−βK†

0)

=
1

2
(trρK†K − trραKρ1−αK† − trρβKρ1−βK† + trρα+βKρ1−α−βK†), (3)

where α, β ≥ 0, α + β ≤ 1, which is called modified generalized Wigner-Yanase-Dyson
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(MGWYD) skew information quantifying the quantum uncertainty of K in ρ, and

Cα,β(ρ,K) =V α,β(ρ,K)−Qα,β(ρ,K)

=
1

2
(trραK0ρ

1−αK†
0 + trρβK0ρ

1−βK†
0)

=
1

2
(trραKρ1−αK† + trρβKρ1−βK†)− |trρK|2, α, β ≥ 0, α+ β ≤ 1, (4)

which quantifies the classical uncertainty of K in ρ.

The WY skew information [10] Q(ρ,H) = −1
2tr[

√
ρ,H]2 has been introduced as a

measure of information content of observables not commuting with (skew to) the con-

served observable H in the state ρ. However, as we have mentioned, some important

operators are non-Hermitian. With respect to the WY skew information, Q(ρ,H) =

−1
2tr[

√
ρ,H†][

√
ρ,H], the modifiedWigner-Yanase skew information Q(ρ,K) = −1

2tr[
√
ρ,

K†][
√
ρ,K] has been defined in [7, 53] (up to a constant factor in [53]), which may be

interpreted as a measure of information content of observables skew to the Hamiltonian

K in the state ρ in PT-symmetric quantum mechanics. In this regard, we can say that

the generalized quantity Qα,β(ρ,K) provides a family of quantifiers of such information

content.

It is proved that [14] Qα,β(ρ,H) = −1
2tr([ρ

α,H][ρβ ,H]ρ1−α−β) is convex in ρ when

α, β ∈ [0, 1] with α+ 2β ≤ 1 and 2α+ β ≤ 1. By using the Morozova-Chentsov function

of a regular metric, the WYD skew information has been extended to the metric adjusted

skew information (of a state with respect to a conserved observable) [54], which is a non-

negative quantity bounded by the variance (of an observable in a state) that vanishes for

observables commuting with the state. Note that 2Qα,β(ρ,H) is a metric adjusted skew

information [14], where the Morozova-Chentsov function is

c(x, y) =
1

(x− y)2
[(xα − yα)(x1−α − y1−α) + (xβ − yβ)(x1−β − y1−β)

−(xα+β − yα+β)(x1−α−β − y1−α−β)].

The MGWYD skew information Qα,β(ρ,K) is also convex in ρ when α, β ∈ [0, 1] with

α + 2β ≤ 1 and 2α + β ≤ 1 [25]. By using the Lieb’s theorem [16, 55], it can be easily

obtained that Cα,β(ρ,K) is concave in ρ for α, β ≥ 0, α+β ≤ 1. These facts demonstrate

that Qα,β(ρ,K) and Cα,β(ρ,K) could serve as the quantifiers of quantum and classical

uncertainty, respectively.

Consider a quantum channel Φ given by Kraus operators {Ki}, Φ(ρ) =
∑

iKiρK
†
i .

We introduce the total uncertainty of the quantum channel Φ based on MGV,

V α,β(ρ,Φ) =
∑

i

V α,β(ρ,Ki), α, β ≥ 0, α+ β ≤ 1. (5)
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By using Eq. (1), V α,β(ρ,Φ) can be further rewritten as,

V α,β(ρ,Φ) =
1 +

∑

i trρ
α+βKiρ

1−α−βK†
i

2
−
∑

i

|trρKi|2

=
1 + trρα+βΦ(ρ1−α−β)

2
−
∑

i

|trρKi|2, α, β ≥ 0, α+ β ≤ 1. (6)

When α + β = 1, V α,β(ρ,Φ) reduces to V (ρ,Φ), and Eq. (6) reduces to the following

equation in [9], i.e.,

V (ρ,Φ) =
1 + trρΦ(1)

2
−
∑

i

|trρKi|2, (7)

where 1 is the identity operator and Φ(1) =
∑

iKiK
†
i .

Let {Ei} and {Fj} be two sets of Kraus operators of the quantum channel Φ. Then

there exists a unitary matrix U = (uij) such that Ei =
∑

j uijFj for any i [16]. From (6)

we can easily check that V α,β(ρ,Φ) is independent of the choice of the Kraus operators

of Φ, namely, V α,β(ρ,Φ) is well-defined. For each α, β with α, β ≥ 0, α+ β ≤ 1, we can

prove that the uncertainty V α,β(ρ,Φ) has the following elegant properties:

(i) (Non-negativity) V α,β(ρ,Φ) ≥ 0, with the equality holds if and only if ρ
α+β

2 Kiρ
1−α−β

2

= Ki
√
ρ = (trρKi)

√
ρ for any i.

(ii) (Linearity) V α,β(ρ,Φ) is positive-real-linear with respect to the channel Φ, i.e.,

V α,β(ρ, λ1Φ1+λ2Φ2) = λ1V
α,β(ρ,Φ1)+λ2V

α,β(ρ,Φ2) for any λ1, λ2 ≥ 0 and any quantum

channels Φ1 and Φ2.

(iii) (Concavity) V α,β(ρ,Φ) is concave with respect to ρ, i.e., V α,β(
∑

j λjρj,Φ) ≥
∑

j λjV
α,β(ρj ,Φ), where λj ≥ 0 for each j with

∑

j λj = 1.

(iv) (Unitary invariance) V α,β(UρU †, UΦU †) = V α,β(ρ,Φ) for any unitary operators

U , where UΦU †(ρ) =
∑

i(UKiU
†) ρ(UKiU

†)† with Φ(ρ) =
∑

iKiρK
†
i .

(v) (Ancillary independence) V α,β(ρA⊗ρB ,ΦA⊗IB) = V α,β(ρA,ΦA), where ρA and

ρB are any states of systems A and B, respectively, and IB is the identity channel on

system B.

(vi) (Increasing under partial trace) V α,β(ρAB ,ΦA⊗IB) ≤ V α,β(ρA,ΦA), where ρAB

is any bipartite state on joint system AB, (ρA)
α+β

= trB [(ρ
AB)α+β ] is the reduced state

on system A, and IB is the identity channel on system B.

(vii) (Subadditivity) V α,β(ρAB ,ΦA⊗IB+IA⊗ΦB) ≤ V α,β(ρA,ΦA)+V α,β(ρB ,ΦB),

where (ρA)
α+β

= trB [(ρ
AB)α+β ] and (ρB)α+β = trA[(ρ

AB)α+β ] are the reduced states

with respect to the subsystems A and B, ΦA and ΦB are the channels on systems A and

B, and IA and IB are the identity channels on systems A and B, respectively.

The above properties can be proved in the following way. From the definition,

V α,β(ρ,Φ) ≥ 0 is obvious. V α,β(ρ,Φ) = 0 if and only if V α,β(ρ,Ki) = 0 for any i,
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i.e., tr(ρα+βKi0ρ
1−α−βK†

i0) = tr(ρK†
i0Ki0) = 0, which is equivalent to ρ

α+β

2 Kiρ
1−α−β

2 =

Ki
√
ρ = (trρKi)

√
ρ. Therefore, item (i) is proved.

By rewriting (6) as

V α,β(ρ,Φ) =
1 +

∑

i trρ
α+βKiρ

1−α−βK†
i

2
−

d
∑

l,m=1

tr[Φ(|l〉〈m|ρ)|m〉〈l|ρ],

where α, β ≥ 0, α+β ≤ 1 and {|l〉}dl=1 is an orthonormal basis in H, it is not difficult to

show that V α,β(ρ,Φ) is positive-real-linear in Φ. Hence, item (ii) holds.

Let X be a matrix, and 0 ≤ t ≤ 1. By using the Lieb’s theorem [16,55], the function

f(A,B) = tr(X†AtXB1−t) is jointly concave in positive matrices A and B, which implies

that f
(

∑

j λjAj ,
∑

j λjBj

)

≥
∑

j λjf(Aj, Bj), where λj ≥ 0 with
∑

j λj = 1, and Aj,

Bj be positive matrices for each j. Taking Aj = Bj = ρj, t = α + β, and X = Ki,

we obtain tr
[

(
∑

j λjρj)
α+βKi(

∑

j λjρj)
1−α−βK†

i

]

≥ ∑

j λjtrρ
α+β
j Kiρ

1−α−β
j K†

i for each

i. Note that |tr(∑j λjρj)Ki|2 ≤ ∑

j λj |trρjKi|2 holds for each i. Summing over i on

both sides of the two inequalities, item (iii) follows immediately.

Noting that (UρU †)α+β = Uρα+βU † and (UρU †)1−α−β = Uρ1−α−βU † for α, β ≥ 0

with α+ β ≤ 1, by Eq. (6) and the cyclicity of the trace, item (iv) can be derived.

Suppose that ΦA(ρ) =
∑

iK
A
i ρK

A
i

†
. Direct calculation shows that

tr(ρA ⊗ ρB)α+β(ΦA ⊗ IB)((ρA ⊗ ρB)1−α−β)

=tr((ρA)
α+β ⊗ (ρB)

α+β
)(ΦA((ρA)

1−α−β
)⊗ (ρB)

1−α−β
)

=tr((ρA)
α+β

(ΦA((ρA)
1−α−β

)⊗ ρB)

=tr(ρA)
α+β

ΦA((ρA)
1−α−β

),

and tr(ρA ⊗ ρB)(KA
i ⊗ 1B) = tr(ρAKA

i ⊗ ρB) = tr(ρAKA
i ). Thus, it follows from Eq. (6)

that item(v) holds.

For item (vi), let W be any operator on HA ⊗HB, then tr((FA ⊗ 1B)W ) = tr(FA ·
trBW ) for any FA on HA, where 1B denotes the identity operator on HB [56]. Thus

V α,β(ρAB ,ΦA ⊗ IB)

=
1 +

∑

i tr(ρ
AB)α+β(KA

i ⊗ 1B)(ρ
AB)1−α−β(KA

i

† ⊗ 1B)

2
−
∑

i

|trρAB(KA
i ⊗ 1B)|

2

≤1 +
∑

i tr(ρ
A)α+βKA

i (ρ
A)1−α−βKA

i

†

2
−
∑

i

|trρAKA
i

†|
2

=V α,β(ρA,ΦA), α, β ≥ 0, α+ β ≤ 1,

where KA
i

†
are the Kraus operators of the channel ΦA, and the last inequality follows

from Lieb’s concavity theorem [55].
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Combining items (ii) and (vi), item (vii) follows immediately.

The quantum uncertainty of Φ in ρ is defined by

Qα,β(ρ,Φ) =
∑

i

Qα,β(ρ,Ki), α, β ≥ 0, α+ β ≤ 1. (8)

By using Eq. (3), Qα,β(ρ,Φ) can be further rewritten as,

Qα,β(ρ,Φ) =
1

2

∑

i

(trρK†
iKi − trραKiρ

1−αK†
i − trρβKiρ

1−βK†
i + trρα+βKiρ

1−α−βK†
i )

=
1

2
[1− trραΦ(ρ1−α)− trρβΦ(ρ1−β) + trρα+βΦ(ρ1−α−β)], (9)

where α, β ≥ 0, α + β ≤ 1, which could be viewed as a family of coherence measures

with respect to a channel Φ under certain restrictive conditions [25]. When α = β = 1
2 ,

Qα,β(ρ,Φ) reduces to

Q(ρ,Φ) =
∑

i

Q(ρ,Ki) =
1 + trρΦ(1)

2
− tr

√
ρΦ(

√
ρ),

which has been introduced in [9, 53] (up to a constant factor in [53]). Based on the

interpretation of Qα,β(ρ,K), Qα,β(ρ,Φ) can be interpreted as a family of quantifiers of

the information content of channels skew to Φ in the state ρ.

The quantity Q(ρ,Φ) (denoted as I(ρ,Φ) in [53]), which arises naturally from alge-

braic and geometric manipulation of state-channel interaction, has intrinsic informational-

theoretical meaning. In fact, it can be intuitively interpreted as the asymmetry, coher-

ence, noncommutativity, quantumness and quantum uncertainty (of state ρ with respect

to channel Φ) [53]. By replacing the commutator with anti-commutator in Q(ρ,Φ), the

quantity J(ρ,Φ), the dual to Q(ρ,Φ) (I(ρ,Φ)), has also been defined and interpreted as

the symmetry, incoherence, commutativity, classicality and classical uncertainty (of state

ρ with respect to channel Φ) [53]. The symmetry-asymmetry complementarity relations

have been derived and applied to quantification of the degree of symmetry and wave-

particle duality [25, 53]. The generalized quantity Qα,β(ρ,Φ) can therefore serve as a

family of quantifiers of the measures, similar to the interpretations of Q(ρ,Φ). Note that

in this paper, we follow the lines of [9] and identify Qα,β(ρ,Φ) with quantum uncertainty,

whereas the classical uncertainty Cα,β(ρ,Φ) is identified by fixing the difference of the

total uncertainty (quantified by MGV V α,β(ρ,Φ)) and the quantum uncertainty, which

is a little different from the formulations in [53].

Remark 2.1 Note that Q(ρ,Φ) is ancillary independent, decreasing under partial

trace and superadditive [53]. The ancillary independence (in a strong version, which is

in fact invariance under partial trace) and additivity of V (ρ,Φ) has been proved in [9].

However, for V α,β(ρ,Φ) with α, β ≥ 0 and α+β ≤ 1, we can only prove that it is ancillary

independent (in the sense of [53]), increasing under partial trace and subadditive.
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We define the classical uncertainty of Φ in ρ as

Cα,β(ρ,Φ) =
∑

i

Cα,β(ρ,Ki), α, β ≥ 0, α+ β ≤ 1. (10)

By using Eq. (4), Cα,β(ρ,Φ) can be further rewritten as,

Cα,β(ρ,Φ) =
1

2

∑

i

(trραKiρ
1−αK†

i + trρβKiρ
1−βK†

i )−
∑

i

|trρKi|2

=
1

2
[trραΦ(ρ1−α) + trρβΦ(ρ1−β)]−

∑

i

|trρKi|2, (11)

where α, β ≥ 0, α + β ≤ 1. When α = β = 1
2 , C

α,β(ρ,Φ) reduces to C(ρ,Φ), and Eq.

(11) reduces to the following equation in [9], i.e.,

C(ρ,Φ) =
∑

i

C(ρ,Ki) = tr
√
ρΦ(

√
ρ)−

∑

i

|trρKi|2.

It can also be verified that the quantities Qα,β(ρ,Φ) and Cα,β(ρ,Φ) defined in Eqs. (8)

and (10) are independent of the choice of the Kraus operators of Φ. Consequently we

have

V α,β(ρ,Φ) = Qα,β(ρ,Φ) + Cα,β(ρ,Φ), α, β ≥ 0, α+ β ≤ 1, (12)

which means that the total uncertainty of a quantum channel can also be decomposed

into the quantum and classical counterparts. As is shown in [9], we can similarly verify

that Cα,β(ρ,Φ) = 0 when ρ = |ψ〉〈ψ| is a pure state, and in this case

V α,β(ρ,Φ) = Qα,β(ρ,Φ) =
1

2

(

1−
∑

i

〈ψ|Ki|ψ〉〈ψ|K†
i |ψ〉

)

=
1

2

(

1−
∑

i

〈Ki〉〈K†
i 〉
)

=
1

2

(

1−
∑

i

|〈Ki〉|2
)

, (13)

where 〈Ki〉 denotes the expectation value of Ki for each i. Suppose that ρ is a state on

quantum system B and A is an ancillary system. Define a pure state |ψAB〉 for the joint

system AB such that trA|ψAB〉〈ψAB | = ρ. By Eq. (13) and property (vi) of V α,β(ρ,Φ),

we have

V α,β(ρ,Φ) ≥ V α,β(|ψAB〉〈ψAB |,IA ⊗ Φ) = Qα,β(|ψAB〉〈ψAB |,IA ⊗ Φ).

It shows that the total uncertainty of a quantum channel Φ in a state ρ is no less than

the quantum uncertainty of this channel in the corresponding purified states |ψAB〉.

3 A trade-off relation between MGV-based total uncertainty of quantum

channels and entanglement fidelity
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In this section, we first recall the concepts of entanglement fidelity, entropy exchange, and

coherent information. We then derive a trade-off relation between the MGV-based total

uncertainty of quantum channels and the entanglement fidelity. Furthermore, we exploit

this trade-off relation to explore the relations between the MGV-based total uncertainty

of quantum channels and entropy exchange/coherent information.

For a quantum state ρ and a quantum channel Φ on system B, the entanglement

fidelity is defined as [16,51]

Fe(ρ,Φ) =F (|ψAB〉,IA ⊗ Φ(|ψAB〉〈ψAB |))2

=〈ψAB |IA ⊗ Φ(|ψAB〉〈ψAB |)|ψAB〉, (14)

where A is an auxiliary system, |ψAB〉 is a purification of ρ satisfying trA|ψAB〉〈ψAB | = ρ,

and F (σ1, σ2) = tr
√√

σ1σ2
√
σ1 is the quantum fidelity between quantum states σ1 and

σ2. The entanglement fidelity provides a quantification of to what extent the entangle-

ment of |ψAB〉 can be preserved under the quantum channel Φ. Fe(ρ,Φ) does not depend

on the ways of purification and can be rewritten as [16],

Fe(ρ,Φ) =
∑

i

|trρKi|2. (15)

For a quantum state ρ and a quantum channel Φ on system B, the entropy exchange

is defined as [51]

Se(ρ,Φ) = S(ρA
′B′

) = −trρA
′B′

logρA
′B′

, (16)

where ρA
′B′

= IA⊗Φ(|ψAB〉〈ψAB |), |ψAB〉 is a purification of ρ with auxiliary system A,

S(σ) = −trσlogσ is the von Neumann entropy of a quantum state σ, and the logarithm

‘log’ is taken to be base 2. The entropy exchange quantifies the amount of informa-

tion exchanged between system B and the environment under the action of channel Φ.

Correspondingly, the coherent information is defined as [52]

Ic(ρ,Φ) = S(ρ′)− Se = S(ρ′)− S(ρA
′B′

), (17)

where ρ′ = Φ(ρ) is the state of system B under the action of channel Φ. Ic(ρ,Φ) identifies

how much quantum information is transmitted when the quantum channel is applied.

Utilizing Eqs. (6) and (15), we obtain the following trade-off relation between the

MGV-based total uncertainty of quantum channels and the entanglement fidelity,

V α,β(ρ,Φ) + Fe(ρ,Φ) =
1 + trρα+βΦ(ρ1−α−β)

2

≤1 + λmax(Φ(ρ
1−α−β))trρα+β

2
, (18)

where α, β ≥ 0, α + β ≤ 1, and λmax(·) denotes the maximum spectrum of a matrix.

This trade-off relation is an extension of Eq. (4) in [9], showing that the entanglement

9



fidelity Fe(ρ,Φ) cannot be too large if the total uncertainty of Φ in ρ is large. We find

that if the nonzero eigenvalues of Φ(ρ1−α−β) are all equal, then the inequality (18) is

saturated. Note that if α+ β = 1 and Φ is unital, we get

V (ρ,Φ) + Fe(ρ,Φ) = 1,

which has been established in Ref. [9], and may be viewed as a demonstration of certain

information conservation.

For pure states ρ = |ψ〉〈ψ|, we have trρα+βΦ(ρ1−α−β) =
∑

i |〈ψ|Ki|ψ〉|2 =
∑

i |trρKi|2

= Fe(ρ,Φ). Thus Eq. (18) can be rewritten as the following trade-off relation,

2V α,β(|ψ〉〈ψ|,Φ) + Fe(|ψ〉〈ψ|,Φ) = 1.

It can be seen that the total uncertainty V α,β(|ψ〉〈ψ|,Φ) (or equivalently, the quantum

uncertainty Qα,β(|ψ〉〈ψ|,Φ), which is due to Eq. (13)) characterizes the information loss

associated with the entanglement of the initial purified state |ψAB〉.
We now apply these trade-off relations to deduce the connections between the total

uncertainty of quantum channels and the entropy exchange/coherent information as a

consequence of the above trade-off relation. Recall that the quantum Fano inequality is

Se(ρ,Φ) ≤ H(Fe(ρ,Φ)) + (1 − Fe(ρ,Φ))log(d
2 − 1), where H(·) is the binary Shannon

entropy, i.e., H(p) = −plogp − (1 − p)log(1 − p) for 0 ≤ p ≤ 1 [16]. Combining this

inequality, Eq. (18), and the facts that H(Fe(ρ,Φ)) ≤ 1 and log(d2−1) ≤ 2logd, we have

Se(ρ,Φ) ≤ H

(

1 + trρα+βΦ(ρ1−α−β)− 2V α,β(ρ,Φ)

2

)

+

(

2V α,β(ρ,Φ) + 1− trρα+βΦ(ρ1−α−β)

2

)

log(d2 − 1)

≤ 1 + (2V α,β(ρ,Φ) + 1− trρα+βΦ(ρ1−α−β))logd,

where α, β ≥ 0 and α+ β ≤ 1. Therefore, the MGV-based total uncertainty of quantum

channels V α,β(ρ,Φ) can serve as an upper bound of the entropy exchange Se(ρ,Φ),

1 + (2V α,β(ρ,Φ) + 1− trρα+βΦ(ρ1−α−β))logd ≥ Se(ρ,Φ), (19)

where α, β ≥ 0, α + β ≤ 1, and d is the dimension of the system Hilbert space. This

demonstrates that if the information exchange with environment is large, the total un-

certainty of quantum channels cannot be arbitrarily small. Note that when α + β = 1

and Φ is unital, we get

1 + 2V (ρ,Φ)logd ≥ Se(ρ,Φ),

which has been established in Ref. [9].

The quantum Fano inequality reveals that if the entropy exchange for a process is

large, then the entanglement fidelity for the process must necessarily be small, indicating

10



that the entanglement between A and B has not been well preserved [16]. This inequality

is saturated if ρA
′B′

= diag(p1, p2, · · · , pd2), where p1 = Fe(ρ,Φ) and pi = (1−p1)/(d2−1)

for i = 2, · · · , d2 [16]. Note that H(Fe(ρ,Φ)) attains its maximum value of 1 at Fe(ρ,Φ) =

1/2, while log(d2−1) ≤ 2logd cannot be saturated for any finite number d, but the values

of log(d2 − 1) and 2logd can be arbitrarily close when d is sufficiently large. This implies

that if ρA
′B′

= diag(1/2, 1/2(d2 − 1), · · · , 1/2(d2 − 1)) and d is very large, we have

Se(ρ,Φ) = 1 +
1

2
log(d2 − 1) ≈ 1 + logd,

and in this case, V α,β(ρ,Φ) = 1
2trρ

α+βΦ(ρ1−α−β). Thus, we can say that Eq. (19) is

saturated approximately in a high-dimensional Hilbert space (the dimension d is large

enough) when ρA
′B′

= diag(1/2, 1/2(d2 − 1), · · · , 1/2(d2 − 1)).

From Eqs. (17) and (19), we obtain

1 + (2V α,β(ρ,Φ) + 1− trρα+βΦ(ρ1−α−β))logd+ Ic(ρ,Φ) ≥ S(ρ′),

where α, β ≥ 0, α+ β ≤ 1.

Combining Eq. (19) and the above inequality, we obtain

2 + 2(2V α,β(ρ,Φ) + 1− trρα+βΦ(ρ1−α−β))logd+ Ic(ρ,Φ)

≥Se(ρ,Φ) + S(ρ′)

≥S(ρ) + 2Se(ρ,Φ)

≥S(ρ),

where the second inequality follows from the fact that S(ρ′) − S(ρ) ≥ Se(ρ,Φ) [16, 52],

and we can further obtain

2(2V α,β(ρ,Φ) + 1− trρα+βΦ(ρ1−α−β))logd+ Ic(ρ,Φ) ≥ S(ρ)− 2, (20)

where α, β ≥ 0, α+ β ≤ 1, which gives a relation between the MGV-based total uncer-

tainty of quantum channels and the coherent information. This is a manifestation that

the total uncertainty of quantum channels cannot be arbitrarily small when the coherent

information is very small. Note that when α+ β = 1 and Φ is unital, we get

4V (ρ,Φ)logd+ Ic(ρ,Φ) ≥ S(ρ)− 2,

which has been established in Ref. [9].

From the proof of Eq. (20), it can be easily seen that it is saturated approximately

in a high-dimensional Hilbert space (the dimension d is large enough) when ρA
′B′

=

diag(1/2, 1/2(d2 − 1), · · · , 1/2(d2 − 1)) and Φ preserves the von Neumann entropy (i.e.,

S(ρ′) = S(ρ)).

4 Examples and an experimental protocol
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In this section, we calculate the total uncertainty V α,β(ρ,Φ) and the quantum uncertainty

Qα,β(ρ,Φ) for several typical quantum channels, and illustrate the trade-off relation (18),

inequalities (19) and (20) for specific channels and states.

A qubit state can be written as ρ = 1
2 (1+ r · σ), where r = (r1, r2, r3) is the Bloch

vector satisfying |r| ≤ 1, σ = (σ1, σ2, σ3) with σj (j = 1, 2, 3) the Pauli matrices, and

r ·σ =
∑3

j=1 rjσj . Denote r = |r|. Then the eigenvalues of ρ are λ1,2 = (1∓r)/2 and [57]

ρκ =

(

λκ
1+λκ

2

2 +
r3(λκ

2−λκ
1 )

2r
(−r1+ir2)(λκ

1−λκ
2 )

2r
(−r1−ir2)(λκ

1
−λκ

2
)

2r
λκ
1
+λκ

2

2 − r3(λκ
2
−λκ

1
)

2r

)

.

Example 1 Consider the amplitude damping channel Φ(ρ) =
∑2

i=1KiρK
†
i with the

Kraus operators

K1 =

(

1 0

0
√
1− p

)

, K2 =

(

0
√
p

0 0

)

, 0 ≤ p ≤ 1.

The total uncertainty and quantum uncertainty of Φ for the qubit state ρ are

V α,β(ρ,Φ)

=

[

1

4
(λα+β

1 + λα+β
2 )(λ1−α−β

1 + λ1−α−β
2 )− pr2

4
+

(p+
√
1− p− 1)

2
r23

−2pr3 − p+ 2
√
1− p

4
+
pr3
4r

(λ1−α−β
1 λα+β

2 − λ1−α−β
2 λα+β

1 + λ2 − λ1)

+
[2− p− pr23 + 2

√
1− p(r2 − r23)]

8r2
(λα+β

1 − λα+β
2 )(λ1−α−β

1 − λ1−α−β
2 )

]

(21)

and

Qα,β(ρ,Φ) =
1

2

[

(1−√
1− p)(r21 + r22) + pr23

2r2
(λ1−α−β

1 + λ1−α−β
2 )

+
pr3
2r

(λ1−α−β
1 − λ1−α−β

2 )
]

(λα1 − λα2 )(λ
β
1 − λβ2 ), (22)

respectively, where α, β ≥ 0 and α+ β ≤ 1.

Example 2 Consider the phase damping channel Φ(ρ) =
∑2

i=1KiρK
†
i with the Kraus

operators

K1 =

(

1 0

0
√
1− p

)

, K2 =

(

0 0

0
√
p

)

, 0 ≤ p ≤ 1.

The total uncertainty and quantum uncertainty of Φ for the qubit state ρ are

V α,β(ρ,Φ)

=

[

1

4
(λα+β

1 + λα+β
2 )(λ1−α−β

1 + λ1−α−β
2 )− [

√
1− p+ (1−√

1− p)r23]

2

+
[(1−√

1− p)r23 +
√
1− pr2]

4r2
(λα+β

1 − λα+β
2 )(λ1−α−β

1 − λ1−α−β
2 )

]

(23)

12



and

Qα,β(ρ,Φ)

=
1

2

(1−√
1− p)(r21 + r22)

2r2
(λα1 − λα2 )(λ

β
1 − λβ2 )(λ

1−α−β
1 + λ1−α−β

2 ), (24)

respectively, where α, β ≥ 0 and α+ β ≤ 1.

Example 3 For the depolarizing channel

Φ(ρ) = (1− 3p)ρ+ p

3
∑

j=1

σjρσj, 0 ≤ p ≤ 1

3
,

the total uncertainty and quantum uncertainty of Φ for the qubit state ρ are given by

V α,β(ρ,Φ) =
1

4

[

2 + (λα+β
1 + λα+β

2 )(λ1−α−β
1 + λ1−α−β

2 )

+(1− 4p)(λα+β
1 − λα+β

2 )(λ1−α−β
1 − λ1−α−β

2 )
]

− (1− 3p+ pr2) (25)

and

Qα,β(ρ,Φ) = p(λα1 − λα2 )(λ
β
1 − λβ2 )(λ

1−α−β
1 + λ1−α−β

2 ), (26)

respectively, where α, β ≥ 0 and α+ β ≤ 1.

Example 4 The completely decoherent channel [58,59] is given by Φ(ρ) =M ◦ ρ, where
M is a correlation matrix which is positive semidefinite with all the diagonal elements 1,

and ◦ denotes the Hardamard product of matrices. For the following 2 × 2 correlation

matrix,

M =

(

1 θ

θ 1

)

, − 1 ≤ θ ≤ 1,

we have the total uncertainty and quantum uncertainty of Φ for the qubit state ρ,

V α,β(ρ,Φ) =

[

1

4
(λα+β

1 + λα+β
2 )(λ1−α−β

1 + λ1−α−β
2 )− r3

2 + θ − r3
2θ

2

+
1

r2
(λα+β

1 − λα+β
2 )(λ1−α−β

1 − λ1−α−β
2 )(θr2 + r23 − θr23)

]

(27)

and

Qα,β(ρ,Φ) =
(λα+β

1 + λα+β
2 )(λ1−α−β

1 + λ1−α−β
2 ) + 2

4

−(λα1 + λα2 )(λ
1−α
1 + λ1−α

2 ) + (λβ1 + λβ2 )(λ
1−β
1 + λ1−β

2 )

4

−r
2
3 + θ(r21 + r22)

4r2
[(λα1 − λα2 )(λ

1−α
1 − λ1−α

2 ) + (λβ1 − λβ2 )(λ
1−β
1 − λ1−β

2 )]

+
r23 + θ(r21 + r22)

4r2
(λα+β

1 − λα+β
2 )(λ1−α−β

1 − λ1−α−β
2 ), (28)
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respectively, where α, β ≥ 0 and α+ β ≤ 1.

In the next example we plot the total uncertainty V α,β(ρ,Φ) and quantum uncer-

tainty Qα,β(ρ,Φ) for two kinds of important quantum states, the Werner and isotropic

states.

Example 5 Fix an orthonormal basis {|l〉}dl=1 of a d-dimensional Hilbert space H,

{|l〉〈m|}dl,m=1 is an orthonormal basis of B(H), with the Hilbert-Schmidt inner prod-

uct 〈A†|B〉:=trAB. For simplicity, denote by {Xi}d
2

i=1 the orthonormal basis of B(H).

It can be verified that Φ(ρ) =
∑d2

i=1XiρX
†
i /d is a quantum channel. For this quantum

channel we have

V α,β(ρ,Φ) =
1

2d
[d+ trρα+βtrρ1−α−β − 2trρ2] (29)

and

Qα,β(ρ,Φ) =
1

2d
[d+ trρ1−α−βtrρα+β − trρ1−αtrρα − trρ1−βtrρβ], (30)

where α, β ≥ 0 and α+ β ≤ 1.

Now we derive the total uncertainty and quantum uncertainty in Eqs. (29) and (30)

for two classes of states, the Werner state and the isotropic state, respectively. First

consider the Werner state,

ρw =











1
3p 0 0 0

0 1
6 (3− 2p) 1

6(4p − 3) 0

0 1
6 (4p− 3) 1

6(3− 2p) 0

0 0 0 1
3p











,

where p ∈ [0, 1]. Note that ρw is separable when p ∈ [0, 13 ]. According to Eqs. (29) and

(30), we obtain

V α,β(ρw,Φ)

=
1

8

[

3 + 6p − 8p2

3
+ 3α+βp1−α−β(1− p)α+β + 31−α−βpα+β(1− p)1−α−β

]

(31)

and

Qα,β(ρw,Φ)

=
1

8

[

3− 2p − 31−αpα(1− p)1−α − 3αp1−α(1− p)α − 31−βpβ(1− p)1−β

−3βp1−β(1− p)β + 31−α−βpα+β(1− p)1−α−β + 3α+βp1−α−β(1− p)α+β
]

. (32)

Fig. 1 illustrates the values of V α,β(ρw,Φ) and Q
α,β(ρw,Φ) given in Eqs. (31) and (32)

with α = 1
5 and β = 3

10 . Direct calculation shows that V α,β(ρw,Φ) − Qα,β(ρw,Φ),

i.e., the classical uncertainty Cα,β(ρw,Φ) reaches its maximum value of 0.9375 when

p = 3
4 , α = 0.120797 and β = 0.650832. Interestingly, the linear entropy (mixedness)

1 − trρ2w = 2p − 4
3p

2 of the Werner state attains its maximum value of 3
4 when p = 3

4 .
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In Fig. 2, we plot the surfaces of total uncertainty V α,β(ρw,Φ), quantum uncertainty

Qα,β(ρw,Φ) in Eqs. (31) and (32), and their gap, the classical uncertainty Cα,β(ρw,Φ),

for fixed values of p.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

y

Figure 1: The y-axis is the values of V α,β(ρw,Φ) and Qα,β(ρw,Φ). Dashed (solid) line

represents the value of V α,β(ρw,Φ) (Q
α,β(ρw,Φ)) in Eq. (31) (Eq. (32)) with α = 1

5 and

β = 3
10 . Note that the Werner state ρw degenerates to a pure state when p = 0 and in

this case V α,β(ρw,Φ) = Qα,β(ρw,Φ).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Surfaces of V α,β(ρw,Φ) and Qα,β(ρw,Φ) with fixed p: (a) p = 1
4 ; (b) p = 1

2 ;

(c) p = 3
4 ; (d) p = 1, where the red (blue) surface represents the value of V α,β(ρw,Φ)

(Qα,β(ρw,Φ)) in Eq. (31) (Eq. (32)). Surfaces of the gap Cα,β(ρw,Φ) in (a)-(d) with

fixed p: (e) p = 1
4 ; (f) p = 1

2 ; (g) p = 3
4 ; (h) p = 1, where the green surface represents

the value of Cα,β(ρw,Φ).
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Now consider the isotropic state,

ρiso =











1
6(2F + 1) 0 0 1

6(4F − 1)

0 1
3(1− F ) 0 0

0 0 1
3 (1− F ) 0

1
6(4F − 1) 0 0 1

6(2F + 1)











,

where F ∈ [0, 1], which is separable when F ∈ [0, 12 ]. According to Eqs. (29) and (30),

we obtain

V α,β(ρiso,Φ) =
1

24

[

19− 2F − 8F 2 + 32−α−βF 1−α−β(1− F )α+β

+31+α+βFα+β(1− F )1−α−β
]

(33)

and

Qα,β(ρiso,Φ)

=
1

8

[

1 + 2F − 31−αF 1−α(1− F )α − 3αFα(1− F )1−α − 31−βF 1−β(1− F )β−

3βF β(1− F )1−β + 3α+βFα+β(1− F )1−α−β + 31−α−βF 1−α−β(1− F )α+β
]

.(34)

Fig. 3 illustrates the uncertainties V α,β(ρiso,Φ) and Q
α,β(ρiso,Φ) in Eqs. (30) and (31)

with α = 1
5 and β = 3

10 , respectively. By calculation, it is found that V α,β(ρiso,Φ) −
Qα,β(ρiso,Φ) reaches its maximum value of 0.9375 when F = 1

4 , α = 0.210985 and

β = 0.479723. Interestingly, the linear entropy (mixedness) 1− trρ2iso =
2
3 +

2
3F − 4

3F
2 of

the isotropic state attains its maximum value of 3
4 when F = 1

4 . In Fig. 4, we plot the

surfaces of the total uncertainty V α,β(ρiso,Φ) and the quantum uncertainty Qα,β(ρiso,Φ)

in Eqs. (33) and (34), respectively, and their gap, the classical uncertainty Cα,β(ρiso,Φ),

for fixed values of F .

0.0 0.2 0.4 0.6 0.8 1.0
F

0.2

0.4

0.6

0.8

1.0

y

Figure 3: The y-axis shows the values of V α,β(ρiso,Φ) and Q
α,β(ρiso,Φ). Dashed (solid)

line represents the value of V α,β(ρiso,Φ) (Qα,β(ρiso,Φ)) in Eq. (33) (Eq. (34)) with

α = 1
5 and β = 3

10 , respectively. The isotropic state ρiso degenerates into a pure state

when F = 1 and in this case V α,β(ρiso,Φ) = Qα,β(ρiso,Φ).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Surfaces of V α,β(ρiso,Φ) and Q
α,β(ρiso,Φ) with fixed F : (a) F = 0; (b) F = 1

4 ;

(c) F = 1
2 ; (d) F = 3

4 , where the red (blue) surface represents the value of V α,β(ρiso,Φ)

(Qα,β(ρiso,Φ)) in Eq. (33) (Eq. (34)). Surfaces of the gap Cα,β(ρiso,Φ) in (a)-(d) with

fixed F : (e) F = 0; (f) F = 1
4 ; (g) F = 1

2 ; (h) F = 3
4 , where the green surface represents

the value of Cα,β(ρiso,Φ).

By plotting the animation of Fig. 2 and Fig. 4 for p ∈ [0, 1] and F ∈ [0, 1], re-

spectively, it can be seen that for the Werner state ρw, the maximum value of classical

uncertainty of the channel Cα,β(ρw,Φ) increases with the increase of p when p ∈ [0, 34 ],

and decreases with the increase of p when p ∈ [34 , 1], while for the isotropic state ρiso, the

maximum value of Cα,β(ρiso,Φ) increases with the increase of F when F ∈ [0, 14 ], and

decreases with the increase of F when F ∈ [14 , 1]. For either the Werner state ρw or the

isotropic state ρiso, the classical uncertainty of the channel is maximal when the linear

entropy (mixedness) is maximal.

Example 6 Consider the von Neumann measurement Π(ρ) =
∑

i ΠiρΠi, where Πi =

|i〉〈i| with {|i〉}di=1 being an orthonormal basis of H. It is easy to derive that

V α,β(ρ,Π) =
1

2

[

1 +
∑

i

〈i|ρα+β |i〉〈i|ρ1−α−β |i〉
]

−
∑

i

〈i|ρ|i〉2 (35)

and

Qα,β(ρ,Π) =
1

2

[

1 +
∑

i

〈i|ρα+β |i〉〈i|ρ1−α−β |i〉 −
∑

i

〈i|ρβ |i〉〈i|ρ1−β |i〉

−
∑

i

〈i|ρ1−α|i〉〈i|ρα|i〉
]

, (36)

where α, β ≥ 0 and α+ β ≤ 1.

Now we use Example 6 to illustrate Eqs. (18), (19) and (20) for two classes of

states, the Werner state and the isotropic state, respectively. Under this channel, the
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left hand side of inequality (18) is 1
2

(

1 +
∑

i〈i|ρα+β |i〉〈i|ρ1−α−β |i〉
)

, which is equal to
3
4 + p

6 + 1
4 [3

α+β−1p1−α−β(1 − p)α+β + 3−α−βpα+β(1 − p)1−α−β ] for the Werner state ρw.

The right hand side of (18), however, is 1
2(1 + maxiρ

1−α−β
ii trρα+β), which is equal to

3
4 +

1
4(3

1−α−βpα+β(1−p)1−α−β+3α+β−1p1−α−β(1−p)α+β) when p ∈ [0, 34), and
p
2 +

1
2(1+

3α+β−1p1−α−β(1− p)α+β) when p ∈ (34 , 1] for the Werner state ρw. When p = 3
4 , the left

and right hand side of (18) are both 1. For the isotropic state ρiso, the left hand side of

(18) turns out to be 11
12 − F

6 + 1
4 [3

−α−βF 1−α−β(1 − F )α+β + 3α+β−1Fα+β(1− F )1−α−β ],

while the right hand side is 1 + 1
2(3

α+β−1Fα+β(1 − F )1−α−β − F ) when F ∈ [0, 14), and
3
4 + 1

4(3
1−α−βF 1−α−β(1 − F )α+β + 3α+β−1Fα+β(1 − F )1−α−β) when F ∈ (14 , 1]. When

F = 1
4 , the left and right hand side of (18) are both 1.

The left and right hand side of Eq. (19) for the Werner state ρw are

1 + (2V α,β(ρw,Φ) + 1− trρα+β
w Φ(ρ1−α−β

w ))log4 = 3 +
8

3
p− 16

3
p2 (37)

and

Se(ρw,Φ) = (p− 1) log(1− p)− p log
p

3
, (38)

respectively, while the left and right hand side of Eq. (20) are given by

2(2V α,β(ρw,Φ) + 1− trρα+β
w Φ(ρ1−α−β

w ))log4 + Ic(ρw,Φ)

= 4 +
16

3
p− 32

9
p2 + (1− p) log(1− p) +

p

3
log

p

3
− 3− 2p

3
log

3− 2p

6
(39)

and

S(ρw)− 2 = (p− 1) log(1− p)− p log
p

3
− 2, (40)

respectively. Fig. 5 illustrates the quantities in Eqs. (37)-(40) for the Werner state ρw

as a function of p.

0.2 0.4 0.6 0.8 1.0
p

-4

-2

2

4

6

y

Figure 5: The y-axis shows the uncertainty and its lower bounds. Dashed red (solid red)

line represents the value of Eq. (37) (Eq. (38)) for the Werner state ρw; Dashed blue

(solid blue) line represents the value of Eq. (39) (Eq. (40)) for the Werner state ρw.

Now consider the isotropic state ρiso. Direct computation shows that the quantities

on the two sides of Eq. (19) are

1 + (2V α,β(ρiso,Φ) + 1− trρα+β
iso Φ(ρ1−α−β

iso ))log4 =
35

9
+

8

9
F − 16

9
F 2 (41)
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and

Se(ρiso,Φ) = (F − 1) log
1− F

3
− F logF, (42)

respectively, and for Eq. (20), we have

2(2V α,β(ρiso,Φ) + 1− trρα+β
iso Φ(ρ1−α−β

iso ))log4 + Ic(ρiso,Φ)

=
52

9
+

16

9
F (1− 2F ) +

1− F

3
log

1− F

3
+ F log F − 1 + 2F

3
log

1 + 2F

6
(43)

and

S(ρiso)− 2 = (F − 1) log
1− F

3
− F log F − 2. (44)

Fig. 6 illustrates the quantities in Eqs. (41)-(44) for the isotropic state ρiso as a function

of F . Comparing Fig. 5 with Fig. 6, it can be seen that for the Werner state ρw (the

0.2 0.4 0.6 0.8 1.0
F

-4

-2

2

4

6

y

Figure 6: The y-axis shows the uncertainty and its lower bounds. Dashed red (solid red)

line represents the value of Eq. (41) (Eq. (42)) for the isotropic state ρiso; Dashed blue

(solid blue) line represents the value of Eq. (43) (Eq. (44)) for the isotropic state ρiso.

isotropic state ρiso), the gap between Eq. (39) (Eq.(43)) and Eq. (40) (Eq.(44)) is greater

than the one between Eq. (37) (Eq.(41)) and Eq. (38) (Eq.(42)).

Metric-adjusted skew information is known to be measurable by measuring the linear

response function at thermal equilibrium [60]. In recent years, uncertainty relations for

unitary operators have been investigated both theoretically and experimentally [61–63],

and the problem of measuring arbitrary non-Hermitian operators has attracted much

attention [64–66]. We discuss how to measure the total/quantum uncertainty of quantum

channels V α,β(ρ,Φ)/Qα,β(ρ,Φ) for pure states by using an experimental protocol.

We now focus on the case in which ρ is a pure state, i.e., ρ = |ψ〉〈ψ|. By using

Eq. (13), the problem then reduces to how to measure the magnitude of the expectation

values of the non-Hermitian operators Ki.

An arbitrary operator K ∈ B(H) can be decomposed as K = UR, where U is unitary

and R =
√
K†K is positive semidefinite. By utilizing the scheme proposed in [65], we

can measure the magnitude of the expectation value |〈K〉| of a non-Hermitian operator

K by using the Mach-Zehnder interferometer.
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Given a quantum channel Φ with Kraus operators {Ki}. Using the above scheme

in [65], we can fix the values of |〈Ki〉| for each i, and by Eq.(13), both of V α,β(ρ,Φ) and

Qα,β(ρ,Φ) can be obtained as 1
2(1−

∑

i |〈Ki〉|2).

5. Conclusions and discussions

We have defined a family of total uncertainties of quantum channels based on the modified

generalized variance (MGV) introduced in [24], which includes the total uncertainty

introduced in [9] as a special case. Following the idea in Ref. [9], we have divided the

total uncertainty into quantum and classical parts and associated the quantum part with

the coherence of quantum states with respect to quantum channels based on modified

generalized Wigner-Yanase-Dyson (MGWYD) skew information [25].

In addition, we have formulated the relationship between the MGV-based total un-

certainty of quantum channels and the entanglement fidelity, extending the results in [9]

to a more general case. As a consequence, we have also figured out the link between the

MGV-based total uncertainty of quantum channels and the entropy exchange/coherent

information, proving that the MGV-based total uncertainty of quantum channels pro-

vides an upper bound on the entropy exchange. Moreover, we have calculated the total

uncertainty and quantum uncertainty of some special quantum channels. In particular,

we have computed the total uncertainty and quantum uncertainty for a quantum channel

with respect to the Werner state and the isotropic state in Example 5. It has been found

that for these two different classes of states, there exist subtle similarity, that is, under

this quantum channel, both the classical uncertainty and the linear entropy (mixedness)

attain their maximum values for the same state, i.e., at the same value of the parameter

p or F . The uncertainty relations Eqs. (19) and (20) have also been computed for this

channel and such two classes of states. Finally, we have used an experimental protocol

formulated in [65] to measure the uncertainty of quantum channels for pure states. Our

results may shed some new light on the study of uncertainties of quantum channels and

provide new insights into the quantum-classical interplay.
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