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Abstract. Inspired by Hosoyamada et al.’s work [14], we propose a new
quantum meet-in-the-middle (QMITM) attack on r-round (r ≥ 7) Feistel
construction to reduce the time complexity. Similar to Hosoyamada et
al.’s work, our attack on 7-round Feistel is also based on Guo et al.’s clas-
sical meet-in-the-middle (MITM) attack [13]. The classic MITM attack
consumes a lot of time mainly in three aspects: construct the lookup
table, query data and find a match. Therefore, parallel Grover search
processors are used to reduce the time of constructing the lookup table.
And we adjust the truncated differentials of the 5-round distinguisher
proposed by Guo et al. to balance the complexities between constructing
the lookup table and querying data. Finally, we introduce a quantum
claw finding algorithm to find a match for reducing time. The subkeys
can be recovered by this match. Furthermore, for r-round (r > 7) Feis-
tel construction, we treat the above attack on the first 7 rounds as an
inner loop and use Grover’s algorithm to search the last r − 7 rounds of
subkeys as an outer loop. In summary, the total time complexity of our
attack on r-round (r ≥ 7) is only O(22n/3+(r−7)n/4) less than classical
and quantum attacks. Moreover, our attack belongs to Q1 model and is
more practical than other quantum attacks.

Keywords: Quantum meet-in-the-middle attack · Feistel construction
· Quanutm claw finding algorithm · Grover’s algorithm.

1 Introduction

A Feistel network is a scheme that builds n-bit permutations from smaller, usu-
ally n/2-bit permutations or functions [10]. The Feistel-based design approach
is widely used in block ciphers. In particular, a number of current and former
international or national block cipher standards such as DES [5], Triple-DES [17]
and Camellia [1] are Feistel ciphers.

Feistel ciphers have many constructions, and the analyzed target construc-
tion in this paper is displayed in Fig. 1. An n-bit state is divided into n/2-bit
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halves denoted by ai and bi, and the state is updated by iteratively applying the
following two operations:

ai+1 ← ai ⊕ F (ki ⊕ bi), bi+1 ← ai,

where F is a public function and ki is a subkey with n/2 bits. Note that, the
target Feistel construction is also called Feistel-2 in Ref. [13], or called Feistel-KF
in Ref. [18]. For brevity, we simply call it the Feistel construction.
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Fig. 1: Our target Feistel construction.

For the target Feistel construction, Guo et al. [13] absorbed the idea of meet-
in-the-middle attack proposed by Demirci and Selçuk [6], and applied it on the
attack of the Feistel construction. They firstly computed all the possible se-
quences constructed from a δ-set such that a pair of messages satisfy the pro-
posed 5-round distinguisher. Then, they collected enough pairs of plaintexts
and corresponding ciphertexts, and guessed the subkeys out of the distinguisher
to compute the corresponding sequence for each pair. Finally, if the computed
sequence from each pair of collected plaintexts belongs to the precomputed se-
quences from the distinguisher, the guessed subkeys are correct; otherwise, they
are wrong. In their attack on 6-round Feistel construction, its time complexity is
O(23n/4). Later, Zhao et al. combined Guo et al.’s work and pairs sieve procedure
to attack on 7-round Feistel construction with O(2n) time. Besides, some other
attacks penetrate up to 6 rounds, such as impossible differentials [24], all-subkey
recovery [15,16] and integral-like attacks [28].

In the quantum setting, cryptanalysts hope to take advantage of quantum
computing to further reduce attack complexity. For symmetric cryptosystems,
Grover’s algorithm [12] can provide a quadratic speedup over exhaustive search
on keys. In addition, some other quantum algorithms have been applied to
the analysis of block ciphers and achieved good results, such as Simon’s algo-
rithm [27] and Bernstein-Vazirani algorithm [2]. Many block ciphers have been
evaluated for the security in the quantum setting, e.g. against Even-Mansour
cipher [22], MACs [19,25], AEZ [26], AES-COPA [30], FX construction [23] and
so on. To evaluate the adversary’s ability, Kaplan divides these quantum attacks
into two attack models: Q1 model and Q2 model [20].

1. Q1 model. The adversary is allowed only to make classical online queries
and performs quantum offline computation.

2. Q2 model. The adversary can make quantum superposition online queries
for cryptographic oracle and performs quantum offline computation.



Quantum Meet-in-the-Middle Attack on Feistel Construction 3

Obviously, the adversary is more practical in Q1 model, and more powerful in
Q2 model.

Many researches have analyzed the security of the Feistel construction in
Q1 or Q2 model. In 2010, Kuwakado et al. [21] proposed a quantum 3-round
Feistel distinguisher and used Simon’s algorithm to recover subkeys in Q2 model.
Its time complexity only needs O(n) because of Simon’s algorithm. Based on
Kuwakado et al.’s work, Dong et al. [8, 9] used Grover’s algorithm to search the
last r− 3 rounds subkeys of r-round Feistel construction. Its time complexity is
O(20.25nr−0.75n).

Different from Kuwakado et al.’s quantum 3-round Feistel distinguisher, Xie
et al. [29] and Ito et al. [18] proposed new quantum Feistel distinguishers re-
spectively. Xie et al. [29] used Bernstein-Vazirani algorithm instead of Simon’s
algorithm to recover subkeys. However, this modification cause a slight increase
in complexity with O(n2) time. Ito et al. [18] proposed a new 4-round Feistel dis-
tinguisher, and used Grover’s algorithm to search the last r − 4 rounds subkeys
similarly to Dong et al.’s attack. Besides, Dong et al. [7] and Bonnetain et al. [3]
proposed quantum slide attacks on Feistel construction by Simon’s algorithm
respectively.

The quantum attacks listed above are all Q2 models, Hosoyamada et al. [14]
proposed a new quantum attack on 6-round Feistel construction that belongs to
Q1 model. They gave a quantum claw finding algorithm to find a match between
two tables, where two tables are constructed by two phases of Guo et al.’s attack:
one table from precomputation and the other one from collected pairs. If there
exists one match, the guessed subkeys are correct.
Contribution. Inspired by Hosoyamada et al.’s work [14], we firstly propose
a new quantum meet-in-the-middle attack (QMITM) on 7-round Feistel con-
struction to reduce time complexity in Q1 model. Similar to Guo et al.’s attack,
we divide our attack into two phases: pre-computation phase and queried-data
analysis phase. In the pre-computation phase, we use parallel Grover search
processors to compute all possible sequence through the 5-round distinguisher,
which are stored in a classical lookup table. To balance the complexity between
pre-computation phase and queried-data analysis phase, we adjust truncated
differentials of the 5-round distinguisher. Then, we transform these classical
queried-data to a superposition state by quantum random access memory, and
compute corresponding sequence for each pair by quantum operations. Finally,
we use quantum claw finding algorithm [4] to find a claw between the table and
the superposition state and recover subkeys through this found claw. In sum-
mary, the time complexity of our attack is only O(22n/3), less than classical
attacks. And its data complexity is O(22n/3) with O(25n/6) classical memory
and qubits.

Furthermore, we treat the above attack on 7-round as a new distinguisher.
Similar to Dong et al.’s attack [9], we use Grover’s algorithm to search the
last r − 7 rounds of subkeys as an outer loop with running time 2(r−7)n/4, and
the above attack on the first 7 rounds as an inner loop with time 22n/3. In
total, the time complexity is only O(2(r−7)n/4+2n/3) less than classical attacks
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and quantum attacks. Besides, our attack belongs to Q1 model, which is more
practical. The detailed comparison with other attacks is shown in Table 1.

Table 1: Comparision with classical and quantum attacks on Feistel construction
Ref. Setting Round Time Data Classcial memory Qubits
[13] Classical 6 O(23n/4) O(23n/4) O(23n/4) -
[31] Classical 7 O(2n) O(2n) O(23n/4) -
[7] Q2 4 O(n) O(2n/2) - O(n)

[3] Q2 4 O(n2) O(2n/2) - O(n)

[9] Q2 r (r ≥ 3) O(n20.25nr−0.75n) O(2n/2) - O(n2)

[18] Q2 r (r ≥ 4) O(n20.25nr−n) O(2n/2) - O(n2)

[29] Q2 3 O(n2) O(2n/2) - O(n)

[14] Q1 6 O(2n/2) O(2n/2) - O(2n/2)

Ours Q1 r (r ≥ 7) O(22n/3+(r−7)n/4) O(22n/3) O(25n/6) O(25n/6)

This paper is organized as follows. Sect. 2 provides a brief description of
related quantum algorithms. And an overview of Guo et al.’s work is presented in
Sect. 3. We propose a new quantum meet-in-the-middle attack on 7-round Feistel
construction in in Sect. 4. Then, the attack is furthered on r-round (r > 7) as
shown in Sect. 5, followed by a conclusion in Sect. 6.

2 Related Quantum Algorithms

Grover’s Algorithm. Grover’s algorithm, or the Grover search, is one of the
most famous quantum algorithms, with which we can obtain quadratic speed
up on database searching problems compared to the classical algorithms. It was
originally developed by Grover [12].

Problem 1. Suppose a function f : {0, 1}n → {0, 1} is given as a black box, with
a promise that there is x such that f(x) = 1. Then, find x such that f(x) = 1.

The process of solving above problem is presented simply as below by Grover’s
algorithm.

1. Start with a uniform superposition |ϕ〉 = 1√
2n

∑
x∈{0,1}n

|x〉.

2. The unitary transformation (2 |ϕ〉 〈ϕ| − I)Of applied on |ϕ〉 is iterated
√
2n

times, where the quantum oracle Of defined by the function f is a quantum
amplitude flip operation followed as bellow:

Of |x〉 →

{
− |x〉, if f(x) = 1,

|x〉, otherwise.
(1)

3. The final measurement gives the x such that f(x) = 1 with an overwhelming
probability.
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Algorithm 1 Quantum Claw Finding between Two Arbitrary Functions f and
g [4]
Input: Sets X and Y of size N and M , respectively.
Output: A pair of (x, y) ∈ X × Y such that f(x) = g(y) if they exist.

1. Select a random subset A ⊆ [N ] of size l (l ≤ min{N,
√
M}).

2. Select a random subset B ⊆ [M ] of size l2.
3. Sort the elements in A according to their f -value.
4. For a specific b ∈ B, check if there is an a ∈ A such that (a, b) is a claw by using

classical binary search on the sorted version of A. Combine this with quantum
search on the elements of B to find a claw in A×B.

5. Apply amplitude amplification on steps 1-4.

In summary, Grover’s algorithm can solve Problem 1 with O(2n/2) evalua-
tions of f using O(n) qubits. If we have 2p independent small quantum processors

with O(n) qubits, by parallel running O(
√

2n

2p ) iterations on each small quan-
tum processor, we can find x such that f(x) = 1 with high probability. This

parallelized algorithm runs in time O(
√

2n

2p ).
Amplitude Amplification. Suppose there is a quantum algorithm QSearch
with the following properties. Let A be any quantum algorithm that uses no
measurements, and boolean function f : Fn2 → F2. p represents the success
probability of A of finding a solution (i.e., the probability of outputting x s.t.
f(x) = 1). The algorithm QSearch needs to execute O(1/

√
p) times A and A−1

to find one solution if p > 0, otherwise it keeps running.
Generally speaking, QSearch needs to iterate a certain number of unitary

transformationQ = −AS0ASf on the initial stateA |0〉, where Sf |x〉 = (−1)f(x) |x〉,
S0 |0〉 = − |0〉 and S0 |x〉 = |x〉 (x 6= 0). The algorithm QSearch needs to iterate
O(1/

√
p) times Q to get a solution with high probability a least max{p, 1− p}.

We can obviously find that amplitude amplification can accelerate the search
algorithm, and Grover’s algorithm is a special case of amplitude amplification.
Quantum Claw Finding Algorithm. Quantum claw finding algorithm aims
to solve the claw finding problem which is defined in detail as below.

Problem 2. Suppose there are 2 functions f : X → Z and g : Y → Z, where
|X| = M and |Y | = N . If there is a pair (x, y) ∈ X × Y such that f(x) = g(y),
then the pair is called a claw of the functions f and g.

To solve above problem, Buhrman et al. [4] gave the first quantum claw
finding algorithm based on amplitude amplification, which is shown in Algorithm
1.

In Algorithm 1, Step 3 requires classical sorting with O(2l · l) comparisons
and Step 4 needs O(

√
|B| log |A|) = O(l log l) comparisons, since checking if

there is an A-element colliding with a given b ∈ B takes O(log |A|) = O(log l)
comparisons via binary search on the sorted A, and quantum search needs
O(
√
|B|) = O(l) to find a B-element that collides with an element occurring
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in A. In general, the time complexity of steps 1-4 is O(l log l). The probability of
getting one claw (x, y) ∈ A×B in the first four steps is p = l3/2NM . Therefore,
the amplitude amplification of Step 5 requires an expected O(

√
NM/l3) itera-

tions of steps 1-4. In total, the time complexity of steps 1-5 is O(
√

NM
l log l).

WhenN ≤M ≤ N2,O(
√

NM
l log l) ≈ O(N1/2M1/4 logN). And whenM > N2,

O(
√

NM
l log l) ≈ O(M1/2 logN).

Quantum Random Access Memory. A quantum random access memory
(QRAM) is a quantum analogue of a classical random access memory (RAM),
which uses n-qubit to address any quantum superposition of 2n (quantum or
classical) memory cells [11]. The QRAM is modeled as an unitary transformation
UQRAM such that ∑

i

ai|i〉addr
UQRAM−→

∑
i

ai|i〉addr|Di〉data, (2)

where
∑
i

ai|i〉addr is a superposition of addresses and Di is the content of the

ith memory cell.

3 Overview of Classical Meet-in-the-Middle Attack on
6-Round Feistel Constructions

Our proposed quantum meet-in-the-middle attack on Feistel constructions is
based on Guo’s work [13], so we first briefly introduce the framework of Guo’s
attack.

3.1 Attack Idea

The MITM attack generally consists of the distinguisher and the key-recovery
parts as illustrated in Fig. 2. Suppose that a truncated differential is specified
to the entire cipher and the plaintext difference ∆P propagates to the input
difference ∆X of the distinguisher with probability p1. Similarly, from the other
direction, the ciphertext difference ∆C propagates to the output difference ∆Y
of the distinguisher with probability p2. Generally, the attack consists of two
phases: precomputation and queried-data analysis.

In the pre-computation phase, the adversary firstly enumerates all the pos-
sible differential characteristics that can satisfy the truncated differential of the
distinguisher. Suppose that there exit Nc such characteristics. Let (X,X ′) be the
input pair values for each characteristic with difference ∆X. Then, the adversary
generates a δ-set that containsX1, X2, . . . , Xδ, whereXi = X⊕i (i = 1, 2, . . . , δ).
Let Y1, Y2, . . . , Yδ be the corresponding values at the output of the distinguisher.
And the differences ∆i between Y and Yi for i = 1, 2, . . . , δ make up a sequence,
called ∆-sequence (∆-sequence = ∆1||∆2|| · · · ||∆δ). Note that the size of the
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distinguisher

key recovery

key recovery

( , )P P

1Pr p

P

X

Y
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( , )Y Y 

1
2

iX X i 

1 2{ , ,..., }set X X X  

1 2( , ), , ,X X X X

1 2( ,  ),  , ,  Y Y Y Y



1 2|| || ||sequence     

Fig. 2: Overview of the MITM attack.

difference ∆i is λ bits. In the end, Nc ∆-sequences of the size λδ bits would be
stored in the Table Tδ.

In the queried-data analysis phase, the adversary collects (p1p2)
−1 pairs of

plaintexts with the difference ∆P and their corresponding ciphertexts with the
difference ∆C. One pair of collected pairs, with high probability, satisfies ∆X
and ∆Y at the input and output of the distinguisher, respectively. Thus, for
each of (p1p2)−1 paired values, the adversary guesses subkeys for the key recov-
ery rounds such that ∆X and ∆Y appear after the first and the last key recovery
parts, respectively. Then, for each pair and the guessed subkeys, P is modified to
P0 and the other P1, P2, . . . , Pδ are computed by generated δ-set and the guessed
subkeys. And these plaintexts are queried to obtain their corresponding cipher-
texts. Next, the adversary partially decrypt these ciphertexts with the guessed
subkeys, and the ∆-sequence is computed at the output of the distinguisher. Fi-
nally, those ∆-sequences are matched the table Tδ, if the analyzed pair is a right
pair and the guessed subkeys are correct, then a match will be found. Otherwise,
a match will not be found as long as (p1p2)−1Nc × 2−λδ � 1.

3.2 Application on 6-Round Feistel Construction

Pre-computation phase. Guo et al. [13] give the 5-round distinguisher, which
is illustrated in Fig. 3(a). The input and output differences of the 5-round dis-
tinguisher are defined as 0||X and X ′||0, where X,X ′ ∈ {0, 1}n/2, X 6= X ′ and
the block size is n. For a given X, X ′, the 5-round differential characteristics
can be fixed to

(0||X)
1stR−→ (X||0) 2ndR−→ (Y ||X)

3rdR−→ (X ′||Y )
4thR−→ (0||X ′) 5thR−→ (0||X ′),

where Y represents the output difference of the 2nd round-function Fi+2 and
has 2n/2 possible values. And the output difference of the 3rd round-function
Fi+3 is X ′′(X ′′ = X ⊕X ′).
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For one choice of X, X ′, the number of the 5-round differential character-
istics satisfying such input and output differences is 2n/2, i.e., the number of
corresponding ∆-sequence for the left-half of the distinguisher’s output is 2n/2

proved by the Proposition 1 in Ref. [13]. To compute ∆-sequence, we need to
know the input values of the middle 3 rounds round-functions Fi+2,Fi+3, and
Fi+4. According to the proof of the Lemma 1 in Ref. [13], for each Y , both in-
put and output differences of Fi+2,Fi+3, and Fi+4 are fixed, which suggests that
the paired values during the round-function are fixed to one choice on average.
Thus, the adversary needs to construct three tables that record the input values
of Fi+2,Fi+3, and Fi+4, for each Y and one given X, X ′, respectively. Finally,
the computed ∆-sequences are stored in Table Tδ for for each Y and one given
X, X ′, whose complexity is 2n/2 in both time and memory.

To balance the complexities between the pre-computation phase and the
queried-data analysis phase, Guo et al. iterate the above analysis for 2n/4 differ-
ent choices of X ′. They assume that the values of X ′ differ in the last n/4 bits
and are the same in the remaining n/4 bits. Hence, the entire complexity of the
pre-computation phase is O(23n/4) in both time and memory.
Queried-data analysis phase. Guo et al. append 1-round before the 5-round
distinguisher to attack the 6-round Feistel construction, as illustrated in the
Fig. 3(b). Firstly, the adversary prepares 2 sets of plaintexts in the form of
{(m||0), (m||1), . . . , (m||2n/2−1)} and {(m⊕X||0), (m⊕X||1), . . . , (m⊕X||2n/2−1)}
respectively, where m is a randomly chosen n/2-bit constant. These plaintexts
can compose 2n pairs, and only 2n/4 pairs satisfy ∆C in the corresponding
ciphertexts for 2n/4 choices of X ′. By iterating this procedure 2n/4 times for
different choice of m, 2n/2 pairs satisfying ∆C are collected. Due to that the
probability p1 that a randomly chosen plaintext pair with the difference X||∗
satisfies the difference 0||X after 1 round is 2−n/2, one pair will satisfy the entire
differential characteristic. ∗ can be any n/2-bit difference.

Since we assume that the input difference of the distinguisher is 0||X for each
pair, the input and output differences of F0 are fixed, X and ∗, which will fix
one key candidate for k0 uniquely. The adversary computes a set of plaintexts
by the δ-set and the key candidate for each pair, and queries their corresponding
ciphertexts. Finally, The adversary computes the corresponding ∆-sequence and
matches Tδ. If there is a match, the key candidate for k0 is correct and the Y
can be known. The other keys are trivially recovered from the second round one
by one. Note that p1 = 2−n/2, p2 = 1, Nc = 2n/2, λ = n/2, hence, δ = 3 is
sufficient to filter out all the wrong candidates.

4 Quantum Meet-in-the-Middle Attack on 7-round
Feistel Construction

To attack 7-round Feistel, we append 1-round before and after the 5-round dis-
tinguisher respectively, and the differential characteristic of the 7-round Feistel
that we need is illustrated in the Fig. 3 (c). Similar to classic meet-in-the-middle
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Fig. 3: (a) The 5-round distinguisher. (b) 6-round Feistel construction for the
key recovery. (c) 7-round Feistel construction for the key recovery. vi and Fi
represent the input value and the round-function of each round, respectively.
X ′′ = X ′ ⊕X and X ′ 6= X. Z is the difference at v7.

attack, we also divide our attack into two phase: pre-computation phase and
queried-data analysis phase.

4.1 Pre-computation Phase

Similar to the classical MITM on 6-round Feistel, we need to calculate the ∆-
sequence based on the distinguisher and choose a fixedX value. But, 2n/3 choices
of X ′ are considered, to balance the complexities between the pre-computation
phase and the queried-data analysis phase. Without loss of generality, assume
that the values of X ′ differ in the last n/3 bits and are zero in the remaining n/6
most significant bits (MSBs). We define a function F : X ′ × Y → ∆-sequence,
where X ′, Y ∈ {0, 1}n/2, 0 ≤ X ′ ≤ 2n/3 − 1, 0 ≤ Y ≤ 2n/2 − 1 and ∆-sequence
∈ {0, 1}δn/2.

For a given X ′ and Y , assume that a pair of plaintexts (m,m⊕ 0||X) satisfy
the differential characteristic of the distinguisher, ti+2, ti+3 and ti+4 are the
input values of Fi+2, Fi+3 and Fi+4. Let us consider a new pair of plaintexts
(m,m ⊕ 0||j)(j ∈ {1, 2, . . . , δ}) and compute the corresponding ∆j that is the
difference at vi+5.

Since, the output difference ∆FOi+1 of the first round-function Fi+1 in the
distinguisher is always 0. So, ∆vi+2 = ∆vi = j. In the second round, due to the
input value F Ii+2 = ti+2 and ∆F Ii+2 = j, then, ∆FOi+2 = Fi+2(ti+2)⊕Fi+2(ti+2⊕
j). And in the 3rd round, ∆FOi+3 = Fi+3(ti+3)⊕ Fi+3(ti+3 ⊕∆FOi+2) because of
F Ii+3 = ti+3 and ∆F Ii+3 = ∆FOi+2. In the next round, ∆vi+4 = ∆FOi+3 ⊕ j, the
output difference of 4th round is ∆FOi+4 = Fi+4(ti+4)⊕ Fi+4(ti+4 ⊕∆FOi+3 ⊕ j).
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Finally, we can get the difference ∆j at v5,

∆j = ∆vji+5

= ∆FOi+4 ⊕∆FOi+2

= Fi+4(ti+4)⊕ Fi+4(ti+4 ⊕∆FOi+3 ⊕ j)⊕∆FOi+2

= Fi+4(ti+4)⊕ Fi+4(ti+4 ⊕∆FOi+3 ⊕ j)⊕ Fi+2(ti+2)⊕ Fi+2(ti+2 ⊕ j)
= Fi+4(ti+4)⊕ Fi+4(ti+4 ⊕ Fi+3(ti+3)⊕ Fi+3(ti+3 ⊕ Fi+2(ti+2)

⊕ Fi+2(ti+2 ⊕ j))⊕ j)⊕ Fi+2(ti+2)⊕ Fi+2(ti+2 ⊕ j).

(3)

By repeating this procedure for different choices of j, we can get

∆− sequence = ∆1||∆2||...||∆δ (4)

for a given X ′ and Y .
From Eq. 3, to calculate ∆j , we need to know the values of ti+2, ti+3 and

ti+4 corresponding to the given (X, X ′, Y ). According to the Lemma 1 in Ref.
[13], there exists one state value (one solution) that satisfies such input-output
difference in each of the middle three rounds for a given (X, X ′, Y ). As Y takes
at most 2n/2 different values, ti+2, ti+3 and ti+4 can assume only 2n/2 different
values. Therefore, we need to search for eligible ti+2, ti+3 and ti+4 from a space
of size 2n/2 for a given (X, X ′, Y ), where ti+2, ti+3 and ti+4 satisfy

Fi+2(ti+2)⊕ Fi+2(ti+2 ⊕X) = Y,

Fi+3(ti+3)⊕ Fi+3(ti+3 ⊕ Y ) = X ⊕X ′,
Fi+4(ti+4)⊕ Fi+4(ti+4 ⊕X ′) = Y.

(5)

So far, the above process is the calculation process of the function F . In
the classical setting, the final ∆-sequences are stored in a table Tδ with O(2n)
computations and O(2n) classical memory. With quantum parallelism and su-
perposition, we can reduce the time complexity to O(2n/4) with O(n) qubits,
which is shown as below.

1. Prepare the superposition state

|ϕ1〉 =
2n/3−1∑
X′=0

1√
2n/3
|X ′〉1

2n/2−1∑
Y=0

1√
2n/2
|Y 〉2|X〉3, (6)

where the bit length of X ′ is n/2 and X ′ 6= X.
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2. Do Grover search for ti+2, ti+3 and ti+4 which satisfy Eq. 5 for each (X ′,
Y ), and store them in the new registers, i.e.

2n/2−1∑
Y=0

1√
2n/2
|Y 〉2|X〉3

2n/2−1∑
ti+2=0

|ti+2〉4
Grover−→

2n/2−1∑
Y=0

1√
2n/2
|Y 〉2|X〉3|ti+2〉4,

2n/3−1∑
X′=0

1√
2n/3
|X ′〉1

2n/2−1∑
Y=0

1√
2n/2
|Y 〉2|X〉3

2n/2−1∑
ti+3=0

|ti+3〉5
Grover−→

2n/3−1∑
X′=0

1√
2n/3
|X ′〉1

2n/2−1∑
Y=0

1√
2n/2
|Y 〉2|X〉3|ti+3〉5

2n/3−1∑
X′=0

1√
2n/3
|X ′〉1

2n/2−1∑
Y=0

1√
2n/2
|Y 〉2

2n/2−1∑
ti+4=0

|ti+4〉6
Grover−→

2n/3−1∑
X′=0

1√
2n/3
|X ′〉1

2n/2−1∑
Y=0

1√
2n/2
|Y 〉2|ti+4〉6.

(7)

And we obtain

|ϕ2〉 =
X′=2n/3−1,Y=2n/2−1∑

X′,Y=0

2−5n/12|X ′〉1|Y 〉2|X〉3|ti+2〉4|ti+3〉5|ti+4〉6 (8)

after Grover search with time O(2n/4).

3. Compute ∆-sequence according to Eq. 3 with
δ
⊗
j=1
|j〉 as input, and store

them in a new register of δn/2 qubits.

|ϕ3〉 =
X′=2n/3−1,Y=2n/2−1∑

X′,Y=0

2−5n/12|X ′〉1|Y 〉2|X〉3|∆− sequence〉7

=

X′=2n/3−1,Y=2n/2−1∑
X′,Y=0

2−5n/12|X ′〉1|Y 〉2|X〉3|F(X
′, Y )〉7,

(9)

where we discard some useless registers finally.
4. Do Grover search parallelly on |ϕ3〉 for each (X ′, Y ) with 25n/6 parallel single

quantum processors, and store the measured |∆− sequence〉7 in the table
Tδ indexed by (X ′, Y ).

In summary, the entire quantum computation for the table Tδ will cost
O(22n/3) time with O(25n/6) qubits and O(25n/6) classical memory.
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4.2 Queried-data analysis phase

Firstly, we choose two plaintext sets in the form of {m||0,m||1, ...,m||2n/2 − 1}
and {m ⊕X||0,m ⊕X||1, ...,m ⊕X||2n/2 − 1}, where m is a randomly chosen
n/2-bit constant. 2n pairs of plaintexts can be generated, 25n/6 pairs of them
will satisfy ∆C = X ′||Z in the corresponding ciphertexts for 2n/3 choices of X ′
and 2n/2 choices of Z. By iterating this procedure 2n/6 times for different choices
of m, 2n pairs satisfying ∆P = X||∗ and ∆C = X ′||Z are collected. These pairs
are stored in the table TPC indexed by the item I (0 ≤ I ≤ 2n − 1). We can
see that, the probability of that the plaintext difference ∆P propagates to the
input difference 0||X of the distinguisher is p1 = 2−n/2, and the probability of the
ciphertext difference∆C propagates to the output difference X ′||0 is p2 = 2−n/2.
Therefore, one pair of 2n pairs would satisfy the entire differential characteristic
of 7-round Feistel.

In this phase, we aim to compute the ∆-sequence for each pair, and we define
this computing process as a function G : I →∆-sequence, where 0 ≤ I ≤ 2n − 1
and ∆-sequence∈ {0, 1}δn/2.

For each pair, we should guess subkeys k0 and k6 to ensure that the differences
∆P and ∆C propagate to the input difference 0||X and the output difference
X ′||0 of the distinguisher respectively. In other words, we assume that the dif-
ferences ∆P and ∆C for each pair propagate to 0||X and X ′||0 respectively. In
this case, we can find the input values of the two round-functions F0 and F6

according to the known input and output differences, and then use the input
values with the known plaintext and ciphertext values to deduce the guessed
subkeys, called subkey candidates.

Suppose that one pair of 2n pairs is (P, P ′) = (v0||v−1, v0 ⊕X||v−1 ⊕ ∗) and
their corresponding ciphertexts (C,C ′) = (v6||v7, v6 ⊕ X ′||v7 ⊕ Z). Then, we
need to search the input values F I0 and F I6 according to the input and output
differences. Therefore, we compute all 2n/2 possible values of F I0 and F I6 by
Eq. 10, and store them in two tables T0 and T6 indexed by (X, ∗) and (X ′, Z)
respectively. This step will cost O(25n/6) time classically.

F0(F
I
0 )⊕ F0(F

I
0 ⊕X) = ∗, F6(F

I
6 )⊕ F6(F

I
6 ⊕X ′) = Z. (10)

When we get F I0 and F I6 , we can obtain two subkeys candidates k0 and k6 by

k0 = F I0 ⊕ v0, k6 = F I6 ⊕ v6. (11)

Then, we construct a δ-set {v1||v0 ⊕ 1, v1||v0 ⊕ 2, ..., v1||v0 ⊕ δ}, where v1||v0
is corresponding to the plaintext v0||v−1 and can be obtained by encrypting
with the subkey candidate k0. So, with the knowledge of subkey candidate k0,
we compute the corresponding ∆FO0 , modify v−1 so that the value of v1 stays
unchanged, and obtain the plaintexts corresponding to the δ-set, i.e.,

∆FO0 = F0(v0 ⊕ k0)⊕ F0(v0 ⊕ k0 ⊕ j), j ∈ {1, 2, ..., δ},
Pj = v0 ⊕ j||v−1 ⊕∆FO0 .

(12)
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And these plaintexts are queried to get ciphertexts {C1, C2, ..., Cδ}. With the
knowledge of subkey candidate k6, these ciphertexts are decrypted partially to
get the values {v15 , v25 , ..., vδ5} at v5. Finally, the differences between v5 (corre-
sponding to ciphertext C) and vj5 make up a sequence ∆-sequence. If this ∆-
sequence can be found in Table Tδ, the subkey candidates k0 and k6 are correct.
Note that, p1 = 2−n/2, p2 = 2−n/2, Nc = 2n/2, λ = n/2, hence, δ = 4 is sufficient
to filter out all the wrong candidates.

In the classical setting, the computing process of G needs O(2n) computations
with O(2n) classical memory. To reduce complexity, we do the following quantum
operations.

1. Prepare the superposition state

|ϕ1〉 =
2n−1∑
I=0

1√
2n
|I〉1. (13)

2. Use |ϕ1〉 as the address to query the paired plaintexts and ciphertexts (P, P ′, C, C ′)
from the table TPC by QRAM,

|ϕ2〉 =
2n−1∑
I=0

1√
2n
|I〉1|P, P

′, C, C ′〉2

=

2n−1∑
I=0

1√
2n
|I〉1|PC〉2,

(14)

where P, P ′, C, C ′ is abbreviated as PC.
3. Compute (X, ∗, X ′, Z) for each pair to obtain

|ϕ3〉 =
2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3 (15)

4. Do Grover search to find F I0 and F I6 satisfying Eq. 10 for each pair

2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
2n/2−1∑
FI0 =0

∣∣F I0 〉4 Grover−→

2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
∣∣F I0 〉4

2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
2n/2−1∑
FI6 =0

∣∣F I6 〉5 Grover−→

2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
∣∣F I6 〉5,

(16)
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which costs O(2n/4) time, and obtain

|ϕ4〉 =
2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
∣∣F I0 〉4∣∣F I6 〉5. (17)

5. Compute the subkey candidates k0 and k6 with known plaintext P and
ciphertext C according to Eq. 11, to get

|ϕ5〉 =
2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
∣∣F I0 〉4∣∣F I6 〉5|k0〉6|k6〉7. (18)

6. Compute the plaintexts corresponding to the δ-set according to Eq. 12, to
get

|ϕ6〉 =
2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
∣∣F I0 〉4∣∣F I6 〉5|k0〉6|k6〉7|P1, P2, . . . .Pδ〉8.

(19)
7. Query the corresponding ciphertexts {C1, C2, ..., Cδ} for {P1, P2, . . . .Pδ} by

QRAM,

|ϕ7〉 =
2n−1∑
I=0

1√
2n
|I〉1|PC〉2|X, ∗, X

′, Z〉3
∣∣F I0 〉4∣∣F I6 〉5|k0〉6|k6〉7

⊗ |P1, P2, . . . .Pδ〉8|C1, C2, . . . , Cδ〉9.

(20)

Note that another table T ′PC stores 22n/3+1+δ plaintexts and corresponding
ciphertexts, which is indexed by the plaintexts.

8. Compute the ∆-sequence with the knowledge of subkey candidate k6 and
ciphertexts {C1, C2, ..., Cδ}, to obtain

|ϕ8〉 =
2n−1∑
I=0

1√
2n
|I〉1|∆− sequence〉10

=

2n−1∑
I=0

1√
2n
|I〉1|G(I)〉10,

(21)

where we discard some useless registers.

For now, we need to find a claw ((X ′, Y ) , I) such that F(X ′, Y ) = G(I)

from the table Tδ and the superposition state
2n−1∑
I=0

1√
2n
|I〉1|G(I)〉10, which can

be implemented by Algorithm 2. When we find the claw ((X ′, Y ) , I), the corre-
sponding subkeys candidates k0 and k6 are correct, and the other subkeys can
be deduced with the knowledge of X, X ′ and Y .
Complexity. Obviously, our attack belongs to Q1 model, which needs O(22n/3)
classical queries. And the time complexities of constructing the table Tδ and
Algorithm 2 are both O(22n/3). Therefore, the total time complexity of our
attack is O(22n/3). Besides, our attack needs O(2n) classical memory due to the
tables Tδ, TPC and T ′PC . And it consumes O(25n/6) qubits.
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Algorithm 2 Quantum Claw Finding between Two Functions F and G

1. Select a random subset A ⊆ {(X ′, Y )} of size l (l ≤ 25n/6), where |{(X ′, Y )}| =
25n/6.

2. Select a random subset B ⊆ {I} of size l2.
3. Compute

∑
b∈B

1
l
|b〉 |G(b)〉 according to Eqs. 13-21.

4. Sort the elements in A according to their F-value according to the table Tδ.
5. For a specific b ∈ B, check if there is an a ∈ A such that (a, b) is a claw by using

classical binary search on the sorted version of A. Combine this with quantum
search on the elements of B to find a claw in A×B.

6. Apply amplitude amplification on steps 1-4 with
√

25n/6+n

l3
iterations. And output

the claw ((X ′, Y ) , I) such that F(X ′, Y ) = G(I).

5 Quantum Meet-in-the-Middle Attack on r-round
Feistel Construction

To attack r-round (r > 7) Feistel construction, Dong et al. [9] guess the subkeys
of the last r− 3 rounds by Grover search, and use Simon’s algorithm to recover
the period satisfying the first 3-round distinguisher, which is inspired by Leander
and May’s work [23]. Furthermore, Ito et al. [18] continue this attack idea and
propose a new 4-round distinguisher to reduce the time complexity. Similarly,
we guess the subkeys of the last r − 7 rounds by Grover search, and find a claw
between functions F and G under each choice of the subkeys of the last r − 7
rounds. Therefore, the time complexity of our attack is O(2(r−7)n/4+2n/3).
Pre-computation phase. As same as the computing process in Sect. 4.1, we
construct the table Tδ classically without quantum computation. It will cost
O(25n/6) time and O(25n/6) classical memory.
Queried-data analysis phase. We choose the same paired plaintexts in the
Sect. 4.2, and query for their ciphertexts, which are also stored in the table
TPC−all indexed by I (0 ≤ I ≤ 27n/6 − 1). After querying, we do following
operations.

1. Prepare the initial superposition state

|ϕ1〉 =
2(r−7)n/2∑
K=0

1√
2(r−7)n/2

|K〉1
27n/6−1∑
I=0

1√
27n/6

|I〉2, (22)

where K = (k7, k8, . . . , kr−1).
2. Query the paired plaintexts and ciphertexts from the table TPC−all by

QRAM,

|ϕ2〉 =
2(r−7)n/2∑
K=0

1√
2(r−7)n/2

|K〉1
27n/6−1∑
I=0

1√
27n/6

|I〉2|PC − all〉3. (23)
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3. Decrypt the ciphertexts partially to the values at v7||v6 for each K,

|ϕ3〉 =
2(r−7)n/2∑
K=0

1√
2(r−7)n/2

|K〉1
27n/6−1∑
I=0

1√
27n/6

|I〉2|PC − all〉3
∣∣Cv7||v6〉4,

(24)
where Cv7||v6 represents the values at v7||v6.

4. Do Grover search for that the difference X ′ of the corresponding Cv7||v6 is
all zero in the first n/6 bits, with O(2n/12) time. This will increase the time
complexity of step 2 in Algorithm 2 with O(2n/3) = O(2n/4 × 2n/12) time,
but does not have an influence of the entire time complexity.

|ϕ4〉 =
2(r−7)n/2∑
K=0

1√
2(r−7)n/2

|K〉1⊗∑
0≤I′≤27n/6−1,|I′|=2n

1√
2n
|I ′〉2

∣∣∣PC − allI′〉
3

∣∣∣CI′v7||v6〉4
(25)

5. Do outer Grover search for K satisfying H(K) = 1 and apply Algorithm 2
in the inner for each K. We define the function H : K → {0, 1}. H(K) = 1 if
and only if there is claw after Algorithm 2 for the correspondingK, otherwise
H(K) = 0.

Note that p1 = 2−n/2, p2 = 2−2n/3, Nc = 2n/2, hence, δ = 4 is sufficient to
filter out all the wrong candidates.

6 Conclusion

To reduce the time complexity of classic and quantum attacks on r-round (r ≥
7) Feistel construction, we propose a new quantum meet-in-the-middle attack
in Q1 model. We introduce a quantum claw finding algorithm and Grover’s
algorithm in Guo et al.’s meet-in-the-middle attack to reduce complexity. Its time
complexity only needs O(22n/3+(r−7)n/4) and is less than classical and quantum
attacks. Moreover, it belongs to the Q1 model and is more practical than other
quantum attacks.

Furthermore, we hope to carry out quantum meet-in-the-middle attacks on
more multi-rounds Feistel constructions. Because there are not only 5-round
distinguisher, but also 7-round distinguisher, 8-round distinguisher, etc. Com-
bining these distinguishers with quantum claw finding algorithms, or even other
quantum algorithms may achieve good attack results.
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