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Long distance communication protocols cannot ignore the existence of the Earth’s gravitational

field and its effects on quantum states. In this work, we show a very general method to consider the

effects of the Earth’s gravitational field on continuous-variable quantum key distribution protocols.

Our results show that the Earth’s gravitational field erodes the ability of the two parties to perform

QKD in all the protocols. However, our findings also exhibit some interesting features, i.e., the key

rates initially increase for a specific range of height parameter h ≃ rA/2 and then gradually decrease

with the increasing of the orbits of satellite h. A possible explanation is also provided in our analysis,

considering the fact that gravitational frequency shift and special relativistic effects play different roles

in the key rates. In addition, our findings show that the change in key rate effected by gravitational

frequency shift can be determined at a level of < 1.0% within the satellite height at geostationary

Earth orbits. Our work could provide some interesting possibilities to reduce the loss key rate through

the control of the orbital height of satellites.
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1. introduction

The most important part of quantum communication is quantum key distribution (QKD).

In simple terms, QKD is a secure key transmission method that can be used to send keys be-

tween two remote communication ends. In the process of secure communication, information

needs to be encrypted and decrypted with a key. The security of the key ensures the security of

information, which belongs to solving the key problem. The security of QKD is guaranteed by

the quantum measurement theory and the quantum no cloning theorem. Therefore, any eaves-

dropping on the QKD process could change the quantum states themselves, resulting in high

bit error rates that allow eavesdropping to be detected. Generally speaking, the transmission

of quantum state in the QKD process relies on the encoding, transmitting and measuring of

photons. In 1984, Bennett and Brassart proposed the BB84 protocol [1], which used quantum

bits as the information carrier and used the polarization characteristics of light to encode the

quantum state, so as to realize the generation and secure distribution of the secret key. Sub-

sequently, Ekert reported the practical application of the generalized Bell’s theorem in the key

distribution process in cryptography [2]. This kind of protocol is called discrete-variable quan-

tum key distribution (DV-QKD) protocols. In the QKD process, the quantum correlations of

entangled photons are usually used to generate secure cryptographic keys. Hence, a key chal-

lenge in this context is to establish continuously working, reliable long-distance entanglement

distributions. Fortunately, the quantum information task has been a great success experimen-

tally, such as the experiment in refs [5,6]. Such as Yin et al. demonstrated the entanglement

distribution of two photons from a satellite to two ground stations over long distances, which

illustrates the possibility of a future global quantum communication network [7,8]. Especially,

there are a number of experiments to perform QKD protocols [9–11], which include measurement-

device-independent [12] and single-photon interference version twin-field QKD [13] and so on. For

more related work on QKD, we refer readers to the references [14–17].

On the other hand, QKD protocols provide the ultimate security against channel attacks,

but their practical implementations are still challenging. Many methods require trusted experi-

mental devices and detectors and are therefore subject to so-called side-channel attacks against

these devices. Measurement device independent (MDI) is an important type of QKD protocols

among them [12,18]. MDI QKD provides a middle ground, relaxing the assumptions on the pro-

tocol by having distant parties send states to a central relay detector which may be controlled
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by an Eavesdropper (Eve). Moreover, point-to-point quantum communications are known to

be inherently distance limited by the PLOB bound [19] with the transmissivity decaying expo-

nentially with distance. Continuous variable (CV) QKD protocols [3,4,20–23] are able to reach

rates approaching the PLOB bound and have a longer transmission distance, outperforming

discrete state protocols [24,25]. More relevant reviews about CV QKD and Gaussian quantum

information we suggest readers to see refs [26–37]. In addition, an asynchronous measurement-

device-independent quantum key distribution protocol has been proposed recently [38,39]. These

work have improved the secret key capacity and broke the rate-distance limit by postmatching

two interference detection events to realize asynchronous two-photon Bell-state measurement.

In general, the standard protocols in CV QKD consider that Alice prepares squeezed states

with a Gaussian modulation along one of the two quadratures initially, and sends them to

Bob, who measures them by performing homodyne detection. However, long-distance quantum

information tasks and protocols usually require the assistance of satellites which allows us to

extend techniques, such as QKD, to global scales. In this context, the effect of the gravity

of the Earth should be considered at long distance quantum communication. Therefore, we

consider CV QKD scenario in the analysis, due to CV MDI QKD protocols further boast of

longer transmission distances in comparison to the discrete variable counterparts.

Since the quantum system in reality always shows the characteristics of gravity and rel-

ativity, the quantum system cannot be prepared and transmitted without the existence of a

gravitational field. When quantum resources are studied in a relativistic setting, the effects of

gravity and accelerated motion, especially on the quantum properties and their applications,

have always been ignored, which fails to overcome the inherent inconsistency between quantum

physics and relativity. Fortunately, the quantum field theory of curved space-time provides a

theoretical framework to carry out the analysis above. The effect of gravity can be considered

as a curved dynamic background, thus correcting the equations of quantum field theory. In

fact, it has been clarified only recently how Gaussian quantum states are properly affected

by gravitational field or acceleration. For instance, the work has investigated how relativistic

acceleration affects the performance of quantum teleportation and dense coding for CV states

of localized wave packets [40]. More works about relativistic acceleration or the Earth’s grav-

ity affect on quantum resources (entanglement, coherence and Gaussian Interference Power)

and quantum information tasks, we refer readers to see refs [41–45,53–59]. From an experimental
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point of view, Pirandola et al. proposed a fully operational satellite QKD system [15], which

means that their scheme paves the way toward the implementation of a quantum communi-

cation worldwide network leveraging existing receivers. Furthermore, from a theoretical point

of view, Pierini provided a general method to investigate how noninertial motion affects the

performance of various QKD protocols for continuous-variable localized Gaussian states and

stated that his results can be applied to the gravitational field according to the equivalence

principle [60].

Inspired by the above, we will focus on the QKD of CV system under the gravitational

effect of the Earth when one part of a bipartite system is involved in relativistic effects. We will

quantitatively analyze how the curved space-time background of the Earth affects QKD and

the key rate. We assume that the entangled photon pair is initially prepared in a two-mode

compressed state, and then assume that one of the photon pairs stays on the Earth’s surface

while the other photon pair propagates to the satellite. Due to the Earth’s gravitational field,

the wave-packet of photon will be deformed in the propagating process when sending it to the

satellite. Therefore, we adopt a lossy quantum channel to describe this deformed effect on

the quantum state of photons. This paper is organized as follows: In Sec. 2, we introduce the

general protocol for QKD with CV and key rates. In Sec. 3, we briefly describe the propagation

of a photon wave packet from the Earth to a satellite. The influence of the Earth’s gravitational

field on the previously described protocol for QKD, in particular on the efficiency in distributing

the secret key is presented in Sec. 4. Our results and discussions are given in Sec. 5. Finally,

we summarize our conclusions in Sec. 6. The natural units G = c = ~ = kB = 1 are employed

throughout the paper.

2. Continuous-variable quantum key distribution and se-

cret key

A standard QKD protocol of CV can be briefly described as follows: firstly, Alice prepares

a two-mode squeezed vacuum state and one of them is sent to Bob. Then Alice and Bob

randomly measure either x or p quadrature of their shared entangled state. Among all the data

collected after measurements, they keep only the outcomes of the measurements done on the

same basis. This procedure is called sifting. After that, they perform the sifting procedure,
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discarding data that of the result taken from different bases measurements. Eve wants to learn

the key by using an interaction with the quantum system. This action, in general, modifies the

state in a way that can be observed. These perturbations allow Alice and Bob to infer that some

eavesdropping is happening and, consequently, estimate the amount of information leaked to

Eve. Thus, in the second step, the reliable parts reveal randomly selected data samples to each

other to estimate the parameters of the channel and thus estimate the amount of information

leaked to Eve. After sifting and parameter estimation, Alice and Bob share a string of related

elements, called the original key. In the third step, they extract a common binary key from their

data using classical communication. Depending on whether Alice’s or Bob’s data is used, the

protocol is called direct reconciliation (DR) or reverse reconciliation (RR). Finally, the perfect

correlation key is obtained through error correction and privacy amplification.

In the standard QKD procedure, we assume that Eve is passively attacked, she replaces

the real connection between Alice and Bob with a unitary operation that mimics the channel

between them when we trace Eve’s modes. This operation is represented by a thermal noise

channel of transmissivity T and noise referred to the input χ = 1−T
T

+ ǫ, where ǫ is the so-

called excess noise. In practice, we can use a beam splitter of parameter T for implementation,

where the signal sent to Bob is combined with a thermal state of zero mean and variance

〈X̂2
th〉 = T

1−T
χ. The process can be described by the following form

X̂B =
√
TX̂A +

√
1− TX̂th. (1)

This attack is called an intercept and resend or clone attack. To determine whether the set

of common binary symbols created in the protocol can be used for encryption tasks, the two

honest parts must evaluate the secret key rate K. In general, Eve has two ways to perform

attacks, i.e., individual attacks (IA) and collective attacks (CA), which result in two kinds of

secret key rate. For convenience, we only consider the CA and the DR in this paper when

analyzing the secret key rate.

The secret key rate of QKD protocol in CA and the DR case is calculated as [60,61]

K = I(a : b)− S(a : E) (2)

when Eve performs an optimal collective measurement. Here, the I(a : b) is the mutual infor-

mation between Alice and Bob, and the S(a : E) is the Holevo bound on Eve information, the

eavesdropper, stolen when considering reverse reconciliation. The first term can be calculated
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by

I(a : b) =
1

2
log2

VA

VA|B

, (3)

where VA is the modulation variance and VA|B is the conditional variance of the random variable

of Alice while knowing Bob’s measurement results. For second term in secret key rate K, the

Holevo bound for DR can be written as

S(a : E) = S(E)− S(E|a). (4)

Assuming that Eve holds the purification of the state allows us to write S(E) = S(AB) and

S(E|a) = S(B|a), so that Eve’s accessible information is only a function of the entropic quan-

tities of Alice and Bob. For a given two modes covariance matrix

σAB =





A C

CT B



 , (5)

where A and B are 2×2 covariance matrices of the respective subsystems and C is the correlation

matrix, we have that

S(AB) = g(λ1) + g(λ2), (6)

where λ1,2 are the symplectic eigenvalues of

λ1,2 =

√

1

2
(△±

√

△2 − 4D2),

△ = detA+ detB + 2detC,

D = detσAB, (7)

and

g(x) = (
x+ 1

2
) log2(

x+ 1

2
)− (

x− 1

2
) log2(

x− 1

2
). (8)

Also, we have that

S(B|a) = g(λ3), (9)

λ3 =
√

det(σB|a) being the symplectic eigenvalue of Bob’s covariance matrix σB|a given Alice

measurement outcome. When Alice performs measurement on his mode, which gives a as result,

the covariance matrix

σB|a = B − C(A−1
11 Π)C

T , (10)

where Π =





1 0

0 0



. This is a squeezed state displaced along the x quadrature.
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3. The propagation of photons from the Earth to satellite

In this section, we will describe the propagation of photons from the Earth to satellites.

In this context, photons will suffer the effects of the Earth’s gravitational field. It is well

known that Earth is a spherical planet with angular velocity ω = 7.29× 10−5 rad/s. Thus, we

adopt the Kerr metric to describe the Earth’s space-time approximately. For the convenience

of calculation, we restricted our work to the equatorial plane θ = π
2
. The reduced metric in

Boyer-Lindquist coordinates (t, r, φ) has following form [46,47]

ds2 = −
(

1− 2M

r

)

dt2 +
1

∆
dr2

+
(

r2 + a2 +
2Ma2

r

)

dφ2 − 4Ma

r
dt dφ, (11)

∆ =1− 2M

r
+

a2

r2
, (12)

where M , r, J , a = J
M

are mass, radius, angular momentum and Kerr parameter of the Earth,

respectively.

Assuming that Alice on Earth’s surface prepares a monochromatic photon and sends it to

Bob at time τA, Bob will receive this photon at τB = ∆τ+
√

f(rB)/f(rA)τA in his own reference

frame, where f(rA) = 1− rS
rA

and f(rB) = 1− rS
rB
, rS = 2M is the Schwarzschild radius of Earth

and ∆τ is the propagation time of the light from Earth to satellites by taking the curved effects

of the Earth into account. In general, a photon can be modeled by a wave packet of massless

bosonic fields with a distribution F
(K)
ΩK,0

of mode frequency ΩK and peaked at ΩK,0
[48,49], where

K = A,B denotes the modes in Alice or Bob reference frames, respectively. The annihilation

operator of a photon for an observer far from Alice or Bob given in refs [50,51], which their works

proposed a quantum experiment to measure Schwarzschild spacetime parameters of the Earth

with high precision

aΩK,0
(tK) =

∫ +∞

0

dΩKe
−iΩK tKF

(K)
ΩK,0

(ΩK)aΩK
. (13)

Alice’s and Bob’s operators in Eq. (13) can be used to describe the same optical mode at

different altitudes. By considering the spacetime background of the Earth, the wave packet

received is modified. The relation between aΩA
and aΩB

was discussed in refs [53–55], and can

be used to obtain the relation between the frequency distributions F
(K)
ΩK,0

of the photons before

and after the propagation

F
(B)
ΩB,0

(ΩB) =
4

√

f(rB)

f(rA)
F

(A)
ΩA,0

(
√

f(rB)

f(rA)
ΩB

)

. (14)
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In Eq. (14), we can see that the effects induced by the curved spacetime background of the

Earth cannot be simply corrected by a linear shift of frequencies.

Fortunately, following such a nonlinear gravitational effect, one can use the fidelity of the

quantum channel to model this effect. It is always possible to decompose the mode ā′ received by

Bob in terms of the mode a′ prepared by Alice and an orthogonal mode a′⊥ (i.e. [a′, a′†⊥] = 0) [52]

ā′ = Θa′ +
√
1−Θ2a′⊥, (15)

where Θ is the wave packet overlap between the distributions F
(B)
ΩB,0

(ΩB) and F
(A)
ΩA,0

(ΩB)

Θ :=

∫ +∞

0

dΩB F
(B)⋆
ΩB,0

(ΩB)F
(A)
ΩA,0

(ΩB), (16)

and we have Θ = 1 for a perfect channel. If the curvature is strong enough, the fidelity F = |Θ|2

would be low.

We assume that Alice employ a real normalized Gaussian wave packet of the form

FΩ0(Ω) =
1

4
√
2πσ2

e−
(Ω−Ω0)

2

4σ2 , (17)

with wave packet width σ. In this case, the overlap Θ is given by (16) where we have extended

the domain of integration to all the real axis. We note that the integral should be performed

over strictly positive frequencies. However, since Ω0 ≫ σ, it is possible to include negative

frequencies without affecting the value of Θ. Using Eqs. (13) and (17) one can find that

Θ =

√

2

1 + (1 + δ)2
1

1 + δ
e
−

δ2Ω2
B,0

4(1+(1+δ)2)σ2 , (18)

where the new parameter δ, quantifies the shifting, is defined by

δ = 4

√

f(rA)

f(rB)
− 1 =

√

ΩB

ΩA

− 1. (19)

The expression of ΩB

ΩA
in the equatorial plane of the Kerr spacetime has been shown in works [53–55],

which is given by

ΩB

ΩA

=
1 + ǫ a

rB

√

M
rB

C

√

1− 3M
rB

+ 2ǫ a
rB

√

M
rB

, (20)

where C = [1 − 2M
rA

(1 + 2aω) +
(

r2A + a2 − 2Ma2

rA

)

ω2]−
1
2 is the normalisation constant, ω is the

Earth’s equatorial angular velocity and ǫ = ±1 stand for the direct of orbits (i.e., when ǫ = +1

for the satellite co-rotates with the Earth).
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We notice that (rAω)
2 > aω, therefore we can retain the second order terms in rAω. Ex-

panding Eq. (20) we obtain the following perturbative expression of δ. This perturbative result

does not depend on whether the Earth and the satellite are co-rotating or not.

δ = δSch + δrot + δh (21)

=
1

8

rS
rA

(1− 2 h
rA

1 + h
rA

)

− (rAω)
2

4
− (rAω)

2

4

(3

4

rS
rA

− 4Ma

ωr3A

)

,

where h = rB − rA is height between Alice and Bob, δSch is the first order Schwarzschild term,

δrot is the lowest order rotation term and δh is all the higher order corrections term. Within the

geostationary orbits for satellites, we can estimate the order of magnitude of the parameters,

which are δS ∼ −10−10, δrot ∼ −10−12 and δh ∼ −10−21, respectively. Therefore, we consider

δ as a small quantity which reserves second order term, the Eq. (18) can be approximate to

Θ ∼ 1− δ2Ω2
B,0

8σ2 .

4. The effect of the Earth’s curved space-time on quantum

key distribution

4.1. The final state affected by the gravitational field of the Earth

We want to study the QKD protocols described previously in the framework of photon

exchange between the ground and satellites. The two reliable parties Alice, who is stationary

on the Earth’s surface and Bob, who is stationary on the satellite, and will receive the photon

from Alice. Assuming that we prepare a two-mode squeezed state in advance (with the modes

of a and b at the ground station), the covariance matrix AA
′

is given by

γAA′ =





V I2
√
V 2 − 1Z

√
V 2 − 1Z V



 , (22)

where Z =





1 0

0 −1



. After one mode sends to Bob through the noisy channel caused by

Eve (please see Eq. (1)), NA′→B(γAA′ ) = γAB, the covariance matrix of the output can be easily

computed

γAB =





V I2
√

T (V 2 − 1)Z
√

T (V 2 − 1)Z T (V + χ)I2



 . (23)
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However, Alice sends photon with mode b propagating from the Earth to the satellite and

then received by Bob. Due to the Earth’s gravitational field, the wave packet of the received

photon will be deformed. Similarly, the propagating process can be described by the following

form, which has adequate discussion in refs [53–55]

b̄ = Θ b+
√
1−Θ2b⊥. (24)

The mixing beam splitting of modes b and b⊥ will represent this process. For this process,

the symplectic transformation can be encoded into the Bogoloiubov transformation

γBS =





ΘI2
√
1−Θ2I2

−
√
1−Θ2I2 ΘI2



 . (25)

For the curved spacetime background of the Earth, the covariance matrix of the transmitted

state can be obtained by

γASBS = (YBS)
T (γAB ⊕ γν)(YBS), (26)

where γν is the covariance matrix of the vacuum state and the matrix YBS = I2 ⊕ γBS. We

trace over the irrelevant modes, as a result, the covariance matrix γfinal
AB is given by

γfianl
AB =





V I Θ
√

T (V 2 − 1)Z

Θ
√

T (V 2 − 1)Z T [(Θ2V + 1−Θ2) + χ]I



 . (27)

Here, the wave packet overlap parameter Θ contains the effect of the Earth’s gravitational field.

We notice again that T is transmissivity of noise channel. In fact, the transmissivity of channel

loss contains many complex effects. We give a brief introduction below. The channel losses

contain four main parts effects, i.e., free-space diffraction, atmospheric extinction, setup-loss

(due to non-unit quantum efficiency of the detector and other optical imperfections), and fading

(turbulence and pointing errors). Assuming Alice (transmitter) stays at the ground station and

Bob (receiver) stays at some variable satellite height h with a variable zenith angle θ. This

angle cause by the zenith point at the ground station with the direction of observation pointing

at the satellite, and free-space quantum communication is based on a quasi-monochromatic

optical mode. The total amount of loss of the free-space channel from the generation of the

Gaussian beam to its final detection is described by following form

Ttot(h, θ) = TeffTatm(h, θ)Td(h, θ), (28)
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Figure 1: The channel loss as a function of the satellite height.

where Teff is setup-loss transmissivity and assumes as Teff ≃ 0.4 [63]. Tatm(h, θ) = exp−α0g(h,θ)

expresses for the atmospheric transmissivity, where α0 ≃ 5 × 10−6m−1 is the extinction factor

at the sea-level h0 = 6600 m [64], and g(h, θ) is integral function. Td(h, θ) = 1 − exp
−

2a2
R

wd[z(h,θ)]
2

is the diffraction-induced transmissivity, where wd is increased spot size after travelling a slant

distance z by diffraction effect, aR is the aperture of the receiving telescope, and z(h, θ) =
√

h2 + 2hrA + r2A cos2 θ− rA cos θ with rA ≃ 6371 Km. For further details about transmissivity

of channel loss, we refer readers to the literature [65–67]. The relation between transmissivity and

channel loss is T = 10−l/10, where l = 0.2 dB/Km is the channel loss [17]. The channel loss as a

function of the satellite height is shown in Fig. 1. In addition, if Eve were to attack, the input

signal will become χ = 1−T
T

+ ǫ , where ǫ is the so-called excess noise, and this noisy channel is

caused by Eve.

4.2. Key rates in the Earth’s curved space-time

According to the context in section 2, one can calculate the mutual information in this case,

which is given by following form

I(a, b) =
1

2
log(

r

r − t2/s
), (29)
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where r = V , s = T [(Θ2V + 1 − Θ2) + ǫ] and t = Θ
√

T (V 2 − 1). The second term in secret

key rate K, the Holevo bound for DR can be written as

S(a : E) = S(E)− S(E|a) = g(λ1) + g(λ2)− g(λ3), (30)

where now λ1,2 are the symplectic eigenvalues of

λ1,2 =

√

1

2
(△±

√

△2 − 4D2),

△ = r2 + s2 − 2t2,

D = rs− t2, (31)

and λ3 = s is the symplectic eigenvalues of σ
(d)
B|a. Then, the final secret key rate of QKD protocol

under the Earth’s curved space-time is

K =
1

2
log(

r

r − t2/s
)− g(λ1)− g(λ2) + g(λ3). (32)

5. Results and discussions

It should be noted that the two terminals of the quantum key distribution task are only

a few hundred kilometers apart based on the current technology. The effect of gravity on the

quantum key rate depends on the gravitational potential difference, i.e., the height difference.

Therefore, our work only analyzes the influence of gravitational effects on future satellite-

based long-distance quantum key missions within geostationary Earth orbits from a theoretical

perspective. In other words, this is a study of pure gravitational effects that have nothing

to do with the acceleration of the satellite itself, for example, the Unruh effect of a massive,

accelerating object. Our work focuses on the effects of the Earth’s space-time background on

the quantum secret key, including special relativity effect, but it is not a major part of our

analysis.

In Fig. 2, we plot key rates K as the functions of satellite height h (within geostationary

satellite orbit) with a fixed variance of the initial shared entangled state V = 2 for different

excess noises ǫ = 0.001, ǫ = 0.005, and ǫ = 0.010 under the gravitational effect of the Earth.

The relation between satellite height h and channel loss l is shown in Fig. 1. Recently, the

orbital angular momentum (OAM) beam has attracted a lot of attention because of its unique

optical characteristics, that is, it has the Laguerre-Gaussian amplitude distribution [69]. Due to
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Figure 2: The normalized key rates K as the functions of satellite height with the different

excess noises ǫ = 0.001 (blue), ǫ = 0.005 (purple), ǫ = 0.010 (yellow). The other parameters

are fixed as V = 2 and Ω0 = 500THz.

characteristic of OAM beam carrying orbital angular momentum, it can be applied to particle

manipulation [70], quantum information [71], and other fields [72]. In our work, we adopt the

assumption of Gaussian beams, and the initial Gaussian wave packet parameters, i.e., the peak

frequency Ω0 = 500 THz, the Gaussian bandwidth σ = 1 MHz are considered the taking

values of these parameters come from a typical parametric down converter crystal source with

a wavelength of 598 nm [62,68]. We can see that a monotonic decrease of K with the increasing

of the channel loss length l. Compared with the channel loss, the effects of excess noises on the

key rate is almost negligible. Furthermore, the key rates of all the protocols become practically

zero at sufficiently high channel loss. Our results are agreement with the previous works [60,73],

which demonstrates the validity of our method and results. However, it is worth noting that

the attenuation factors of quantum secret key include two parts, the first part is the loss of

transmission channel, the second part is the influence of Earth’s gravitational field.

In order to show the influence of the gravitational effect of the Earth on QKD more intu-

itively, we plot key rates K as the functions of the orbits of satellite h in the left panel of Fig. 3.

We fix the V = 10, ǫ = 0.001 and the peak frequency Ω0 = 500 THz. Not surprisingly, the
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Figure 3: Left: The key rates K as the functions of orbit heights of satellite with the different

Gaussian bandwidth σ = 0.8 MHz (blue), σ = 1.0 MHz (purple), σ = 1.2 MHz (yellow). The

other parameters are fixed as V = 20, ǫ = 0.001 and Ω0 = 500THz. Right: Density plot for

key rate K.

Earth’s gravitational field erodes the ability of the two parties to perform QKD in all the proto-

cols. It also shows some interesting features: The key rates initially increase for a specific range

of height parameter h ≃ rA/2, and then gradually decrease with the increasing of the satellite

orbits h. The possible explanation we give is based on the fact that gravitational frequency

shift and special relativistic effects play different roles in key rates. When the reference party

Bob (satellite) stays at the height h = rA/2 (half the radius of the Earth) accompanied with

vanishing Schwarzschild term δSch = 0, the photons received on satellites will suffer Doppler

blue shift effect (δ > 0). In the case, the lowest-order rotation term δrot and higher-order cor-

rection term δh should be taken into consideration, which causes the Doppler blue shift effect.

That’s why we didn’t use classical Newtonian gravity to consider our case. As the altitude

of the satellite increases, the special relativistic effects become smaller while the gravitational

frequency shift can be cumulated. On the other hand, one can see that the initial Gaussian

bandwidth parameter has a great influence on the key rate. This result can be clearly seen in

the density plot on the right panel of Fig. 3. This gives us the guidance to choose appropriate

physical parameters to perform more reliable QKD with the inevitable relativistic effects.

To better demonstrate the effect of Earth’s gravity on the quantum key rate, we firstly plot

the key rate difference K(h) − K(0) in the left panel of Fig 4, with the different the initial
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Figure 4: Left: The difference of key rates K with the variations of orbit heights of satellite

h with the different the initial Gaussian bandwidth parameters σ = 0.8, 1.0, 1.2 MHz. Right:

Same as on the left, but for change rate of key rate µ.

Gaussian bandwidth parameters σ = 0.8, 1.0, 1.2 MHz. The other parameters are fixed V = 10,

ǫ = 0.001, and Ω0 = 500 THz. The K(0) represents the key rate without Earth’s gravity, which

corresponds value at the satellite orbit height h = 0 and corresponds a perfect channel Θ = 1.

With the aim of furthermore quantifying the influence of the Earth’s curved space-time, we will

define an additional quantity to describe the change rate of the key rate

µ =
K(h)−K(0)

K(0)
. (33)

In the right panel of Fig 4, we plot the change rate of key rate µ as a function of the height

parameter h. One can clearly see that the change in key rate generated by gravitational fre-

quency shift can be determined at a level of < 1.0% within the satellite height at geostationary

Earth orbits. Such findings could provide some interesting possibilities to reduce the loss key

rate, through the control of the orbital height of satellites. The Earth’s gravitational field does

not have a great influence on the secret key rate, because the Earth’s gravitational field is not

strong enough. However, according to the equivalence principle of general relativity, our results

can be applied to the accelerated coordinate system equivalently, and we can infer that when

the acceleration is large enough, relativistic effects will significantly affect the key rate.
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6. Conclusion

In this work, we have shown a very general method to consider the effects of the Earth’s

gravitational field on the CV QKD protocols. In realistic situation, the preparation of quantum

system and the procession of quantum information tasks are always accompanied with gravi-

tational and relativistic effects. Our work highlights the importance of studying the CV QKD

protocols in the space-time background of the Earth.

Not surprisingly, the Earth’s gravitational field erodes the ability of the two parties to

perform QKD in all the protocols. However, our findings also have some interesting features.

The key rates initially increase for a specific range of height parameter h ≃ rA/2, and then

gradually decrease with the increasing of the satellite orbits h. The possible explanation we give

is based on the fact that gravitational frequency shift and special relativistic effects play different

roles in key rates. When the reference party Bob (satellite) stays at the height h = rA/2 (half

the radius of the Earth) accompanied with vanishing Schwarzschild term δSch = 0, the photons

received on satellites will have doppler blue shift effect (δ > 0). Further, we demonstrate that

the key rates are monotonic decreasing with the increasing of the channel losses lengths l. It

should be noted the monotonic decrease of K with the increasing of the channel loss length

l. Compared with the channel loss, the effects of excess noises on the key rate are almost

negligible. This results are agreement with the previous works [60,73], which demonstrates the

validity of our method and results. Moreover, with the increase in the variance of the initial

shared entangled state, the key rate has significantly increased. This gives us the guidance

to choose appropriate physical parameters to perform more reliable QKD with the inevitable

relativistic effects. To better demonstrate the effect of Earth’s gravity on the quantum key, we

show that the change of key rate generated by gravitational frequency shift can be determined

at the level of < 1.0% within the satellite height at geostationary Earth orbits. Such findings

could provide some interesting possibilities to reduce the loss key rate, through the control of

the orbital height of satellites.

With the rapid development of quantum technology, quantum communication and quantum

information tasks have recently expanded to include satellites orbiting the Earth. Long distance

communication protocols cannot ignore the existence of gravitational field and its effect on

quantum states. Therefore, our work is of fundamental and practical significance. Meanwhile,

according to the equivalence principle of general relativity, our results can be applied to the
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accelerated coordinate system equivalently. On the other hand, the Gaussian modulations in

the QKD protocols have the obvious advantage, because its associated homodyne or heterodyne

detection scheme offers the prospect of very high key rates, where homodyne detection measures

one quadrature of the field, and heterodyne detection provides a joint measurement of both

quadrature and phase. However, the discrete modulation reflects what is actually done in

experiments. For more on discrete modulation work of QKD protocols we refer the reader to

the literature [74–76]. If we consider the Earth’s gravitational field as a loss channel as in this work,

our model can in principle be applied to key distribution protocols of discrete modulation with

coherent state and coherent detection, thus providing a theoretical basis for future quantum

key distribution techniques to some extent.
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[41] Ahmadi M, Lorek K, Chȩcińska A, Smith A R H, Mann R B and Dragan A 2016 Phys.

Rev. D 93 124031

[42] Richter B, Lorek K, Dragan A and Omar Y 2017 Phys. Rev. D 95 076004

[43] Wu S M and Zeng H S 2022 Eur. Phys. J. C 82 716

[44] Wu S M, Zeng H S and Liu T H 2022 New J. Phys. 24 073004

[45] Wu S M, Cai Y T, Peng W J and Zeng H S 2022 Eur. Phys. J. C ? 82 412

[46] Visser M 2007 arXiv:0706.0622

[47] Kohlrus J, Bruschi D, Louko J and Fuentes I 2017 EPJ Quantum Technology 4, 7

[48] Leonhardt U Measuring the Quantum State of Light, Cambridge Studies in Modern Optics

(Cambridge University Press, Cambridge, 2005).

[49] Downes T, Ralph T and Walk N 2013 Phys. Rev. A 87 012327

[50] Bruschi D, Ralph T, Fuentes I, Jennewein T and Razavi M 2014 Phys. Rev. D 90 045041

[51] Bruschi D, Datta A, Ursin R, Ralph T and Fuentes I 2014 Phys. Rev. D 90 124001

[52] Rohde P, Mauerer W and Silberhorn C 2007 New Journal of Physics 9 91

[53] Liu T H, Cao S and Wu S M 2020 Sci. Rep. 10 14697

[54] Liu T H, Cao S, Wu S M and Zeng H S 2019 Laser Phys. Lett. 16 095201

[55] Liu T H, Jing J L and Wang J C 2018 Adv. Quantum Technol. 1 1800072

[56] Liu T H, Wang J C and Jing J L et al. 2018 Annal of Physics 390 334

[57] Fang Y, Liu X, Wang J et al. 2019 Quantum Information Processing 18 248

[58] Zhang S X, Liu T H, Cao S et al. 2020 Chinese Physics B 29 050402.

[59] Gong X L, Cao S, Fang Y, and Liu T H 2022 Chinese Physics B 31 050402

[60] Pierini R 2018 Phys. Rev. D 98 125007

[61] Weedbrook C, Pirandola S, Garciapatron R et al. 2012 Rev. Mod. Phys. 84 621

20

http://arxiv.org/abs/0706.0622


[62] Razavi M and Shapiro J 2006 Phys. Rev. A 73 042303

[63] Vasylyev D, Vogel W and Moll F 2019 Phys. Rev. A 99 053830

[64] Liorni C, Kampermann H and Bruß D 2019 New J. Phys. 21 093055

[65] Dequal D, Trigo Vidarte L, Roman Rodriguez V et al. 2021 npj Quantum Information 7 3

[66] Pirandola S 2021 Physical Review Research 3 013279

[67] Pirandola S 2021 Physical Review Research 3 023130

[68] Matsukevich D, Maunz P, Moehring D, Olmschenk S and Monroe C 2008 Phys. Rev. Lett.

100 150404

[69] Allen L, Beijersbergen M W, Spreeuw R J C et al. 1992 Phys. Rev. A 45 8185

[70] Padgett M and Bowman R 2011 Nature Photonics 5 343

[71] Nicolas A, Veissier L, Giner L et al. 2014 Nature Photonics 8 234

[72] Wang J, Yang J Y, Fazal I M et al. 2012 Nature Photonics 6 488
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