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We prove that all states (mixed or pure) of qubit-qutrit (2 × 3) systems have entanglement-
preserving unitary (EPU) equivalence to a compact subset of true-generalized X (TGX) states
called EPU-minimal TGX states which we give explicitly. Thus, for any spectrum-entanglement
combination achievable by general states, there exists an EPU-minimal TGX state of the same
spectrum and entanglement. We use I-concurrence to measure entanglement and give an explicit
formula for it for all 2× 3 minimal TGX states (a more general set than EPU-minimal TGX states)
whether mixed or pure, yielding its minimum average value over all decompositions. We also give
a computable I-concurrence formula for a more general family called minimal super-generalized X
(SGX) states, and give optimal decompositions for minimal SGX states and all of their subsets.

I. INTRODUCTION AND REVIEW OF 2× 2

Quantum entanglement [1, 2] is a powerful resource
in emerging technologies such as quantum computing [3–
10], quantum communications [11–18], and quantum ma-
chine learning [19–22]. In recent years, many explicit re-
sults have been found for simple systems like two qubits
(2 × 2) which can help us study more complicated sys-
tems. While it is well-known that entanglement can be
detected in qubit-qutrit (2 × 3) systems, measures such
as negativity [23, 24] do not give minimum average en-
tanglement over all decompositions. Here, we extend the
work of [25–27] to show that entanglement universality
exists in 2×3 in analogy to 2×2, with computable optimal
values for special families of states.

To review, a measure of entanglement of any two-qubit
state ρ (mixed or pure), is the concurrence [28, 29],

C(ρ) ≡ max{0, ξ1 − ξ2 − ξ3 − ξ4}, (1)

where ξ1 > · · · > ξ4 are the eigenvalues of the Hermitian
operator

√√
ρρ̃
√
ρ (or square roots of the eigenvalues of

nonHermitian operator ρρ̃), where ρ̃ ≡ (σ2 ⊗ σ2)ρ∗(σ2 ⊗
σ2) and σ2 ≡

(
0 −i
i 0

)
. If ρ is an X state, defined as

ρX =

 ρ1,1 · · ρ1,4

· ρ2,2 ρ2,3 ·
· ρ3,2 ρ3,3 ·

ρ4,1 · · ρ4,4

, (2)

for ρa,b≡〈a|ρX|b〉 with a, b∈{1, . . . , 4}, (1) simplifies to

C(ρX) = 2 max{0, |ρ1,4|−
√
ρ2,2ρ3,3, |ρ2,3|−

√
ρ1,1ρ4,4 },

(3)
[30, 31]. For any general ρ of spectrum λ1> · · · >λ4, C∈
[0,max{0, cMEMS}], and cMEMS ≡ λ1−λ3−2

√
λ2λ4, there

is an entanglement-preserving unitary (EPU)-equivalent
X state of the same C and spectrum given by [27] as

ρEPUX
=


λ1+λ3+

√
Ω

2 · ·
√

(λ1−λ3)2−Ω

2
· λ2 · ·
· · λ4 ·√

(λ1−λ3)2−Ω

2 · · λ1+λ3−
√

Ω
2

, (4)

Ω ≡ max{0, Q} and Q ≡ (λ1 − λ3)2 − (C + 2
√
λ2λ4)2,

where cMEMS is the 2×2 spectral-MEMS preconcurrence,
and MEMS are maximally entangled mixed states [32–36].

II. SUMMARY OF NEW RESULTS FOR 2× 3

In a bipartite quantum system with density operators
ρ in a Hilbert space H ≡ H(1)⊗H(2) where dim[H(m)] ≡
nm so dim(H) ≡ n = n1n2, a 2 × 3 system has n ≡
(n1, n2) = (2, 3), and the entanglement of any ρ in 2× 3
is given by the I-concurrence [37–41], as (from App. A)

E(ρ) ≡ min
∀{pj ,ρj}

∑
j
pj‖C(ρj)‖2, (5)

where C(ρ) ≡ [C(ρ{1,2,4,5}), C(ρ{1,3,4,6}), C(ρ{2,3,5,6})] is
the subspace concurrence vector, where subspaces of ρ
are ρ{v} ≡ ρv,v ≡

∑d,d
a,b=1,1 ρva,vb |a[d]〉〈b[d]| for levels v ≡

(v1, . . . , vd) where |a[d]〉 are d-level computational basis
states, subspaces {qk} in C are quartets (see App. B), and
ρ=

∑
j pjρj (seeApp. C). If ρ is a minimal true-generalized

X (TGX) state [25–27, 42–47], which in 2× 3 is

ρmin
TGX =


ρ1,1 · · · · ρ1,6

· ρ2,2 · · · ·
· · ρ3,3 ρ3,4 · ·
· · ρ4,3 ρ4,4 · ·
· · · · ρ5,5 ·

ρ6,1 · · · · ρ6,6

, (6)

for ρa,b≡〈a|ρmin
TGX|b〉, a, b ∈ {1, . . . , 6}, which is a TGX

state with nonzero off-diagonals in only one of the quar-
tets in (5) [e.g., {1, 3, 4, 6}; see (16)], then (5) becomes

E(ρmin
TGX)=2 max{0, |ρ1,5|−√ρ2,2ρ4,4, |ρ2,4|−√ρ1,1ρ5,5,

|ρ1,6|−√ρ3,3ρ4,4, |ρ3,4|−√ρ1,1ρ6,6,
|ρ2,6|−√ρ3,3ρ5,5, |ρ3,5|−√ρ2,2ρ6,6}.

(7)
For any ρ of spectrum λ1 > · · · > λ6, entanglement
E∈ [0,max{0, eMEMS}], eMEMS ≡ λ1−λ5−2

√
λ4λ6, there

exists an EPU-equivalent minimal TGX state given by

ρEPUmin
TGX

=


λ1+λ5+

√
Ω

2 · · · ·
√

(λ1−λ5)2−Ω

2· λ2 · · · ·
· · λ4 · · ·
· · · λ6 · ·
· · · · λ3 ·√

(λ1−λ5)2−Ω

2 · · · · λ1+λ5−
√

Ω
2

,
(8)

Ω ≡ max{0, Q} and Q ≡ (λ1 − λ5)2 − (E + 2
√
λ4λ6)2.
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Details and proofs of these results are in Sec. III, but
first we summarize a few other important results.

1. The minimal TGX I-concurrence formula of (7) gives
the minimum average entanglement over all decompo-
sitions as proved in Sec. III A and visualized in Fig. 1.

rank 2 ρmin
TGX in 2× 3

(a)

〈E〉

θ
φ

1.0

0.5

0.0
π
2

π
4

0

2π

π

0E(ρmin
TGX)

-

(b)

〈E〉

U [3] label

1

0

1 1000

→E(ρmin
TGX)

(c)

〈E〉

U [4] label

1

0

1 1000

→E(ρmin
TGX)

FIG. 1: (color online) Entanglement as minimum average
I-concurrence 〈E〉min over many decompositions built from
U [D]≡U [D](θ, φ, . . .) [see App. C] for numbers of pure decom-
position states D∈{r, . . . , r2}={2, 3, 4} for a rank-2 minimal
TGX state ρmin

TGX from (6) [or (16)] with λ1 = λ2 = 0.5, and
where E(ρmin

TGX) is from (7). Each grid point or dot is 〈E〉 for a
different decomposition of ρmin

TGX [900 decompositions for (a),
1000 for (b) and (c)]. Trials of 103 other ρmin

TGX all succeeded
with E(ρmin

TGX) = 〈E〉min, using 104 decompositions each.

Figure 1 visually demonstrates that (7) is the cor-
rect minimal TGX I-concurrence formula, because the
full I-concurrence (5) was used for each pure decompo-
sition state to get 〈E〉, and 〈E〉min matches E(ρmin

TGX)
from (7). These tests are not proofs; they are merely
necessary tests of the proofs in Sec. III, which prove
these results for all ranks, not just rank 2.

Note that I-concurrence E(ρ) from (5) is a necessary
and sufficient (N&S) entanglement measure (EM) for
2×3, whereas generalized concurrence [48] is a verified
N&S EM only in 2 × 2, and that although the nega-
tivity [23, 24] is an N&S EM in 2× 2 and 2× 3, it is
not a minimum average value over all decompositions
unless it is also convex-roof extended.

2. An explicit Lewenstein-Sanpera (LS) [49, 50] decom-
position (derived in Sec. III D) of (8) is

ρEPUmin
TGX

= pEρE + (1− pE)ρS , (9)

with entangled-part probability pE and state ρE ,

pE =
E〈x1|x1〉
ξ1 + δξ1,0

, ρE =
|x1〉〈x1|
〈x1|x1〉

, (10)

such that the entanglement is

E(ρEPUmin
TGX

) = pEE(ρE) = E

= max{0, ξ1 − ξ2 − ξ3 − ξ4}, (11)

and its separable part ρS is

ρS = 1
1−pE+δpE,1

(
λ2|2〉〈2|+ λ3|5〉〈5|+ min{ξ1,ξ2+ξ3+ξ4}+δξ1,0

ξ1+δξ1,0
|x1〉〈x1|+

4∑
a=2
|xa〉〈xa|

)
, (12)

where λ1 > · · · > λ6, with computational basis states |k〉 for k ∈ 1, . . . , 6, and Wootters decomposition states,

|x1〉 = i
N1



√
λ1λ5Ω+δλ5Ω,0∆

∆

√
λ1

√
∆+
√

Ω
2∆ − ξ1∆−λ1

√
∆2−Ω

∆

√
λ5

√
∆−
√

Ω
2∆

····
√
λ1λ5Ω+δλ5Ω,0∆

∆

√
λ1

√
∆−
√

Ω
2∆ + ξ1∆−λ1

√
∆2−Ω

∆

√
λ5

√
∆+
√

Ω
2∆

, |x3〉 = 1√
2


·
·√
λ4√
λ6

·
·

,

|x2〉 = 1
N2


ξ2∆−λ5

√
∆2−Ω

∆

√
λ1

√
∆+
√

Ω
2∆ +

√
λ1λ5Ω+δλ5Ω,0∆

∆

√
λ5

√
∆−
√

Ω
2∆

····
ξ2∆−λ5

√
∆2−Ω

∆

√
λ1

√
∆−
√

Ω
2∆ −

√
λ1λ5Ω+δλ5Ω,0∆

∆

√
λ5

√
∆+
√

Ω
2∆

, |x4〉 = i√
2


·
·√
λ4

−
√
λ6

·
·

,

N1 ≡
√

( ξ1∆−λ1

√
∆2−Ω

∆ )2 + (
√
λ1λ5Ω+δλ5Ω,0∆

∆ )2, N2 ≡
√

( ξ2∆−λ5

√
∆2−Ω

∆ )2 + (
√
λ1λ5Ω+δλ5Ω,0∆

∆ )2,

(13)

where ρ
{1,3,4,6}
EPUmin

TGX

=
∑4
a=1 |xa〉〈xa|, and

ξ1 =

√
4λ1λ5∆2+(λ1−λ5)2(∆2−Ω)+(λ1−λ5)

√
∆2−Ω

2∆

ξ2 =

√
4λ1λ5∆2+(λ1−λ5)2(∆2−Ω)−(λ1−λ5)

√
∆2−Ω

2∆

ξ3 = ξ4 =
√
λ4λ6,

(14)

in (10–13), and also

∆ ≡ λ1 − λ5 + δλ1,λ5

Ω ≡ max{0, Q},
Q ≡ (λ1 − λ5)2 − (E + 2

√
λ4λ6)2.

(15)

See Sec. III D for a full derivation of these results.
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3. TGX form and entanglement of states such as (6) or
(8) are both preserved by local-permutation unitary
(LPU) operations ULPU ≡ Π(1) ⊗ Π(2) where Π(m) is
a mode-m unitary permutation operator. The full set
of minimal TGX states in 2× 3 is [from (6)],

ρmin
TGX =


ρ1,1 · · · ρ1,5 ·
· ρ2,2 · ρ2,4 · ·
· · ρ3,3 · · ·
· ρ4,2 · ρ4,4 · ·

ρ5,1 · · · ρ5,5 ·
· · · · · ρ6,6

,

ρmin
TGX =


ρ1,1 · · · · ρ1,6

· ρ2,2 · · · ·
· · ρ3,3 ρ3,4 · ·
· · ρ4,3 ρ4,4 · ·
· · · · ρ5,5 ·

ρ6,1 · · · · ρ6,6

,

ρmin
TGX =


ρ1,1 · · · · ·
· ρ2,2 · · · ρ2,6

· · ρ3,3 · ρ3,5 ·
· · · ρ4,4 · ·
· · ρ5,3 · ρ5,5 ·
· ρ6,2 · · · ρ6,6

,

(16)

which are LPU variations of each other. All LPU vari-
ations of (8) and (16) are confined to TGX space:

ρTGX =


ρ1,1 · · · ρ1,5 ρ1,6

· ρ2,2 · ρ2,4 · ρ2,6

· · ρ3,3 ρ3,4 ρ3,5 ·
· ρ4,2 ρ4,3 ρ4,4 · ·

ρ5,1 · ρ5,3 · ρ5,5 ·
ρ6,1 ρ6,2 · · · ρ6,6

. (17)

4. By Item 3, (7) is invariant under LPU operations.
{The I-concurrence of (5) is local-unitary (LU) in-
variant, and while LU operations on any ρ do pre-
serve entanglement, (7) is only valid for minimal TGX
states [just as (3) is only valid for X states], which
means only states LPU-equivalent to (16).} Thus, the
I-concurrence of each state in (16) is given by (7) for all
spectra, as is that of the simpler EPU-minimal TGX
states such as (8) and its LPU variations.

5. Despite having X form, (8) is a TGX state, since
there are X states ρ{2,5} which are not EPU equiv-
alent to (8) in general since ρ{2,5} is always separable
since {|2〉, |5〉} = {|1, 2〉, |2, 2〉}. [Throughout, we use
{|1〉, . . . , |6〉} = {|1, 1〉, |1, 2〉, |1, 3〉, |2, 1〉, |2, 2〉, |2, 3〉}
(see App. U of [46]) where |a, b〉 ≡ |a〉|b〉 ≡ |a〉 ⊗ |b〉.]

6. In analogy to [27], the EPU that transforms general ρ
to ρEPUmin

TGX
of (8) is

UEPUmin
TGX
≡ ερ

EPUmin
TGX

ε†ρ, (18)

where ερ is the unitary eigenvector matrix of ρ and
ερ

EPUmin
TGX

is that of (8), shown explicitly in (105).

7. One major difference from 2× 2 is that a computable
formula for the I-concurrence E(ρ) of general mixed
states ρ in 2 × 3 is not yet known. If we had such a
formula, we could use the E and spectrum of any ρ to
immediately construct ρEPUmin

TGX
of (8), and achieve

transformations like that of the first figure of [27].
Nevertheless, (8) is extremely powerful since it allows
us to parameterize states of all physical spectrum-
entanglement combinations in 2× 3.

8. The entanglement E of ρEPUmin
TGX

also agrees with the
minimal TGX I-concurrence formula of (7), giving the
minimum average entanglement over all decomposi-
tions as proved in Sec. III A and visualized in Fig. 2.

rank 2 ρEPUmin
TGX

in 2× 3

(a)

〈E〉

θ
φ

1.0

0.5

0.0
π
2

π
4

0

2π

π

0

E(ρ
EPUmin

TGX
)

6

(b)

〈E〉

U [3] label

1

0

1 1000

E(ρ
EPUmin

TGX
)

6

(c)

〈E〉

U [4] label

1

0

1 1000

E(ρ
EPUmin

TGX
)

6

FIG. 2: (color online) Entanglement as minimum average
I-concurrence 〈E〉min over many decompositions built from
U [D]≡U [D](θ, φ, . . .) [see App. C] for numbers of pure de-
composition states D ∈ {r, . . . , r2} = {2, 3, 4} for a rank-2
EPU-minimal TGX state ρEPUmin

TGX
from (8) with {λ1, λ2}=

{0.7, 0.3} and E = 0.693, with E(ρEPUmin
TGX

) computed from

(7). Each grid point or dot is 〈E〉 for a different decomposi-
tion of ρEPUmin

TGX
[900 decompositions for (a), 1000 for (b) and

(c)]. This test was repeated for 103 other ρEPUmin
TGX

, and all
succeeded with E(ρEPUmin

TGX
) = 〈E〉min = E.

Figure 2 visually demonstrates that (7) is the correct
minimal TGX I-concurrence formula, but also verifies
that E in (8) is correct, because the full I-concurrence
of (5) was used for each pure decomposition state to
get 〈E〉, and 〈E〉min matches both E(ρEPUmin

TGX
) from

(7) and E from (8). These tests are not proofs; they
are merely necessary tests of the proofs in Sec. III,
which prove these results for all ranks.

9. Nomenclature: The term EPU-equivalent minimal
TGX states (or simply EPU-minimal TGX states)
ρEPUmin

TGX
refers to the simplest possible set of TGX

states that has EPU equivalence to general states
(where “simplest” means it has the most zeros).

The term minimal TGX states ρmin
TGX refers to a

somewhat broader class of states definable as the most
general TGX states whose simplified I-concurrence
still has the same special formula as ρEPUmin

TGX
. In 2×3,

a ρmin
TGX can be formed from a ρEPUmin

TGX
by promoting



4

to dense X form any quartets needed to diagnose en-
tanglement in that particular ρEPUmin

TGX
, where quartets

are the 2× 2 product subspaces defined in App. B.

For example, the EPU-minimal TGX state ρEPUmin
TGX

in (8) only has nonzero off-diagonals in subspace
{1, 6}, while its minimal TGX state counterpart ρmin

TGX
in (6) [the second state in (16)] has nonzero off-
diagonals in both {1, 6} and {3, 4} since those are all
the X-state elements in the {1, 3, 4, 6} quartet which
contained the nonzero off-diagonals of ρEPUmin

TGX
.

We can form an even more general set of states
called minimal super-generalized X (SGX) states ρmin

SGX
by generalizing ρmin

TGX just enough for the simple I-
concurrence formula to have the same form but with
full concurrences rather than X concurrences. In 2×3,
this means promoting the entanglement-containing
quartet of ρmin

TGX to dense form, as well as any remain-
ing subspace still permitting that I-concurrence form.

10. As introduced in Result 9, the full set of minimal SGX
states in 2× 3 is

ρmin
SGX =


ρ1,1 ρ1,2 · ρ1,4 ρ1,5 ·
ρ2,1 ρ2,2 · ρ2,4 ρ2,5 ·
· · ρ3,3 · · ρ3,6

ρ4,1 ρ4,2 · ρ4,4 ρ4,5 ·
ρ5,1 ρ5,2 · ρ5,4 ρ5,5 ·
· · ρ6,3 · · ρ6,6

,

ρmin
SGX =


ρ1,1 · ρ1,3 ρ1,4 · ρ1,6

· ρ2,2 · · ρ2,5 ·
ρ3,1 · ρ3,3 ρ3,4 · ρ3,6

ρ4,1 · ρ4,3 ρ4,4 · ρ4,6

· ρ5,2 · · ρ5,5 ·
ρ6,1 · ρ6,3 ρ6,4 · ρ6,6

,

ρmin
SGX =


ρ1,1 · · ρ1,4 · ·
· ρ2,2 ρ2,3 · ρ2,5 ρ2,6

· ρ3,2 ρ3,3 · ρ3,5 ρ3,6

ρ4,1 · · ρ4,4 · ·
· ρ5,2 ρ5,3 · ρ5,5 ρ5,6

· ρ6,2 ρ6,3 · ρ6,5 ρ6,6

,

(19)

which are all LPU variations of each other. Note that
minimal SGX states have nonTGX form in general,
but minimal TGX states are always subsets of minimal
SGX states (although the full TGX space is not a
subspace of any of the minimal SGX states). The full
SGX space is the union of all minimal SGX states and
in 2× 3 simply yields the set of all states,

ρSGX =


ρ1,1 ρ1,2 ρ1,3 ρ1,4 ρ1,5 ρ1,6

ρ2,1 ρ2,2 ρ2,3 ρ2,4 ρ2,5 ρ2,6

ρ3,1 ρ3,2 ρ3,3 ρ3,4 ρ3,5 ρ3,6

ρ4,1 ρ4,2 ρ4,3 ρ4,4 ρ4,5 ρ4,6

ρ5,1 ρ5,2 ρ5,3 ρ5,4 ρ5,5 ρ5,6

ρ6,1 ρ6,2 ρ6,3 ρ6,4 ρ6,5 ρ6,6

. (20)

Minimal SGX states in 2× 3 are not TGX states in
general for many reasons. TGX states were proposed
in [25] as a family of states that achieves EPU equiv-
alance and contains particular sets of states that have
the same entanglement properties as the Bell states.

For instance, the Bell states are maximally entan-
gled, form a complete orthonormal basis [called a max-
imally entangled basis (MEB)], have balanced super-
position while having multiple state coefficients be 0,
and have diagonal reductions. In [43], it was proved
that TGX states always admit such families of states
in all systems, and it showed how to construct the
proper generalization of Bell states in all systems wrt
full N -partite entanglement.

Here, we can use (19) to show that minimal SGX
states cannot contain any MEBs of pure ME TGX
states, and therefore minimal SGX states do not
achieve the same properites as TGX states in gen-
eral, even though they are general enough to achieve
EPU-equivalence. But even then, the simplest states
that do so are the much-simpler EPU-minimal TGX
states which are always confined within TGX space.

11. A computable formula for I-concurrence of minimal
SGX states (mixed or pure) in 2× 3 is

E(ρmin
SGX)=‖C(ρmin

SGX)‖∞=max{C{q1}, C{q2}, C{q3}},
(21)

where C{q} ≡ C([ρmin
SGX]{q}) is the concurrence of the

generally mixed q subspace of ρmin
SGX, where qk for k =

1, 2, 3 are the quartets from (5).

12. The minimal SGX I-concurrence formula of (21) gives
the minimum average I-concurrence over all decom-
positions as proved in Sec. III A and shown in Fig. 3.

rank 2 ρmin
SGX in 2× 3

(a)

〈E〉

θ
φ

1.0

0.5

0.0
π
2

π
4

0

2π

π

0

E(ρmin
SGX)

-

(b)

〈E〉

U [3] label

1

0

1 1000

→E(ρmin
SGX)

(c)

〈E〉

U [4] label

1

0

1 1000

→E(ρmin
SGX)

FIG. 3: (color online) Minimum average I-concurrence 〈E〉min

over many decompositions built from U [D]≡U [D](θ, φ, . . .)
[see App. C] for numbers of pure decomposition states D ∈
{r, . . . , r2} = {2, 3, 4} for a rank-2 minimal SGX state ρmin

SGX

from (19) with {λ1, λ2} = {0.73, 0.27}, with E(ρmin
SGX) from

(21). Each grid point or dot is 〈E〉 for a different decomposi-
tion of ρmin

SGX [900 decompositions for (a), 1000 for (b) and (c)].
Trials of 103 other ρmin

SGX all succeeded with E(ρmin
SGX)=〈E〉min.

Figure 3 demonstrates that (21) gives the correct
minimum average I-concurrence over all decomposi-
tions of minimal SGX states. Again, while this ex-
ample is merely a necessary test, the proof that (21)
works for all ρmin

SGX of all ranks is in Sec. III A.

We now prove all these new results in Sec. III.
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III. PROOFS AND DERIVATIONS

Here we prove the results summarized in Sec. II.

A. Proof of the I-Concurrence Formulas for
Minimal SGX States and Minimal TGX States

We give our proof of E(ρmin
SGX) from (21) and E(ρmin

TGX)
from (7) as a series of facts that build upon each other:

1. The I-concurrence of any pure state ρ in 2× 3 is

E(ρ)=
√
C2(ρ{1,2,4,5})+C2(ρ{1,3,4,6})+C2(ρ{2,3,5,6}),

(22)

derived in App. A, using definitions in the text after
(5). The sets {1, 2, 4, 5}, {1, 3, 4, 6}, and {2, 3, 5, 6}
in (22) and (5) are called quartets (see App. B).

2. All pure TGX states in 2 × 3 have at most L∗ = 2
nonzero probability amplitudes. The sets of L∗ in-
dices of nonzero levels of each of these possible pure
TGX subspaces are called ME TGX tuples [47].
From [43], all ME TGX tuples in 2× 3 are

{1, 5}, {1, 6}, {2, 4}, {2, 6}, {3, 4}, {3, 5}. (23)

3. In 2×3, each ME TGX tuple in (23) is a subspace of a
single quartet in (22). In particular, these subspaces
form inseparable qubits (the inner or outer pair in
each quartet) as defined in App. B. Thus, for any
pure TGX state ρ|ψTGX〉 ≡ |ψTGX〉〈ψTGX| in 2 × 3,
its subspace for any quartet has only two nonzero
levels at most, given by one of the ME TGX tuples of
(23), and only in an inseparable qubit. For example,
if the nondiagonal quartet of a given ρ|ψTGX〉 is q ≡
{1, 3, 4, 6}, then its subspace for this q might be

ρ
{1,3,4,6}
|ψTGX〉 =

 ρ1,1 · · ρ1,6

· · · ·
· · · ·

ρ6,1 · · ρ6,6

, (24)

where ρa,b ≡ 〈a|ρ|ψTGX〉|b〉, which has only two
nonzero levels, while all other subspace quartets of
that pure state are diagonal or 0. (Note: all pure
TGX states in 2 × 3 have two nonzero levels except
for computational basis states which have one.)

4. By Fact 3, any pure TGX state in 2 × 3 has
E(ρ|ψTGX〉) = C(ρ

{qk}
|ψTGX〉) for only one quartet qk,

since the others must all be zero since only one sub-
space quartet can be nondiagonal, and diagonal sub-
spaces have zero subspace concurrence. Therefore,
for all pure TGX states in 2× 3,

E(ρ|ψTGX〉)=max{C(ρ
{q1}
|ψTGX〉), C(ρ

{q2}
|ψTGX〉), C(ρ

{q3}
|ψTGX〉)}

=‖C(ρ|ψTGX〉)‖∞,
(25)

where C(ρ) is defined after (5). [Note: since only one
subspace concurrence can be nonzero for pure TGX
states in 2× 3, E(ρ|ψTGX〉) simplifies to any p-norm
of C(ρ|ψTGX〉) for p > 1, but the infinity norm offers
the simplest final form as we will see.]

5. Fact 4 suggests that any state with all of its coher-
ence (nonzero off-diagonals) in just one fully dense
quartet might also satisfy (25). However, since the
quartets overlap we need to check whether that
causes multiple quartets to be nonzero.

For example, if only ρ{1,3,4,6} is dense with zeros
everywhere else, then ρ{1,2,4,5} has nonzero nondiag-
onals in {1, 4} and ρ{2,3,5,6} has nonzero nondiago-
nals in {3, 6}. But since {|1〉, |4〉} = {|1〉|1〉, |2〉|1〉}
and {|3〉, |6〉} = {|1〉|3〉, |2〉|3〉}, then ρ{1,2,4,5} and
ρ{2,3,5,6} are separable since their only nondiagonal-
ity is in a separable subspace, so we can always
find an explicit separable decomposition for them,
such as ρ{1,2,4,5} = (ρ1,1|1[2]〉〈1[2]|+ρ4,1|2[2]〉〈1[2]|+
ρ1,4|1[2]〉〈2[2]| + ρ4,4|2[2]〉〈2[2]|) ⊗ |1[2]〉〈1[2]|, where

{|1[2]〉, |2[2]〉} are 2-dimensional basis states of each
mode of the 2× 2 subspace state ρ{1,2,4,5}.

Therefore, pure states in 2×3 with just one quartet
that is fully dense, such as {1, 3, 4, 6}, can only have
one nonzero subspace concurrence. Such pure states
qualify as minimal SGX states, as seen in (19). The
example above also applies to mixed minimal SGX
states, but for now, we focus on pure minimal SGX
states, meaning that, for example, while ρ{1,3,4,6}

can be dense, the rest of the elements are all zero
to obey the geometric-mean rule for pure states that
|ρa,b| =

√
ρa,aρb,b. (Alternatively, a pure minimal

SGX state could be dense in {2, 5} with zeros ev-
erywhere else, but since {|2〉, |5〉} = {|1〉|2〉, |2〉|2〉}
is separable, such states are automatically separa-
ble, so all subspace concurrences are 0 so they are
a special case where there is one potentially nonzero
subspace concurrence whose value is 0.) Further-
more, note that this example generalizes to all pure
minimal SGX states by LPU variation.

Thus, for pure minimal SGX states ρ|ψSGX〉 in
2 × 3, since only one subspace concurrence can be
nonzero, their I-concurrence simplies to

E(ρ|ψSGX〉)=max{C(ρ
{q1}
|ψSGX〉), C(ρ

{q2}
|ψSGX〉), C(ρ

{q3}
|ψSGX〉)}

=‖C(ρ|ψSGX〉)‖∞.
(26)

At this point, since all pure TGX states are sub-
sets of pure minimal SGX states [which can be seen
by noting that each ME TGX tuple from (23) is a
subset of one 2-level nondiagonal subspace of one of
the minimal SGX states of (19)], we will focus our
proof on minimal SGX states, and then derive special
results for minimal TGX states at the end.

6. In any system, not just in 2× 3, we say that two or
more matrices are spacewise orthogonal if the poten-
tially nonzero elements in each of them are always in
regions where all of the others always have zeros.

We call a matrix internally spacewise orthogonal if
it can be rearranged through general permutation to
be block-diagonal with at least one generally nonzero
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block strictly smaller than the full matrix (to ex-
clude the case of a fully dense matrix being its own
block-diagonal form, since then none of its subspaces
would be spacewise orthogonal). Here, by “generally
nonzero block” we mean a square of contiguous ma-
trix elements which can all be nonzero but can also
have zeros (including all of them being zero).

A minimal SGX state in 2× 3, such as the middle
of (19), is internally spacewise orthogonal since the
{1, 3, 4, 6} subspace and the {2, 5} subspace are each
generally nonzero blocks that could be permuted to
block-diagonal form (note that we do not actually
permute the matrix to block-diagonal form). These
internal nonzero blocks are spacewise orthogonal to
each other because their orthogonality comes from
living in different subspaces with no overlaping levels.

For example, the minimal SGX state in the middle
of (19) is internally spacewise orthogonal because it
has two spacewise-orthogonal subspaces as

ρmin
SGX =



ρ1,1
1

·
ρ3,1

ρ4,1
1

·
ρ6,1

1

·
ρ2,2

2
·
·
ρ5,2

2
·

ρ1,3 ρ1,4
1

· ·
ρ3,3 ρ3,4

ρ4,3 ρ4,4
1

· ·
ρ6,3 ρ6,4

1

·
ρ2,5

2
·
·
ρ5,5

2
·

ρ1,6
1

·
ρ3,6

ρ4,6
1

·
ρ6,6

1


,

(27)
where the boxes’ subscripts label the subspaces and
show which elements belong to which subspace.

7. By Fact 6, internally spacewise orthogonal matrices
are always a direct sum of their spacewise orthogonal
subspaces. For example, (27) can be rewritten [using
ρ ≡ ρmin

SGX and the subspace notation after (5)] as

ρmin
SGX = ρ{1,3,4,6} ⊕ ρ{2,5}. (28)

8. From Facts 6 and 7, eigenvectors for each spacewise-
orthogonal subspace of an internally spacewise or-
thogonal matrix always exist such that those eigen-
vectors only have nonzero entries within their re-
spective subspaces. (It is well-known that the set of
eigenvectors of the full matrix of a direct sum is the
union of the eigenvectors of its direct summands.)

9. From Fact 8, we see that none of the eigenvectors
from different spacewise orthogonal subspaces are
needed to decompose a given spacewise orthogonal
subspace. For example, all decompositions of the
{1, 3, 4, 6} subspace of ρ ≡ ρmin

SGX from (27) only re-

quire eigenvectors of ρ{1,3,4,6} embedded in the full
space, and those have zeros in all elements except
those in {1, 3, 4, 6}. Therefore, by Fact 7, decompo-
sitions of ρ ≡ ρmin

SGX into convex sums of pure states
can be constructed as direct sums of decompositions
of each spacewise orthogonal part. For example,

ρmin
SGX = (

∑
j1
p
{1,3,4,6}
j1

ρ
{1,3,4,6}
j1

)⊕ (
∑
j2
p
{2,5}
j2

ρ
{2,5}
j2

),

(29)

where for instance, ρ
{1,3,4,6}
j1

are pure decomposition
states of ρ{1,3,4,6} constructed from its own eigen-
states and eigenvalues.

10. The Lewenstein-Sanpera (LS) decomposition [49] of
any state ρ is one for which all of the entanglement
is concentrated in a single part ρE (generally mixed,
but pure in 2 × 2, and as we will show, pure for
minimal SGX states in 2 × 3), and the other part
is separable ρS , where pEE(ρE) (which is the
entanglement of the unnormalized entangled part
pEρE) is equal to E(ρ), the minimum average
entanglement over all decompositions. Thus, the LS
decomposition is

ρ = pEρE+(1−pE)ρS s.t. E(ρ) = pEE(ρE), (30)

which happens when pS ≡ 1− pE is maximized over
all such decompositions (in general, not all decom-
positions of ρ into entangled and separable parts are
optimal, but there always exist ones that are opti-
mal, and we call those the LS decompositions).

11. Since by Fact 5, all of the entanglement of ρmin
SGX

comes from a single spacewise-orthogonal subspace
quartet, and by Fact 9, only the eigenstates of that
subspace matter in the general pure-state decom-
positions of that subspace, and since the subspace
spacewise orthogonal to that which is {2, 5} is always
separable, then the LS entanglement-minimizing de-
composition of ρmin

SGX gets all of its entanglement from
the entangled part of the LS decomposition of a single
spacewise-orthogonal quartet subspace.

For example, in (27), the LS-entangled part of
ρ ≡ ρmin

SGX gets all of its entanglement from the LS-

entangled part of ρ{1,3,4,6} ⊕ 0{2,5} because by Fact
5, C{1,3,4,6} is the only nonzero concurrence, and the
part of ρmin

SGX outside of {1, 3, 4, 6} (which is ρ{2,5})
is separable, so it can be added to the LS-separable
part of ρ{1,3,4,6} ⊕ 0{2,5} and that sum will still be
separable by the definition of separability. Thus, the
2× 3 LS decomposition of this ρ ≡ ρmin

SGX is

ρmin
SGX = p

{1,3,4,6}
E (ρ{1,3,4,6})E ⊕ 0{2,5}

+[tr(ρ{1,3,4,6})− p{1,3,4,6}E ](ρ{1,3,4,6})S ⊕ ρ{2,5}.
(31)

12. By Fact 11, the LS decomposition of ρmin
SGX always

has a pure entangled part (because the LS decompo-
sition of its single entangled quartet is a 2×2 system
whose entangled part is always pure), and that en-
tangled part always exists in a single quartet’s sub-
space, and therefore since the LS decomposition is an
optimal decomposition, the convex-roof extension of
the I-concurrence for a minimal SGX state in 2× 3
is always equal to a single subspace concurrence. (In
other words, the existence of the LS decomposition
for all SGX states in 2× 3 [proved in Fact 11] means
we do not have to consider optimal decompositions
in which multiple pure states simplify to single sub-
space concurrences in different subspaces.) Thus, for
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minimal SGX states in 2 × 3, if we use an optimal
decomposition of the LS form, we get

E(ρmin
SGX) = min

∀{pj ,ρj}

∑
j pj‖C(ρj)‖2

=
∑
j pjC([ρj ]

{qk}); k∈{1, 2, 3}
= C([ρmin

SGX]{qk}); k∈{1, 2, 3}
= max{C(ρ{q1}), C(ρ{q2}), C(ρ{q3})}
= ‖C(ρmin

SGX)‖∞,

(32)

where ρj are pure decomposition states of ρ ≡ ρmin
SGX,

and in line 2 of (32), we used Facts 5 and 11 that the
pure entangled state of the LS decomposition of ρmin

SGX
only exists in the spacewise orthogonal subspace of a
single quartet in 2× 3 to simplify the 2-norm to the
concurrence of a single subspace as in (26). Then,
in line 3 of (32), we used the fact that since this LS
decomposition is optimal, the average concurrence is
equal to the actual concurrence of that same sub-
space of the full state. Finally, since minimal SGX
states in 2× 3 only have one nonzero subspace con-
currence, lines 4 and 5 of (32) express that as the
infinity norm (for reasons we explain next).

Thus, (32) completes the proof of (21).

13. For all TGX states in all systems (including multi-
partite systems), the subspace states of all quartets
appearing in the I-concurrence are always X states.
Therefore, this is also true for minimal TGX states,
as seen in (24), and also for their subsets such as
EPU-minimal TGX states. [Then, since minimal
TGX states are subsets of minimal SGX states, we
can use (32) to compute I-concurrence of minimal
TGX states, and since in 2× 3 that yields a p-norm
of subspace concurrences on the whole state, those
subspace concurrences simplify to the form of the X-
concurrence formula of (3), since those subspaces all
have X form for minimal TGX states.]

Specifically, for any TGX state ρ ≡ ρTGX, if we
abbreviate C{a,b,c,d} ≡ C(ρ{a,b,c,d}), then

C{a,b,c,d}=2 max{0, |ρa,d| −
√
ρb,bρc,c, |ρb,c| −

√
ρa,aρd,d},

(33)

for valid quartets {a, b, c, d} (see App. B), where
these matrix elements’ indices reference the TGX
parent state itself, not its subspace state ρ{a,b,c,d}

even though this is the concurrence of ρ{a,b,c,d}. Note
that (33) holds for minimal TGX states ρmin

TGX since
they are subsets of TGX states ρTGX.

14. By Facts 12 and 13, applying (32) to ρmin
TGX yields

E(ρmin
TGX)=max{C{1,2,4,5}, C{1,3,4,6}, C{2,3,5,6}}

=max{
2 max{0, |ρ1,5|−

√
ρ2,2ρ4,4, |ρ2,4|−

√
ρ1,1ρ5,5},

2 max{0, |ρ1,6|−
√
ρ3,3ρ4,4, |ρ3,4|−

√
ρ1,1ρ6,6},

2 max{0, |ρ2,6|−
√
ρ3,3ρ5,5, |ρ3,5|−

√
ρ2,2ρ6,6}}

=2 max{0, |ρ1,5|−
√
ρ2,2ρ4,4, |ρ2,4|−

√
ρ1,1ρ5,5},

|ρ1,6|−
√
ρ3,3ρ4,4, |ρ3,4|−

√
ρ1,1ρ6,6},

|ρ2,6|−
√
ρ3,3ρ5,5, |ρ3,5|−

√
ρ2,2ρ6,6}},

(34)

where again C{q} ≡ C(ρ{q}), which proves (7),
and in the last step we used the fact that
max{max{a, b},max{c, d}} = max{a, b, c, d}, which
generalizes to any number of arguments. Also, (34)
shows why we used the infinity norm; when simpli-
fying the minimal SGX I-concurrence formula from
(32) for input of minimal TGX states, the fact that
the 2×2 X-concurrence formula of (33) already con-
tains a max function allows the max function in the
infinity norm to merge with it, reducing the overall
expression to a single max function.

Now that we have proven (7) and (21), we are justi-
fied in using them in the proofs that follow. Note that
(7) and (21) are LPU invariant (since LPUs preserve en-
tanglement as well as TGX form and also minimal SGX
form, and thus they preserve minimal TGX form as well).
Furthermore, since EPU-minimal TGX states ρEPUmin

TGX

such as (8) and their LPU variations are subsets of the
minimal TGX states ρmin

TGX of (16), (7) and (21) apply to
all EPU-minimal TGX states as well.

B. Proof that EPU-Minimal TGX States ρEPUmin
TGX

are EPU-Equivalent to All States

To prove that ρEPUmin
TGX

of (8) is EPU-equivalent to
all states in 2 × 3, we adopt the following strategy.
First, Sec. III B 1 lists some known facts and condi-
tions to motivate what follows. Then, similarly to [27],
Sec. III B 2 proves that ρEPUmin

TGX
has the proper spec-

trum, Sec. III B 3 proves that ρEPUmin
TGX

has the proper
I-concurrence, and Sec. III B 4 proves that all physical
spectrum-entanglement combinations are achievable by
ρEPUmin

TGX
. In analogy to [27], we start by breaking (8)

into Q cases as

ρEPUmin
TGX

=



λ1+λ5+
√
Q

2 · · · · E+2
√
λ4λ6

2
· λ2 · · · ·
· · λ4 · · ·
· · · λ6 · ·
· · · · λ3 ·

E+2
√
λ4λ6

2 · · · · λ1+λ5−
√
Q

2

; Q > 0


λ1+λ5

2 · · · · λ1−λ5

2
· λ2 · · · ·
· · λ4 · · ·
· · · λ6 · ·
· · · · λ3 ·

λ1−λ5

2 · · · · λ1+λ5

2

; Q < 0,

(35)
where we used the fact from (8) that

Ω ≡ max{0, Q}; Q ≡ (λ1−λ5)2−(E+2
√
λ4λ6)2. (36)

Note also that we could have defined the Q < 0 case
to be a diagonal state, but the form here permits the
unification of cases to the compact from in (8).
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The eigenvalues in (8) and (35) are those of some gen-
erally nonTGX state ρ, and the entanglement E is the
I-concurrence of that same ρ. Although a computable
formula for I-concurrence of any general mixed ρ is not
yet known, that will not hinder us here; we will prove
that if we knew the value of E, we could make ρEPUmin

TGX

in (8) and it would be EPU-equivalent to ρ. Then we will
show that (8) lets us explicitly create a state of any phys-
ical spectrum-entanglement combination in 2× 3, which
makes it extremely useful. Furthermore, we can create
a large collection of nonTGX states with parametric en-
tanglement and spectrum by using LU variations of (8).

In what follows, we use Λ to mean spectrum in the
form of the diagonal eigenvalue matrix, and to refer to
all combinations of quantities, we will use the notations
ΛE and ΛEQ, analogously to [27].

1. Facts and Conditions for 2× 3 Entanglement

To begin our proofs for 2×3 entanglement, we list some
known facts and conditions that motivate what follows.

1. From [23, 24], positive partial transpose (PPT) is N&S
for separability in 2× 3. Also, adapted from [51],

λ1 − λ5 − 2
√
λ4λ6 6 0 ⇒ ρ ∈ S, (37)

where λ1 > · · · > λ6 are eigenvalues of ρ, and S is
the set of separable states. This is analogous to the
2 × 2 case where (λ1 − λ3 − 2

√
λ2λ4 6 0) ⇒ ρ ∈ S

for λ1 > · · · > λ4. Note that the opposite condition
of (37), λ1 − λ5 − 2

√
λ4λ6 > 0, does not imply entan-

glement, but is merely necessary for entanglement, so
it means ρ might be entangled or it might be sepa-
rable. (For example, computational basis states are
separable but have λ1 − λ5 − 2

√
λ4λ6 = 1 > 0. This

proves by counterexample that the “iff” part of the
claim in [51] is too strong; it should have said that
λ1 − λ5 − 2

√
λ4λ6 6 0 is sufficient for separability in

2 × 3, and similarly for its 2 × 2 result, with corre-
sponding ammendments to its PPT claims as well.)

2. Any EM should give 1 for ME states. In 2 × 3, the
simplest ME states are the ME TGX states,

|Φ±1,5〉 ≡ 1√
2
(|1〉 ± |5〉), |Φ±1,6〉 ≡ 1√

2
(|1〉 ± |6〉),

|Φ±2,6〉 ≡ 1√
2
(|2〉 ± |6〉), |Φ±2,4〉 ≡ 1√

2
(|2〉 ± |4〉),

|Φ±3,4〉 ≡ 1√
2
(|3〉 ± |4〉), |Φ±3,5〉 ≡ 1√

2
(|3〉 ± |5〉),

(38)

[25, 43], which each have the property that both reduc-
tions are as simultaneously mixed as they can be given
that the parent state is pure, as explained in [25, 43]
(see App. D for more details about TGX states).

Note that local-permutation unitaries (LPUs) pre-
serve both TGX form and entanglement, so all states
in (38) are related to each other by an LPU. Also,
(17) shows that in 2×3, not all X states can host ME;

X states must be in TGX space to have ME (since
X state ρ{2,5} is always separable since {|2〉, |5〉} =
{|1, 2〉, |2, 2〉}, no entangled state can be EPU con-
verted to it).

Note also that the nonzero levels of the ME TGX
states of (38) are the ME TGX tuples of (23).

3. Any EM in 2× 3 should give (or appropriately relate
to) the MEMS minimum average pre-entanglement
(which we just call the pre-entanglement) value,

eMEMS ≡ λ1 − λ5 − 2
√
λ4λ6, (39)

for maximally entangled mixed states (MEMS) wrt
spectrum (which we just call MEMS here). As we
will see, eMEMS can be negative for certain separable
states and its relation to the MEMS I-concurrence is

E(ρMEMS) = max{0, eMEMS}, (40)

proven by applying the minimal TGX I-concurrence
of (7) (proved in Sec. III A) to MEMS, which are, as
proven in [44], any 2× 3 states EPU-equivalent to

ρMEMS =


λ1+λ5

2 · · · · λ1−λ5

2
· λ2 · · · ·
· · λ4 · · ·
· · · λ6 · ·
· · · · λ3 ·

λ1−λ5

2 · · · · λ1+λ5

2

, (41)

where λ1 > · · · > λ6, and where we adapted the state
ρMEMSΛ

from [44] as ρMEMS ≡ ULPUρMEMSΛ
U†LPU

where ULPU ≡ I(1)⊗(|3〉〈1|+|2〉〈2|+|1〉〈3|) to conform
to the convention of [27].

4. The generalized concurrence CG [48] in 2 × 3 has a
maximal value wrt spectrum over all states of

max(CG) = max{0, λ1−λ4−2
√
λ2λ6−2

√
λ3λ5}, (42)

as proved in App. E, and so generally does not give
the proper eMEMS of (39), so it is not equal to I-
concurrence. Therefore, it is not yet clear whether
CG is an EM in 2× 3, despite being a minimum aver-
age value over all decompositions; it simply does not
seem relate to entanglement in a direct way. (Shifting
CG by either eigenvalue functions or singular values in
the concurrence calculation does not help except for
MEMS, and may cause misdiagnosis of separability
and entanglement.)

5. Any EM should be a convex-roof extension of its ac-
tion on pure states, so it yields a minimum average
value of its pure-state form over all decompositions as

E(ρ) = min
∀{pjρj}

[∑
j
pjE(ρj)

]
, (43)

where ρj is a pure decomposition state of ρ with prob-
ability pj as explained in App. C.
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6. Any valid EM should be LU invariant, as

E(ULUρU
†
LU) = E(ρ); ∀ULU ≡ U (1) ⊗ · · · ⊗ U (N). (44)

Note that the I-concurrence of (5) satisfes (43) by defini-
tion, and since it is LU invariant on pure states, it retains
this LU invariance on mixed states by (43) as well, thus
satisfying (44). Next, we will use the above facts in the
remaining proofs.

2. Proof that ρEPUmin
TGX

Has Proper Spectrum

In both cases of (35),

det(λI − ρEPUmin
TGX

) =
∏6

k=1
(λ− λk) = 0, (45)

which proves that ρEPUmin
TGX

has the spectrum of the ρ
whose eigenvalues {λk} are used to create it, and that
ρEPUmin

TGX
and ρ are unitarily equivalent.

3. Proof that ρEPUmin
TGX

Has Proper Entanglement

In the Q > 0 case of (35), putting (35) into (7) gives
(abbreviating as ρ′a,b ≡ 〈a|ρEPUmin

TGX
|b〉),

E(ρEPUmin
TGX

) = 2 max{0, −
√
ρ′2,2ρ

′
4,4,−

√
ρ′1,1ρ

′
5,5,

|ρ′1,6| −
√
ρ′3,3ρ

′
4,4,−

√
ρ′1,1ρ

′
6,6,

−
√
ρ′3,3ρ

′
5,5,−

√
ρ′2,2ρ

′
6,6}

= 2 max{0, E+2
√
λ4λ6

2 −
√
λ4λ6}

= 2 max{0, E2 }
= E,

(46)
which, with (45), proves that ρEPUmin

TGX
is EPU-equivalent

to ρ when Q > 0, since E is the I-concurrence of the ρ
used to compute ρEPUmin

TGX
in (35), and we are justified in

using (7) to show this since we proved it in Sec. III A.
In analogy to [27], when Q < 0, ρ is always separable

(which we will prove next as part of Sec. III B 4), so in
this case, E = 0 and putting (35) into (7) gives

E(ρEPUmin
TGX

) = 2 max{0, −
√
ρ′2,2ρ

′
4,4,−

√
ρ′1,1ρ

′
5,5,

|ρ′1,6| −
√
ρ′3,3ρ

′
4,4,−

√
ρ′1,1ρ

′
6,6,

−
√
ρ′3,3ρ

′
5,5,−

√
ρ′2,2ρ

′
6,6}

= 2 max{0, λ1−λ5

2 −
√
λ4λ6}

= max{0,λ1 − λ5 − 2
√
λ4λ6}

= 0
= E,

(47)
where we used the fact that Q < 0 implies that λ1−λ5−
2
√
λ4λ6 < 0, which we will also prove in Sec. III B 4.

Therefore, we have proven that both Q cases of
ρEPUmin

TGX
preserve both the spectrum and entanglement

of any general ρ used to construct it, but as in [27],
this proof also requires that we prove that E = 0 when
Q < 0 and that both Q cases cover all physically possible
spectrum-entanglement combinations, which we do next
in Sec. III B 4.

4. Proof that All ΛE Combinations are Achievable by
ρEPUmin

TGX

Here we follow the proof from [27] fairly closely with
a only few simple changes, but it is important enough to
merit writing it in detail. First we show that (i) all states
ρ can only qualify as one of the two Q cases from (35).
Then we show that (ii) both of those forms of ρEPUmin

TGX

admit all possible ΛE combinations for each Q. Here,
we use the notation that Λ ≡ diag{λk} where {λk} ≡
{λk}|k=6

k=1≡{λ1, . . . , λ6}.
i. Proof that All ρ Qualify as One of the Q Cases:

Noting the dependence of Q as

Q ≡ (λ1 − λ5)2 − (E + 2
√
λ4λ6)2

≡ Q(λ1, λ4, λ5, λ6, E),
(48)

(which does not depend on all the eigenvalues; just
a subset of them), and its case splitting from (35) as{

Q Case 1: Q > 0
Q Case 2: Q < 0,

(49)

we can make the following conclusions;

a. The fact that Q is real for every combination of
Λ and E, proves that the two mutually exclusive
Q cases of (49) cover all possible values of Q [i.e.,
given the possible values of the arguments in (48),
we are not missing any Q values by partitioning
its values as in (49)].

b. Since every ρ has a spectrum {λk} and entan-
glement E (even if zero), then for every ρ, there
exists a value of Q [i.e., there are no states that
somehow do not have a Q value].

c. By Conclusion a and Conclusion b, every ρ falls
into exactly one of the Q cases in (49).

Now that we have established that every ρ has a Q
value qualifying as one of the two cases in (49), we
must show that the Q cases do not limit the ΛE
combinations [i.e., does the form of ρEPUmin

TGX
for each

Q case in (35) permit all possible E values for a given
spectrum? ].

ii. Proof that Each Q Case of ρEPUmin
TGX

Admits All
ΛE Combinations:

a. For Q>0, the result in (46) that E(ρEPUmin
TGX

)=E
∀ {λk} proves that this Q-case ρEPUmin

TGX
admits all

ΛE combinations.

b. For Q < 0, we use the following facts:

1. At the edge of the Q > 0 case where Q = 0,
then by (48), E + 2

√
λ4λ6 = λ1 − λ5, so then

ρEPUmin
TGX

becomes (still in the Q > 0 case),

ρEPUmin
TGX

=


λ1+λ5

2 · · · · λ1−λ5

2
· λ2 · · · ·
· · λ4 · · ·
· · · λ6 · ·
· · · · λ3 ·

λ1−λ5

2 · · · · λ1+λ5

2

, (50)
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which, by (41), is a maximally entangled mixed
state (MEMS) [32–36] with respect to (wrt)
a given spectrum as proven in [44] in which
ρMEMSΛ

is LPU equivalent to ρEPUmin
TGX

as
ρEPUmin

TGX
≡ ULPUρMEMSΛ

U†LPU where ULPU ≡
I(1) ⊗ (|3〉〈1|+ |2〉〈2|+ |1〉〈3|). [Also note that
by (41), (50) is a MEMS for all Q values, re-
gardless of the sign of Q.]

2. Since (50) qualifies as minimal TGX form and
holds for all Q, we can use (7) to get the I-
concurrence of any MEMS wrt spectrum as

EMEMS ≡ max{0, λ1 − λ5 − 2
√
λ4λ6}, (51)

(also valid for all Q), which proves (40) with
(39) as input, and we can identify

e ≡ eMEMS ≡ λ1 − λ5 − 2
√
λ4λ6, (52)

[which is (39)] as the analogue of minimum av-
erage preconcurrence for MEMS, which can be
negative, for example if all eigenvalues are 1

6 .
3. No state can have a larger E than EMEMS;

0 6 E(ρ) 6 EMEMS ∀ ρ, ∀Q. (53)

4. Focusing only on the Q < 0 case, we now solve
for the conditions that Q < 0 implies for E:

Q<0
(λ1−λ5)2− (E+2

√
λ4λ6)2<0

E+2
√
λ4λ6>λ1−λ5

E>λ1−λ5−2
√
λ4λ6

E> e,
(54)

which shows that

(Q < 0)⇒ (E > e)⇒
{
E > EMEMS; e > 0
E > e; e < 0,

(55)
since e = EMEMS when e > 0 by (51–52).

5. In (55), the e > 0 case would mean that Q < 0
implies that E > EMEMS, which is never pos-
sible because max(E) = EMEMS from (53).
Therefore, only the e < 0 case of (55) can ap-
ply to physical states, so (55) becomes

(Q < 0)⇒ (E > e)⇒ (e < 0) ∀ ρ. (56)

6. From (51–52), we know that

(e < 0)⇒ (EMEMS = 0), (57)

which agrees with part of the fact from (37).
7. So putting EMEMS = 0 from (57) into (53),

(e < 0)⇒ [0 6 E(ρ) 6 0 ∀ ρ]⇒ [E(ρ) = 0 ∀ ρ].
(58)

8. Putting (58) into (56),

(Q < 0)⇒ [E(ρ) = 0 ∀ ρ]. (59)

9. Since by (56), (Q < 0) ⇒ (e < 0) ∀ ρ, then by
(52) we also have λ1 − λ5 − 2

√
λ4λ6 < 0 ∀ ρ

when Q < 0, which proves the claim in (47)
that E(ρEPUmin

TGX
) = 0 for all spectra Λ for

which Q < 0. Thus, comparing the now-proven
result in (47) and the result of (59) regarding
general states ρ proves that:

The Q < 0 case of ρEPUmin
TGX

in
(35) does exhaust all possible ΛE
combinations when Q < 0.

(60)

Therefore, since (a) and (b) prove that ρEPUmin
TGX

con-
tains all possible ΛE combinations for all possible Q
cases, the claim of (ii) is proven true.

Thus, since Claims (i) and (ii) have been proven true,
this completes the proof that ρEPUmin

TGX
of (35) and (8) is

fully EPU-equivalent to the set of all states ρ in 2 × 3,
since the set of all possible ΛEQ combinations achievable
by ρ is also achievable by ρEPUmin

TGX
.

Furthermore, note that the fact we proved from (56)
that (Q < 0)⇒ (e < 0) ∀ ρ where e ≡ eMEMS ≡ λ1−λ5−
2
√
λ4λ6 by (52) is fully consistent with (37), where the

Q = 0 case corresponds to the “edge case” from (ii.b.1),
for which E = λ1 − λ5 − 2

√
λ4λ6 = e. In that case,

the facts that E > 0 and E = e mean that (Q = 0) ⇒
(e > 0) so when Q = 0, the entanglement is only 0 when
λ1 − λ5 − 2

√
λ4λ6 itself is 0 [again consistent with (37)],

but if λ1 − λ5 − 2
√
λ4λ6 > 0, the state is entangled.

[This does not contradict the discussion afer (37); in this
state family, Q = 0 means the state is a MEMS with
E = eMEMS, whereas for general Q values, the state is
not necessarily a MEMS, so its E is not necessarily equal
to eMEMS. For instance, a computational basis state has
E = 0, Q = 1, but eMEMS = 1 6= E, so having eMEMS > 0
does not guarantee entanglement in general. Also note
that all states have an eMEMS value whether or not they
are MEMS.] Thus, Q = 0 does not necessarily mean the
state is separable, whereas Q < 0 does mean the state is
separable, and is why we made Q < 0 its own case and
grouped Q = 0 with the positive Q case.

Also, due to (53), throughout this paper, by “all E
values,” we mean physical E, which are given by

E ∈ [0,max{0, λ1 − λ5 − 2
√
λ4λ6}], (61)

or simply E ∈ [0,max{0, eMEMS}] = [0, EMEMS].

C. Derivation of the EPU-Equivalent Minimal
TGX Family ρEPUmin

TGX

Our next task is to use the minimal TGX I-concurrence
formula of (7), which we proved in Sec. III A, to derive
the family of EPU-minimal TGX states ρEPUmin

TGX
of (8)

that has EPU equivalence to the set of general states.
To achieve EPU equivalence, this family must include

MEMS as a special case (since otherwise it would be miss-
ing some ΛE combinations), and so we choose the ρMEMS
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of (41) as the special case of our EPU family since it has
minimal TGX form, which will let us use (7).

Immediately, we get its eigenstates in order of its eigen-
values λ1 > · · · > λ6 as

1√
2

·
·
·
·
1√
2

,


·
1
·
·
·
·

,


·
·
·
·
1
·

,


·
·
1
·
·
·

,


1√
2

·
·
·
·
−1√

2

,


·
·
·
1
·
·

. (62)

Our next goal is to find a mixed state related to ρMEMS

of (41) that includes as many lower entanglement values
as possible for any given spectrum, while still reaching
that MEMS form for certain values of its parameters.
The need to keep spectrum general means we must look
for ways to generalize only the eigenstates of (62).

There are many ways we could generalize (62), but
since the MEMS of (41) (which is a TGX state) only has
superposition in the {1, 6} subspace, and since the only
quartet that contains {1, 6} in an inseparable qubit is
{1, 3, 4, 6}, and since all quartets of TGX states have X
form which would let us use (7) since its superposition is
in just one quartet, then the most general way we might
need to adapt (62) is by defining orthogonal states of
general superposition (θ-states in the parlance of [43])
that involve the nonzero levels of the ME TGX states of
(38) that live exclusively in {1, 3, 4, 6}.

Thus, we generalize 1√
2
(|1〉+ |6〉) as cα|1〉+ sα|6〉, and

1√
2
(|1〉 − |6〉) as sα|1〉 − cα|6〉 and generalize {|3〉, |4〉} as

cβ |3〉+ sβ |4〉 and −sβ |3〉+ cβ |4〉, where cθ ≡ cos(θ), sθ ≡
sin(θ), and α, β ∈ [0, π2 ], and phases were chosen so that
(63) becomes exactly (62) when (α, β) = (π4 , 0), all of
which, ordering by eigenvalue index as |ε1〉, . . . , |ε6〉 gives

cα
·
·
·
·
sα

,

·
1
·
·
·
·

,

·
·
·
·
1
·

,

·
·
cβ
sβ
·
·

,

sα
·
·
·
·
−cα

,

·
·
−sβ
cβ
·
·

. (63)

These states are then combined as

ρmin
TGX ≡

6∑
k=1

λk|εk〉〈εk|, (64)

which expands as

ρmin
TGX =
λ1c

2
α+λ5s

2
α · · · · λ1−λ5

2 s2α

· λ2 · · · ·
· · λ4c

2
β+λ6s

2
β

λ4−λ6

2 s2β · ·
· · λ4−λ6

2 s2β λ4s
2
β+λ6c

2
β · ·

· · · · λ3 ·
λ1−λ5

2 s2α · · · · λ1s
2
α+λ5c

2
α

.
(65)

Then, since (65) has minimal TGX form, (7) gives its
entanglement via I-concurrence as

E(α, β) ≡ 2 max
{

0,
λ1−λ5

2 s2α −
√

(λ4c2β + λ6s2
β)(λ4s2

β + λ6c2β),
λ4−λ6

2 s2β −
√

(λ1c2α + λ5s2
α)(λ1s2

α + λ5c2α)
}
.

(66)
Now we wish to determine the parameters α and β

that will allow us to achieve EPU equivalence to gen-
eral states by preserving the entanglement (spectrum is
already preserved since we are building the state via or-
thonormal eigenstates weighted by a general spectrum).

However, in contrast to 2 × 2, since we do not have a
computable I-concurrence formula for general 2×3 states,
here we must make physical parameter sets more me-
thodically. For this, we simply use this set of normalized
nonnegative eigenvalues λ1 > · · · > λ6 to determine a
physical entanglement from (61) as

E ≡ Eη ≡ ηmax{0, λ1 − λ5 − 2
√
λ4λ6}, (67)

for η ∈ [0, 1]. Then this spectrum {λk} and its associ-
ated physical entanglement E corresponds to some gen-
eral physical state whose values of these parameters exist.

We now need to show that we can always find α and
β such that E(α, β) = E. Explicitly, we can do this
by observing that in (66), since ρmin

TGX should coincide
with ρMEMS of (41), the entanglement of which involves
the term λ1 − λ5, then we want to keep only line 2 of
(66). Furthermore, since only one of the arguments will
win in the maximization, we can force it to be the line-2
argument by choosing

β = 0 (68)

to get rid of the other argument, which, when put into
(66), and setting E(α, β) = E (since that is what we
want to achieve) gives

E = 2 max{0, λ1−λ5

2 s2α −
√
λ4λ6}. (69)

Now that we have motivated β, (69) will determine the
value of α and our only job is to verify that α has enough
freedom to handle all physical values it needs to without
limiting the spectrum-entanglement combinations.

The remainder of the derivation of the desired family of
states follows the derivation in [27] almost exactly with
λ3 → λ5, λ4 → λ6, λ2 → λ4, and C → E since the
math problem is otherwise identical at this stage. To
highlight an important part, when solving for α when
(λ1 − λ5)s2α − 2

√
λ4λ6 > 0 which gives

α =

{
1
2 sin−1(E+2

√
λ4λ6

λ1−λ5
); λ1 6= λ5

π
4 ; λ1 = λ5,

(70)

here the λ1 = λ5 case arises because given λ1 > · · · > λ6

and
∑6
k=1 λk = 1, then the facts that λ1 = λ5 and (λ1−

λ5)s2α − 2
√
λ4λ6 > 0 imply that λ1 = · · · = λ5 = 1

5 and

λ6 = 0, so then the MEMS limit λ1 − λ5 − 2
√
λ4λ6 = 0,
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which by (37) means E = 0, and since α is free when
λ1 = λ5, we can put E = 0 into the λ1 6= λ5 case and
use λ1 − λ5 = 2

√
λ4λ6 to get the λ1 = λ5 case result for

continuity (which is justified since (α, β) = (π4 , 0) gives a
MEMS with E = 0 in this case of (70).

Formally, the state we are deriving here can function as
an ansatz, and the proofs in Sec. III B verify that ansatz
to have EPU equivalence, so that proves it causes no lim-
itations. To get a visual sense that this ansatz does not
cause limitations, Fig. 4 shows an example of numerical
checks that the choice of β = 0 does indeed always permit
E(α, β) to equal E when α is given by (70).

E(α, β)

E

Epred

α

π
2

π
4

0

β

π
2

π
4

0

1.0

0.5

0.0

FIG. 4: (color online) Example of E(α, β) from (66) for a
particular arbitrary rank-6 spectrum and target I-concurrence
E from (67). Epred, shown as the red dot, is the right side
of (69), which is E(α, β) with α from (70) and β from (68),
while the planar surface shows the target E. If the red dot
always lies on an intersection of the plane E and the surface
E(α, β), then Epred is correct. Repeating this test 103 times
for arbitrary input spectra and random physical E showed
no failures, which provided strong motivation to use (68) and
(70) as part of the ansatz for ρEPUmin

TGX
in (8) (which was then

proven to be a full solution, as shown in Sec. III B). The color
scheme here is not related to the other figures, but is chosen
to match that of [27] for sake of comparison.

Thus, closely following [27] with the above changes, we
get the EPU-minimal TGX family for 2× 3 as

ρEPUmin
TGX

=


λ1+λ5+

√
Ω

2 · · · ·
√

(λ1−λ5)2−Ω

2· λ2 · · · ·
· · λ4 · · ·
· · · λ6 · ·
· · · · λ3 ·√

(λ1−λ5)2−Ω

2 · · · · λ1+λ5−
√

Ω
2

,
(71)

which agrees with (8), where Ω ≡ max{0, Q}, and

Q ≡ (λ1 − λ5)2 − (E + 2
√
λ4λ6)2, (72)

where this Q has the same general properties as Q in [27];
by (56), any input state ρ with Q < 0 implies eMEMS < 0

and therefore E(ρ)=0. Also, the physical limits of E are
those in (61) and (67). Thus, (71–72) and (67) can be
used to parameterize a state of any physical spectrum-
entanglement combination in 2×3, and any 2×3 state ρ
can be transformed to an EPU-minimal TGX state of this
form (or LPU variation) with the same E and spectrum
as ρ, in analogy to the 2× 2 case in [27].

Again, the proof that ρEPUmin
TGX

is EPU-equivalent
to all states is in Sec. III B, while the result in (71)
can be taken as an ansatz which is verified by that proof.

D. Derivation of the LS Decomposition of ρEPUmin
TGX

In [50], an explicit LS decomposition for 2×2 was given
based on Wootters’s decomposition states from [29]. Here
we show how to apply this to the EPU-minimal TGX
states of (8) to derive (9–15).

First, in Sec. III D 1 we derive the overall LS decom-
position in terms of Wootters x kets, then in Sec. III D 2,
we derive the explicit forms of the x kets.

1. LS Decomposition in Terms of Wootters x Kets

Since the LS decomposition in [50] is for 2×2, and since
minimal TGX states only have one quartet with potential
entanglement, such as e = {1, 3, 4, 6} in (8), then that is
the 2 × 2 system which gets the LS decomposition, and
we call e the entanglement quartet of this EPU-minimal
TGX state. Since e is spacewise orthogonal to the rest
of the state, rather than decomposing ρ{e}

EPUmin
TGX

, which
makes for messy notation, we can use the fact that its
eigenstates are also eigenstates of the full state, with ze-
ros in the parts outside e (see Facts 6–11 in Sec. III A,
which apply here because EPU-minimal TGX states are
subsets of minimal SGX states).

Thus, if the normalized eigenstates of ρ
{e}
EPUmin

TGX
are

|ε{e}h 〉 for h ∈ 1, 2, 3, 4 where the indices match eigen-
values such that λ

{e}
1 > λ

{e}
2 > λ

{e}
3 > λ

{e}
4 [notice here

that, in contrast to [29], we use λ for eigenvalues of states,
and reserve ξ for eigenvalues of spin-flip products as in
(1)], then its subnormalized eigenstates are

|v{e}h 〉 ≡
√
λ
{e}
h |ε

{e}
h 〉; h ∈ 1, 2, 3, 4. (73)

From (8), these eigenvalues in terms of those of the full
state are

λ
{e}
1 = λ1

λ
{e}
2 = λ4

λ
{e}
3 = λ5

λ
{e}
4 = λ6,

(74)

and rewriting (73) embedded into the e subspace of zero
vectors in the full space, using (74) to relabel, we get the
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full subnormalized eigenvectors of (8) as

|u1〉 ≡ |v1〉 ≡
√
λ1|ε1〉,

|u2〉 ≡ |v4〉 ≡
√
λ4|ε4〉,

|u3〉 ≡ |v5〉 ≡
√
λ5|ε5〉,

|u4〉 ≡ |v6〉 ≡
√
λ6|ε6〉,

|v2〉 ≡
√
λ2|ε2〉,

|v3〉 ≡
√
λ3|ε3〉, (75)

where |εh〉 are eigenvectors of the full state, and the left
column in (75) are those whose only nonzero entries are in
e = {1, 3, 4, 6}, while the right column are states whose
only nonzero entries are outside of e. We relabel the
e-related states as |uk〉 for k ∈ 1, 2, 3, 4 to simplify equa-
tions focusing on e. Furthermore, in this section, we
abbreviate as ρ ≡ ρEPUmin

TGX
.

We then make symmetric matrix τ with elements

τk,l ≡ 〈uk|ũl〉 ≡ 〈uk|S|u∗l 〉, (76)

for k, l ∈ 1, 2, 3, 4 [which is reducible to k, l ∈ 1, . . . , r′

where r′≡r{e}≡rank(ρ{e})=rank(diag{λ1, λ4, λ5, λ6}),
which is generally not equal to r′′ ≡ rank(τ) as we will
see], where |ψ̃〉 ≡ S|ψ∗〉 where |ψ∗〉 is the complex conju-
gate of |ψ〉, and we use the 0-embedded spin-flip operator,

S ≡ (σ2 ⊗ σ2)⊕ 0{e}, (77)

where e means “not e,” meaning the subspace spacewise
orthogonal to e. Again, we can ignore the eigenstates in
e for now because we are simply doing the LS decompo-
sition for ρ{e} 0-embedded in the full space.

Then get the Autonne-Takagi factorization of τ as

τ = UDUT , (78)

where U is unitary, and D is real nonnegative diagonal
with diagonal values in descending order of value, as

Dj,j = ξj ; j ∈ 1, . . . , r′′; r′′ ≡ rank(τ), (79)

which are concurrence singular values, as in (1). More im-
portantly, we need U to make Wootters’s subnormalized
decomposition x kets (a term we use based on Wootters’s
labels, not because of their shape as states) as

|xa〉 ≡
r′∑
j=1

Uj,a|uj〉, (80)

for a ∈ 1, 2, 3, 4 (or a ∈ 1, . . . , r′), with the property that

〈xa|x̃b〉 = (U†τU∗)a,b = ξaδa,b. (81)

[Notice our r′ is Wootters’s n and our U is Wootters’s U†

because we use the standard notation in (78) of putting
the “bare” operator on the left of the diagonal part.]

Then, following [50] with some modifications, we define
a variation (not a renormalization) of the {|xa〉} as

|x′a〉 ≡
1√

ξa + δξa,0
|xa〉; a ∈ 1, . . . , r′, (82)

where the Kronecker deltas protect against division by
0, while keeping the number of states at r′ ensures that
we maintain a proper decomposition, so the 0-embedded
subspace decomposition is

ρ{e}⊕0 ≡ ρ{e} ⊕ 0{e} =
r′∑
a=1
|xa〉〈xa|

=
r′∑
a=1

(ξa + δξa,0)|x′a〉〈x′a|,
(83)

where the notation on the far left means to extract the e
subspace of ρ and then re-install it in that same subspace
of a zero matrix in the full system, an operation we call
“0-embedding.”

Now that we have a decomposition where the weights
are the concurrence singular values, a simple process of
adding zeros creatively can let us find a new decomposi-
tion with the actual concurrence as the first weight as

ρ{e}⊕0 =
r′∑
a=1

(ξa + δξa,0)|x′a〉〈x′a|
= (ξ1 − ξ2 − ξ3 − ξ4)|x′1〉〈x′1|

+(δξ1,0 + ξ2 + ξ3 + ξ4)|x′1〉〈x′1|

+
r′∑
a=2

(ξa + δξa,0)|x′a〉〈x′a|
= max{0, ξ1 − ξ2 − ξ3 − ξ4}|x′1〉〈x′1|

+(δξ1,0 + min{ξ1, ξ2+ξ3+ξ4})|x′1〉〈x′1|

+
r′∑
a=2

(ξa + δξa,0)|x′a〉〈x′a|,

(84)

where we inserted the max function to protect against
negative probability in the first term (and in the pro-
cess, making that weight exactly the concurrence of the
e subspace of ρ), while the min function compensates for
the max function’s presence when its output is 0 (in that
case the whole 0-embedded subspace state is separable).
Thus, the first term in the last equality of (84) is the
entangled part of the LS decomposition (the term with
the max function) and the remaining terms are the sepa-
rable part. The δξ1,0 is grouped with the separable part
because when ξ1 = 0, then ξ2 = ξ3 = ξ4 = 0 and ρ{e}⊕0 is
both pure and separable, so it is appropriate that the en-
tangled part is 0, while the separable part then becomes
|x′1〉〈x′1|. Note also that when “adding zeros creatively”
in the second equality of (84), we did not include extra
deltas since those new terms sum to 0 anyway.

Next, we rewrite (84) in terms of the original Wootters
x kets using (82) as

ρ{e}⊕0 = max{0,ξ1−ξ2−ξ3−ξ4}
ξ1+δξ1,0

|x1〉〈x1|

+
min{ξ1,ξ2+ξ3+ξ4}+δξ1,0

ξ1+δξ1,0
|x1〉〈x1|+

r′∑
a=2
|xa〉〈xa|,

(85)
and then, normalizing each of the Wootters x kets,

ρ{e}⊕0 = max{0,ξ1−ξ2−ξ3−ξ4}
ξ1+δξ1,0

〈x1|x1〉 |x1〉〈x1|
〈x1|x1〉

+
min{ξ1,ξ2+ξ3+ξ4}+δξ1,0

ξ1+δξ1,0
〈x1|x1〉 |x1〉〈x1|

〈x1|x1〉

+
r′∑
a=2
〈xa|xa〉 |xa〉〈xa|〈xa|xa〉 ,

(86)
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where we note that it is only the partial “tilde overlap”
of the x kets that gives the ξa values, and in general their
regular self overlaps do not give those same values.

From (86), the entangled part’s normalized state is

ρ
{e}⊕0
E ≡ |x1〉〈x1|

〈x1|x1〉
, (87)

with decomposition probability [noting that for minimal
TGX states, E(ρ{e}⊕0) = C(ρ{e}) ≡ C{e}],

p
{e}
E ≡max{0, ξ1 − ξ2 − ξ3 − ξ4}

ξ1 + δξ1,0
〈x1|x1〉=

C{e}〈x1|x1〉
ξ1 + δξ1,0

,

(88)
and the normalized separable part is

ρ
{e}⊕0
S ≡ 1

p
{e}
S +δ

p
{e}
S

,0

(
min{ξ1,ξ2+ξ3+ξ4}+δξ1,0

ξ1+δξ1,0
|x1〉〈x1|

+
r′∑
a=2
|xa〉〈xa|

)
,

(89)
with probability

p
{e}
S ≡ min{ξ1,ξ2+ξ3+ξ4}+δξ1,0

ξ1+δξ1,0
〈x1|x1〉+

r′∑
a=2
〈xa|xa〉

= tr(ρ{e}⊕0)− p{e}E
= λ1+λ4+λ5+λ6−max{0,ξ1−ξ2−ξ3−ξ4}

ξ1+δξ1,0
〈x1|x1〉,

(90)
where we used the fact that the e subspace state is un-

normalized so that p
{e}
E + p

{e}
S = tr(ρ{e}⊕0) = λ1 + λ4 +

λ5 + λ6, so we can simply write (89) as

ρ
{e}⊕0
S = 1

tr(ρ{e}⊕0)−p{e}E +δ
p
{e}
S

,0

×
(

min{ξ1,ξ2+ξ3+ξ4}+δξ1,0
ξ1+δξ1,0

|x1〉〈x1|+
r′∑
a=2
|xa〉〈xa|

)
,

(91)
or even more simply, as

ρ
{e}⊕0
S =

ρ{e}⊕0 − p{e}E ρ
{e}⊕0
E

tr(ρ{e}⊕0)− p{e}E + δ
p
{e}
S ,0

. (92)

Thus, the LS decomposition of ρ{e}⊕0 is

ρ{e}⊕0 = p
{e}
E ρ

{e}⊕0
E + [tr(ρ{e}⊕0)− p{e}E ]ρ

{e}⊕0
S , (93)

the average I-concurrence of which is

〈E(ρ{e}⊕0)〉 = p
{e}
E E(ρ

{e}⊕0
E )

+ [tr(ρ{e}⊕0)− p{e}E ]E(ρ
{e}⊕0
S )

= p
{e}
E C(ρ

{e}
E )

+ [tr(ρ{e}⊕0)− p{e}E ]C(ρ
{e}
S )

= p
{e}
E
|〈x1|x̃1〉|
〈x1|x1〉 + 0

= max{0,ξ1−ξ2−ξ3−ξ4}
ξ1+δξ1,0

〈x1|x1〉 ξ1
〈x1|x1〉

= max{0, ξ1 − ξ2 − ξ3 − ξ4}
= E(ρ{e}⊕0),

(94)

which shows that this is truly an optimal decomposition
of ρ{e}⊕0 since its average concurrence is the actual con-
currence. Again see [50] for the full proof of this re-
sult. Note that we used the fact that the I-concurrence
of ρ{e}⊕0 is just the regular concurrence of ρ{e} due to
the fact that ρ{e}⊕0 is 0 outside of e, and any nonzero
parts of other quartet subspaces are always separable.

Now that we found the LS decomposition of the 0-
embedded entanglement subspace of (8), we can get a
decomposition of the full state of (8) as

ρ = ρ{e}⊕0 + ρ{e}⊕0

= p
{e}
E ρ

{e}⊕0
E + [tr(ρ{e}⊕0)− p{e}E ]ρ

{e}⊕0
S

+λ2ρ|2〉 + λ3ρ|5〉,
(95)

where ρ|ψ〉 ≡ |ψ〉〈ψ|. But here, since these last two terms
are always separable since they are computational basis
states |2〉 ≡ |1〉⊗ |2〉 and |5〉 ≡ |2〉⊗ |2〉, then we can add
them to any other separable state and the sum is still sep-
arable by the definition of separable states (specifically
note that their I-concurrence is 0 in the full space, and
furthermore since the separable part in e in (95) [from
(91)] has zeros in all other elements, its I-concurrence in
the full space is 0 as well). Therefore, the total separable
part of the LS decomposition of (95) is

ρS ≡ [tr(ρ{e}⊕0)−p{e}E ]ρ
{e}⊕0
S +λ2ρ|2〉+λ3ρ|5〉

[tr(ρ{e}⊕0)−p{e}E ]+λ2+λ3+δ
p
{e}
E

,1

=
[tr(ρ{e}⊕0)−p{e}E ]ρ

{e}⊕0
S +λ2ρ|2〉+λ3ρ|5〉

λ1+λ4+λ5+λ6−p{e}E +λ2+λ3+δ
p
{e}
E

,1

=
(λ1+λ4+λ5+λ6−p{e}E )ρ

{e}⊕0
S +λ2ρ|2〉+λ3ρ|5〉

1−p{e}E +δ
p
{e}
E

,1

,

(96)

so the probability of the separable part is 1− p{e}E which
means that the entangled-part probability of ρ is the
same as for its entanglement subspace, so

pE = p
{e}
E , (97)

and we get the explicit LS decomposition for the full state
in (8) as (recalling our abbreviation that ρ ≡ ρEPUmin

TGX
),

ρEPUmin
TGX

= pEρE + (1− pE)ρS , (98)

where from the above argument, the entangled part of
the full state is the same as for the e subspace, so

E = C{e}, (99)

where E is the I-concurrence of the full state ρ [keeping
in mind that C{e} is not the same thing as E(ρE)], so
putting (88) into (97), and (99) into that gives

pE=
max{0, ξ1 − ξ2 − ξ3 − ξ4}

ξ1 + δξ1,0
〈x1|x1〉=

E〈x1|x1〉
ξ1 + δξ1,0

,

(100)
and from (87) and (95),

ρE =
|x1〉〈x1|
〈x1|x1〉

, (101)
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while putting (91) with tr(ρ{e}⊕0) = λ1 + λ4 + λ5 + λ6

into line 3 of (96) and using (97) gives

ρS = 1
1−pE+δpE,1

(
λ2ρ|2〉 + λ3ρ|5〉

+
min{ξ1,ξ2+ξ3+ξ4}+δξ1,0

ξ1+δξ1,0
|x1〉〈x1|+

r′∑
a=2
|xa〉〈xa|

)
.

(102)
Thus we have derived the LS decomposition of (8) in (9–
12), where it is helpful to note that here,

E(ρE) = C(ρ
{e}
E ) =

|〈x1|x̃1〉|
〈x1|x1〉

=
ξ1

〈x1|x1〉
, (103)

[noting that in general, E(ρE) 6= E] which shows that

pEE(ρE) = E = max{0, ξ1 − ξ2 − ξ3 − ξ4}, (104)

which is what makes (98) an optimal LS decomposition
since its average I-concurrence is the actual I-concurrence
of the state.

Thus, this decomposition concentrates the minimum
average I-concurrence into a single weighted decomposi-
tion state (which happens to be pure for EPU-minimal
TGX states in 2×3, as we have just proven). This is valid
because the entangled part is a pure minimal TGX state
so its I-concurrence always simplifies to a single subspace
concurrence, which is what allowed us to get this LS de-
composition. Thus, this agrees with several of the claims
used in the proofs in Sec. III as well.

Note that the entire derivation above applies equally
well to the middle minimal SGX state ρmin

SGX in (19) (and
to all minimal SGX states by LPU variation), with the
only difference being that λ2ρ|2〉+λ3ρ|5〉 must be replaced

by λ2ρ
{2,5} ⊕ 0
|ε{2,5}1 〉 + λ3ρ

{2,5} ⊕ 0
|ε{2,5}2 〉 where |ε{2,5}1 〉 and |ε{2,5}2 〉

are eigenstates of ρ{2,5} with eigenvalues λ
{2,5}
1 = λ2 and

λ{2,5}2 = λ3. But since those states are always separable
as explained in Fact 5 of Sec. III A, that changes none of
these results about the entanglement. We simply focused
on EPU-minimal TGX states to make the discussion sim-
pler and to provide additional proof of the EPU equiva-
lence of (8). Thus, with the above modification, (98–104)
hold in general for all minimal SGX states in 2× 3, and
can be used with the r′ limits as shown in numerical cal-
culations, while our results in the next section require us
to sacrifice that specificity and use upper limits of 4 as
seen in (9–15) to gain an overall explicit form.

Also note that these methods are adaptable to the 2×2
states of (4) by simply setting λ2 → 0, λ3 → 0, λ4 →
λ2, λ5 → λ3, λ6 → λ4, and transplanting only the e
subspace of our EPU-minimal TGX family to the 2 × 2
space in order, including for all eigenstates, etc. Thus,
even though the LS decomposition was not given in [27],
the one given here can be converted to that system with
ease (and this applies to the next section here as well).

Implicit in all of the above is that care must be taken to
ensure that each subnormalized eigenvector receives the
appropriate index to ensure valid decomposition of each
spacewise orthogonal subspace, which may require ex-
plicit definitions beyond standard routines, particularly
in cases with degenerate eigenvalues.

2. Explicit Forms of the Wootters x Kets

Here, we will use the fact that the EPU-minimal TGX
family of (8) has real TGX eigenvectors, which means
that its τ also has real eigenvectors, to easily convert from
a spectral decomposition of τ to a Takagi decomposition.

First, the eigenvector matrices of the EPU-minimal
TGX state of (8) are

|ε1〉 =



√
∆+
√

Ω
2∆

·
·
·
·√

∆−
√

Ω
2∆


, |ε2〉 =


·
1
·
·
·
·

, |ε3〉 =


·
·
·
·
1
·

,

|ε4〉 =


·
·
1
·
·
·

, |ε5〉 =



√
∆−
√

Ω
2∆

·
·
·
·

−
√

∆+
√

Ω
2∆


, |ε6〉 =


·
·
·
1
·
·

,

(105)
where ∆ and Ω are given in (15), so (105) gives columns of
ερ

EPUmin
TGX

from (18). Then, from (75), define the relabeled
subnormalized eigenvectors of the 0-embedded entangle-
ment subspace as

|u1〉 ≡



√
λ1

√
∆+
√

Ω
2∆

·
·
·
·

√
λ1

√
∆−
√

Ω
2∆


, |u2〉 ≡


·
·√
λ4

·
·
·

,

|u3〉 ≡



√
λ5

√
∆−
√

Ω
2∆

·
·
·
·

−
√
λ5

√
∆+
√

Ω
2∆


, |u4〉 ≡


·
·
·√
λ6

·
·

.
(106)

From (77) we have

S =


· · · · · −1
· · · · · ·
· · · 1 · ·
· · 1 · · ·
· · · · · ·
−1 · · · · ·

, (107)

and the elements of τ from (78) are given by

τk,l ≡ 〈uk|ũl〉 ≡ 〈uk|S|u∗l 〉; k, l ∈ 1, . . . , 4, (108)

where here we set dim(τ) = 4 instead of r′ to get a general
symbolic solution for all cases.
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Then, the spin-flipped eigenstates of (106) are

|ũ1〉 ≡



−
√
λ1

√
∆−
√

Ω
2∆

·
·
·
·

−
√
λ1

√
∆+
√

Ω
2∆


, |ũ2〉 ≡


·
·
·√
λ4

·
·

,

|ũ3〉 ≡



√
λ5

√
∆+
√

Ω
2∆

·
·
·
·

−
√
λ5

√
∆−
√

Ω
2∆


, |ũ4〉 ≡


·
·√
λ6

·
·
·

,
(109)

so putting (106) and (109) into (108) gives

τ =


−λ1

√
∆2−Ω
∆ ·

√
λ1λ5Ω

∆ ·
· · ·

√
λ4λ6√

λ1λ5Ω
∆ · λ5

√
∆2−Ω
∆ ·

·
√
λ4λ6 · ·

. (110)

Notice that τ is real, symmetric, and has spacewise or-
thogonal subspaces {1, 3} and {2, 4}. The eigenvalues of
τ{1,3} are (showing several forms for reference)

ζ
{1,3}
± =

−(λ1−λ5)
√

∆2−Ω±
√

(λ1+λ5)2∆2−(λ1−λ5)2Ω

2∆

=
−(λ1−λ5)

√
∆2−Ω±

√
[(λ1+λ5)

√
∆2−Ω]2+4λ1λ5Ω

2∆

=
−(λ1−λ5)

√
∆2−Ω±

√
4λ1λ5∆2+[(λ1−λ5)

√
∆2−Ω]2

2∆ ,
(111)

with corresponding subspace eigenstates

|e{1,3}− 〉 = 1
N−

( √
λ1λ5Ω

∆ + δλ5Ω,0

ζ
{1,3}
− + λ1

√
∆2−Ω
∆

)
for ζ

{1,3}
− ,

|e{1,3}+ 〉 = 1
N+

(
ζ
{1,3}
+ − λ5

√
∆2−Ω
∆√

λ1λ5Ω
∆ + δλ5Ω,0

)
for ζ

{1,3}
+ ,

(112)

[which were carefully derived so that when off-diagonals
of τ are zero, its remaining diagonal elements are the
eigenvalues in ascending order since diagonals of τ are
ascending, and ζ

{1,3}
− 6 0 6 ζ

{1,3}
+ by line 3 of (111)] with

normalization factors,

N− ≡
√

(ζ
{1,3}
− + λ1

√
∆2−Ω
∆ )2 + (

√
λ1λ5Ω

∆ + δλ5Ω,0)2 ,

N+ ≡
√

(ζ
{1,3}
+ − λ5

√
∆2−Ω
∆ )2 + (

√
λ1λ5Ω

∆ + δλ5Ω,0)2 .

(113)
Eigenvalues of τ{2,4} are

ζ
{2,4}
± = ±

√
λ4λ6 , (114)

with corresponding subspace eigenstates

|f{2,4}± 〉 =
1√
2

(
1
±1

)
. (115)

Then, a spectral decomposition of τ (except for a per-
mutation for descending-order eigenvalues) is

τ = V dV †, (116)

with unitary eigenvector matrix

V ≡



√
λ1λ5Ω

∆ +δλ5Ω,0

N−
· ζ

{1,3}
+ −λ5

√
∆2−Ω
∆

N+
·

· 1√
2

· 1√
2

ζ
{1,3}
− +

λ1

√
∆2−Ω
∆

N−
·

√
λ1λ5Ω

∆ +δλ5Ω,0

N+
·

· 1√
2

· −1√
2

,
(117)

and eigenvalue matrix (again not in descending order),

d ≡ diag{ζ{1,3}− , ζ
{2,4}
+ , ζ

{1,3}
+ , ζ

{2,4}
− }. (118)

Now that we have a spectral decomposition for τ , we
can convert it to a Takagi decomposition. First, peel off
the phase factors from d as

d = diag


sgn(ζ

{1,3}
− )|ζ{1,3}− |

sgn(ζ
{2,4}
+ )|ζ{2,4}+ |

sgn(ζ
{1,3}
+ )|ζ{1,3}+ |

sgn(ζ
{2,4}
− )|ζ{2,4}− |

. (119)

Then, we want to convert these factors to unit-complex
exponentials, but that means we have to sacrifice the 0
case. But that is okay since the magnitude is 0 anyway
in that case. So we rewrite d as

d = diag


|ζ{1,3}− |ei

π[1−sgn2(ζ
{1,3}
− )]

2

|ζ{2,4}+ |ei
π[1−sgn2(ζ

{2,4}
+

)]

2

|ζ{1,3}+ |ei
π[1−sgn2(ζ

{1,3}
+

)]

2

|ζ{2,4}− |ei
π[1−sgn2(ζ

{2,4}
− )]

2


, (120)

where we use the two-case sign function

sgn2(a) ≡
{

+1; a > 0
−1; a < 0,

(121)

to keep the sign factors real in the 0 case (even though
the magnitudes are 0 anyway then, just to ensure that
near-0 eigenvalues stay as true to the actual values of d
as possible). Then, to prepare to peel these factors off on
either side, we rewrite (120) as

d = diag


ei
π[1−sgn2(ζ

{1,3}
− )]

4 |ζ{1,3}− |ei
π[1−sgn2(ζ

{1,3}
− )]

4

ei
π[1−sgn2(ζ

{2,4}
+

)]

4 |ζ{2,4}+ |ei
π[1−sgn2(ζ

{2,4}
+

)]

4

ei
π[1−sgn2(ζ

{1,3}
+

)]

4 |ζ{1,3}+ |ei
π[1−sgn2(ζ

{1,3}
+

)]

4

ei
π[1−sgn2(ζ

{2,4}
− )]

4 |ζ{2,4}− |ei
π[1−sgn2(ζ

{2,4}
− )]

4


.

(122)
The magnitudes of the eigenvalues of τ are the Takagi

values (up to order), and we can peel off the phase fac-
tors and lump them with the eigenvector matrix V , after



17

first rewiting the adjoint as transpose (which is possible
because V is real), which gives the almost-Takagi factor-
ization,

τ = V dV † = V dV T = U ′D′U ′T , (123)

where the almost-Takagi unitary is

U ′ ≡ V diag


ei
π[1−sgn2(ζ

{1,3}
− )]

4

ei
π[1−sgn2(ζ

{2,4}
+

)]

4

ei
π[1−sgn2(ζ

{1,3}
+

)]

4

ei
π[1−sgn2(ζ

{2,4}
− )]

4


, (124)

and the almost-Takagi-value matrix is

D′ ≡ diag{|ζ{1,3}− |, |ζ{2,4}+ |, |ζ{1,3}+ |, |ζ{2,4}− |}. (125)

Now, to get a useful Takagi factorization, we need to
determine the descending order of the values in (125),
and apply the corresponding permutation to D′ and U ′.

Starting with subspace {1, 3}, although ζ
{1,3}
+ > ζ

{1,3}
− ,

since we want to compare magnitudes, line 3 of (111) is
most useful since it has common terms inside and outside
the larger radical. So the magnitudes are

|ζ{1,3}± | = 1
2∆

(
2(λ1 − λ5)2[∆2 − Ω] + 4λ1λ5∆2

∓2[(λ1 − λ5)
√

∆2 − Ω]

×
√

4λ1λ5∆2 + [(λ1 − λ5)
√

∆2 − Ω]2
)1/2

,

(126)
comparison of which shows that

|ζ{1,3}− | > |ζ{1,3}+ |, (127)

in all cases. Then, since |ζ{2,4}+ | = |ζ{2,4}− |, we have the
proper ordering in each subspace separately, so we just
need to determine the values of these two sets rela-
tive to each other. For this, we will break the problem
Q cases, and also treat any subcases that arise as needed.

Case 1: Q > 0: Here, by (15), Ω = Q where Q ≡
(λ1 − λ5)2 − (E + 2

√
λ4λ6)2, so (126) becomes

|ζ{1,3}± | = 1
2∆

(
2(λ1 − λ5)2[∆2 −Q] + 4λ1λ5∆2

∓2[(λ1 − λ5)
√

∆2 −Q]

×
√

4λ1λ5∆2 + [(λ1 − λ5)
√

∆2 −Q]2
)1/2

.

(128)
Then, since ∆ ≡ λ1 − λ5 + δλ1,λ5

[where the Kronecker
delta comes from the spectral decomposition of (8)], there
are two subcases; λ1 = λ5 and λ1 > λ5.

In general, regardless of Q case, given eigenvalue con-
straints of normalization, nonnegativity, and descending
order, subcases with λ1 = λ5 only admit spectra de-
scribed by λ1 = · · · = λ5 = 1−λ6

5 with λ6 ∈ [0, 1
6 ]. Then,

because λ1 = λ5 causes Q = −(E + 2
√
λ4λ6)2, this will

split this set of spectra into two subsets based on which
Q case pertains.

Since Q = 0 belongs to the Q > 0 case, then in the
λ1 = λ5 subcase, the fact that Q = −(E + 2

√
λ4λ6)2

such that Q = 0 requires that both terms in the square
be 0 since both are always nonnegative, so we must have
E = 0 and λ4λ6 = 0. But due to descending order,
λ1 = λ5 implies that λ4 6= 0, so λ6 = 0 is the only sub-
subcase that applies when Q > 0 and λ1 = λ5, so we
must have λ1 = · · · = λ5 = 1

5 with λ6 = 0 here.
Looking ahead, for the same reason, whenever Q < 0

and λ1 = λ5, the fact that Q < 0 implies E = 0 as proven
in (59) means that Q = −(E + 2

√
λ4λ6)2 = −4λ4λ6,

which can only be negative when λ6 > 0 (since λ4 6= 0 by
λ1 = λ5 and descending order), so the only spectra that
apply when Q < 0 and λ1 = λ5 are λ1 = · · · = λ5 = 1−λ6

5

with λ6 ∈ (0, 1
6 ], which we save for our treatment of the

Q < 0 case. (As we will see, we will not need this, but it
was important to rule it out for the present Q case).

So the only spectrum in the λ1 = λ5 subcase of Q > 0
is λ1 = · · · = λ5 = 1

5 with λ6 = 0, which yields, by (128),

|ζ{1,3}± | =
√
λ1λ5 = 1

5 , |ζ
{2,4}
± | =

√
λ4λ6 = 0, (129)

where we used λ1 = λ5, Q = 0, ∆ = 1, so this yields a
descending ordering as [also using (127)],

Q = 0; λ1 = λ5 :

{|ζ{1,3}− | > |ζ{1,3}+ | > |ζ{2,4}+ | > |ζ{2,4}− |} = { 1
5 ,

1
5 , 0, 0}.

(130)
Then, still in the Q > 0 case, its other subcase is λ1 >

λ5, for which ∆ = λ1−λ5 and Q = ∆2− (E+2
√
λ4λ6)2,

so then (128) becomes

|ζ{1,3}± | = 1
2

(
2(E + 2

√
λ4λ6)2 + 4λ1λ5

∓2[(E + 2
√
λ4λ6)]

×
√

4λ1λ5 + (E + 2
√
λ4λ6)2

)1/2

.

(131)

Here, it is difficult to get a full ordering of all the Takagi
values. However, since the preconcurrence’s form only
requires that we know which is the largest Takagi value,
this simplifies our task. With this in mind, if we focus

on |ζ{1,3}− | from (131), comparing it to |ζ{2,4}± | as

|ζ{1,3}− | ∼ |ζ{2,4}± |, (132)

where we use “∼” as an undetermined inequality place-
holder, then plugging in (131) and (114) into (132) (being
mindful of the absolute values), we get(

E2 + 4E
√
λ4λ6 + (E + 2

√
λ4λ6)2

+4λ1λ5 + 2[(E + 2
√
λ4λ6)]

×
√

4λ1λ5 + (E + 2
√
λ4λ6)2

)
∼ 0,

(133)

which shows that ∼→> since every term on the left of
(133) is nonnegative, so then (132) becomes

|ζ{1,3}− | > |ζ{2,4}± |, (134)
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which, together with (127) gives us a useful partial or-
dering for this subcase as

Q > 0; λ1 > λ5 :

|ζ{1,3}− | > {|ζ{1,3}+ |, |ζ{2,4}+ |, |ζ{2,4}− |}, (135)

where the order of the set on the right is not yet specified,
but we definitely know that |ζ{1,3}− | is the largest, which
is sufficient for our purposes. Therefore, since the set in
(130) can also be written like the set in (135), then both
subcases of Q > 0 can be united as

Q > 0 : |ζ{1,3}− | > {|ζ{1,3}+ |, |ζ{2,4}+ |, |ζ{2,4}− |}. (136)

Case 2: Q < 0: Here, Ω = 0 by (15), and E = 0 by (59),
so also Q < 0 means (λ1−λ5)2− (0 + 2

√
λ4λ6)2 < 0 and

therefore λ1 − λ5 − 2
√
λ4λ6 < 0. So (126) becomes

|ζ{1,3}± | =
√

λ2
1+λ2

5∓(λ2
1−λ2

5)
2 . (137)

Here, since there is no remaining ∆, we do not need to
break this into subcases as we did for the first Q case.

Furthermore, since we have already settled for simply
finding the largest Takagi value, then based on (127), we
note that |ζ{1,3}− | from (137) is

|ζ{1,3}− | = λ1, (138)

and comparing it to |ζ{2,4}± | gives

|ζ{1,3}− | ∼ |ζ{2,4}± |
λ1 ∼

√
λ4λ6 ,

(139)

and since λ1 > λ4 >
√
λ4λ6, (139) shows that ∼→>, so

|ζ{1,3}− | > |ζ{2,4}± |, (140)

which gives the result for this Q case that

Q < 0 : |ζ{1,3}− | > {|ζ{1,3}+ |, |ζ{2,4}+ |, |ζ{2,4}− |}, (141)

where again, the set on the right is not yet ordered.
Then, since (136) and (141) have the same form, we

get a unified partial ordering for all cases as

∀Q : |ζ{1,3}− | > {|ζ{1,3}+ |, |ζ{2,4}+ |, |ζ{2,4}− |}, (142)

where the order in the set on the right does not matter.
(Note that this order can always be obtained numerically
for a given set of parameters, but our goal here is to find
a symbolic solution with little or no case-splitting.)

Therefore, we can now assign the concurrence singular
values to the appropriate Takagi values (where the order
of the last three is not necessarily descending, but the
first is always the largest) as

ξ1 ≡ |ζ{1,3}− |, ξ2 ≡ |ζ{1,3}+ |, ξ3 ≡ |ζ{2,4}+ |, ξ4 ≡ |ζ{2,4}− |.
(143)

Given (143), using (114) and (126) then yeilds the specific
{ξa} forms in (14), which, when compared with (114) and

(111), shows that

ζ
{1,3}
− = −ξ1
ζ
{1,3}
+ = +ξ2
ζ
{2,4}
+ = +ξ3
ζ
{2,4}
− = −ξ4.

(144)

Then, (143) gives us a useful ordering for the Tak-
agi decomposition of τ , which we achieve by swapping
columns 2 and 3 in U ′ of (124) and swapping diagonals
2 and 3 in D′ of (125), which yields

τ = UDUT , (145)

with Takagi unitary,

U ≡


(

√
λ1λ5Ω

∆ +δλ5Ω,0)i

N1

ξ2−λ5

√
∆2−Ω
∆

N2
· ·

· · 1√
2

i√
2

−(ξ1−λ1

√
∆2−Ω
∆ )i

N1

√
λ1λ5Ω

∆ +δλ5Ω,0

N2
· ·

· · 1√
2
−i√

2

,
(146)

where, from (113) and (144),

N1 ≡ N− ≡
√

( ξ1∆−λ1

√
∆2−Ω

∆ )2+(
√
λ1λ5Ω+δλ5Ω,0∆

∆ )2,

N2 ≡ N+ ≡
√

( ξ2∆−λ5

√
∆2−Ω

∆ )2+(
√
λ1λ5Ω+δλ5Ω,0∆

∆ )2,

(147)
and we used (144) in (124) to get

ei
π[1−sgn2(ζ

{1,3}
− )]

4 = ei
π[1+sgn2(ξ1)]

4 = i

ei
π[1−sgn2(ζ

{1,3}
+

)]

4 = ei
π[1−sgn2(ξ2)]

4 = 1

ei
π[1−sgn2(ζ

{2,4}
+

)]

4 = ei
π[1−sgn2(ξ3)]

4 = 1

ei
π[1−sgn2(ζ

{2,4}
− )]

4 = ei
π[1+sgn2(ξ4)]

4 = i,

(148)

and the Takagi-value matrix is then

D ≡ diag{ξ1, ξ2, ξ3, ξ4}, (149)

where these values can be expressed as seen in (14).
Here we pause to prove that these {ξa} are valid in all

cases. First, putting the {ξa} from (14) into (11) gives

E = max{0, ξ1 − ξ2 − ξ3 − ξ4}
= max{0, (λ1−λ5)

√
∆2−Ω

∆ − 2
√
λ4λ6},

(150)

which gives us a general formula to check {ξa}.
In the Q > 0 case when λ1 = λ5, then Ω = Q, ∆ = 1,

and Q = −(E + 2
√
λ4λ6)2 = 0 since the only spectrum

that applies to this subcase is λ1 = · · · = λ5 with λ6 = 0,
and E = 0 as explained in the second new paragraph
after (128), so then (150) becomes

E = max{0, 0
√

12−0
1 − 2

√
λ40}

= 0
= E.

(151)
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In the Q > 0 case when λ1 > λ5, then Ω = Q and
∆=λ1−λ5, so Q=∆2−(E+2

√
λ4λ6)2 and (150) gives

E = max{0, (λ1−λ5)(E+2
√
λ4λ6)

∆ − 2
√
λ4λ6}

= max{0, E + 2
√
λ4λ6 − 2

√
λ4λ6}

= max{0, E}
= E.

(152)

In the Q < 0 case, Ω = 0 while Q < 0 implies E = 0
as proven in (59), and Q < 0 also implies that λ1 − λ5 −
2
√
λ4λ6 < 0 as proved in (56), so then (150) becomes

E = max{0, λ1 − λ5 − 2
√
λ4λ6}

= 0
= E.

(153)

Thus, we have proven that the Takagi values {ξa} from
(14) yield the correct entanglement E for all cases.

Now we have all we need to build the Wootters x kets
{|xa〉} for this system. Here, since we do not have a
definite symbolic order for the lower three Takagi values,
we must use all four |xa〉 states to ensure that no states
are missed, and their own parameters will then take care
of causing the necessary zero vectors when appropriate.

Therefore, putting (146) into (80) gives

|x1〉 = i
N1

(
√
λ1λ5Ω+δλ5Ω,0∆

∆ |u1〉 − ξ1∆−λ1

√
∆2−Ω

∆ |u3〉)
|x2〉 = 1

N2
( ξ2∆−λ5

√
∆2−Ω

∆ |u1〉+
√
λ1λ5Ω+δλ5Ω,0∆

∆ |u3〉)
|x3〉 = 1√

2
(|u2〉+ |u4〉)

|x4〉 = i√
2
(|u2〉 − |u4〉),

(154)
and then putting (106) into (154) gives (13), which is the
explicit form we sought.

We have now proven our explicit symbolic form of the
LS decomposition of the EPU-minimal TGX states of (8).
This decomposition, summarized in (9–15), was also nu-
merically tested on a large number of states and spectra
covering all special cases, and found to always give the
exact correct entanglement E by both methods shown in
(11), as well as always being yielding a valid decompo-
sition of the state. Furthermore, the separable state ρS
of (12) constructed from these {|xa〉} was also found to
always be separable, where we used the minimal TGX
formula of (7) (proved in Sec. III A) to verify this, and
the proof of Sec. III D 1 also guarantees it.

Note that the results in Sec. III D 1 can be done numer-
ically without using Sec. III D 2 at all, but the results of
Sec. III D 2 give us a simple set of parameterized decom-
position states allowing symbolic manipulation, which is
a valuable tool for proving new results.

IV. CONCLUSIONS

This paper has successfully proven that TGX states are
EPU-equivalent to the set of all states in 2× 3 systems,
where the entanglement is measured by I-concurrence.

Thus, for every general state, there is a TGX state with
the same spectrum and I-concurrence.

Specifically, only a very compact subspace of TGX
states called EPU-minimal TGX states ρEPUmin

TGX
are

needed for this EPU equivalence, as seen (8). This family
is a subset of the somewhat larger family called minimal
TGX states ρmin

TGX, all varieties of which are shown in (16).
The general set of TGX states is shown in (17). Each of
these sets have their form and entanglement preserved
under local-permutation unitary (LPU) operations.

Although a computable formula for I-concurrence of
general 2 × 3 mixed states is not yet known, we have
proven that all possible spectrum-entanglement combi-
nations are represented in ρEPUmin

TGX
. Therefore if a com-

putable I-concurrence formula for E is ever discovered,
then any general state ρ can be converted to an EPU-
minimal TGX state ρEPUmin

TGX
simply by harvesting the E

and spectrum of ρ to construct ρEPUmin
TGX

, and the unitary
relating them will be given by (18).

Nevertheless, ρEPUmin
TGX

of (8) can still be used to param-
eterize physical states of all spectrum-entanglement com-
binations simply by picking any unit-normalized spec-
trum λ1 > · · · > λ6 > 0 and using (67) to get any physi-
cal I-concurrence Eη ≡ ηmax{0, λ1−λ5−2

√
λ4λ6}; η ∈

[0, 1]. By using LU operators, this also allows us to create
a very wide range of generally nonTGX states parame-
terized by both spectrum and entanglement.

As part of proving the EPU equivalence of ρEPUmin
TGX

,
we developed an explicit I-concurrence formula in (7) for
all minimal TGX states ρmin

TGX [examples of which are in
(16)]. The simple form of (7) comes from utilizing space-
wise orthogonality, LS decomposition, and the fact that
quartet subspaces of TGX states always have X form, all
of which conspires to let the 2-norm of the I-concurrence
simplify to a single subspace concurrence, as explained
in Sec. III A. Note that these LS decompositions are op-
timal because all quartets outside of the entanglement-
containing quartet always have concurrence 0 since those
subspaces are always separable for minimal SGX states
and their subsets, such as minimal TGX states and EPU-
minimal TGX states.

We also derived the computable I-concurrence formula
in (21) for the more general family of minimal SGX states
ρmin

SGX from (19). The formula in (21) has a relationship
to the formula in (7) that is analogous to that between
the 2× 2 concurrence C(ρ) of (1) and the X-concurrence
C(ρX) of (3); the subspace concurrences in (21) generally
need to be computed numerically, but they all simplify
to an explicit symbolic form for minimal TGX states,
as seen in (7). Therefore, since EPU-minimal TGX
states ρEPUmin

TGX
are a subset of both minimal TGX states

and minimal SGX states, this proves that minimal TGX
states and minimal SGX states both have EPU equiva-
lence to general states as well. However, since our goal
is to find the most compact set that achieves EPU equiv-
alence, the main result here is the EPU equivalence of
EPU-minimal TGX states (which are the most compact
set since superposition is necessary for entanglement and
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they only have one unique nonzero off-diagonal).
Furthermore, we used the simplicity of our EPU-

minimal TGX family of (8) to derive its explicit LS de-
composition in Sec. III D, summarized in (9–15). How-
ever, (98–104) can also be used to get LS decompositions
numerically for these states, as well as the more general
families of minimal TGX states and minimal SGX states
with the adjustment mentioned at the end of Sec. III D 1.

All of this generalizes the 2× 2 results of [27] to 2× 3
(while adding the LS decomposition and explaining how
to apply that to 2 × 2). Furthermore, we showed that
the prediction of [25] regarding entanglement universal-
ity of TGX states is correct in 2 × 3; in general, lit-
eral X states are not always sufficient to achieve EPU
equivalence, since there are X states which are perma-
nently separable in this system, as explained in Item 5
of Sec. II. (Indeed, entanglement universality of TGX
states was already proven to exclude X states in general,
both in [43] and [47] which discuss example systems such
as 3×3 where X states cannot achieve maximal entangle-
ment in the pure case, but TGX states can.) However, in
2× 3, some X states can achieve EPU equivalence, such
as the particular family shown in (8). But the preser-
vation of its superposition and entanglement properties
under LPU operations that cause it wander through TGX
space show that TGX form is the more relevant feature
for EPU equivalence (particularly since TGX states are
known to be necessary for EPU equivalence in larger sys-
tems such as 3× 3 as mentioned above).

In closing, we have discovered a powerful new family
of states that greatly extends our ability to model and
explore entanglement in 2 × 3 systems. We have also
found a satisfying generalization of the X-concurrence
formula of 2× 2 to the minimal-TGX I-concurrence for-
mula in 2 × 3, and a further generalization of that to
a computable I-concurrence formula for the more gen-
eral minimal SGX states. Perhaps most importantly, the
methods here have already helped guide similar discover-
ies in a very wide range of multipartite quantum systems,
even though those involve many other issues that do not
arise in 2×3, such as bound entanglement. At the time of
writing, we have prepared another paper extending these
ideas to such systems, and will release those results soon.

Appendix A: Review of I-Concurrence

The I-concurrence [37–41] of bipartite pure states is

E(ρ|ψ〉) ≡
√

2[1− P (ρ̌
(m)
|ψ〉 )], (A1)

where ρ|ψ〉 ≡ |ψ〉〈ψ|, ρ̌ (m) is the mode-m reduction of ρ,
m ∈ {1, 2} is a mode label, and P (ρ) ≡ tr(ρ2) is purity.

Expressing |ψ〉 in the coincidence basis as

|ψ〉 ≡
∑n1,n2

b1,b2=1,1
ab1,b2 |b1, b2〉, (A2)

where ab1,b2 ≡ 〈b1, b2|ψ〉 causes (A1) to expand as

E(ρ|ψ〉) = 2

√
n1∑
w<y

n2∑
x<z
|aw,xay,z−aw,zay,x|2

= 2

√
n1∑
w=1

n1∑
y=w+1

n2∑
x=1

n2∑
z=x+1

|aw,xay,z−aw,zay,x|2.

(A3)
In 2×3, n1 = 2 and n2 = 3 so the only pair of {w, y} in

the sums is {1, 2}, while {x, z} ∈ {{1, 2}, {1, 3}, {2, 3}}.
Thus, the index combinations in terms of the sums are

w y x z
1 2 1 2
1 2 1 3
1 2 2 3

→
w x y z
1 1 2 2
1 1 2 3
1 2 2 3

, (A4)

which shows that (A3) becomes

E(ρ|ψ〉) = 2( |a1,1a2,2 − a1,2a2,1|2
+|a1,1a2,3 − a1,3a2,1|2
+|a1,2a2,3 − a1,3a2,2|2)1/2.

(A5)

By Item 5 from Sec. II, mapping the coincidence basis to
scalar indices converts (A5) to

E(ρ|ψ〉) = ( [2|a1a5 − a2a4|]2
+[2|a1a6 − a3a4|]2
+[2|a2a6 − a3a5|]2)1/2.

(A6)

Recalling that in 2× 2, pure-state concurrence is

C(ρ
[2×2]
|ψ〉 ) = 2|a1a4 − a2a3|, (A7)

this connects the coefficients in C to levels {1, 2, 3, 4} of
the total state. Thus, quantities in (A6) are concurrences
of subspaces of ρ|ψ〉 as defined after (5), so that

2|aq1aq4 − aq2aq3 | = C(ρ
{q1,q2,q3,q4}
|ψ〉 ) = C(ρ

{q}
|ψ〉 ) ≡ C{q},

(A8)
where ρ

{q}
|ψ〉 is the q subspace of ρ|ψ〉 (with no renormal-

ization). Thus, (A8) lets us rewrite (A6) as

E(ρ|ψ〉) =
√

[C{1,2,4,5}]2 + [C{1,3,4,6}]2 + [C{2,3,5,6}]2,

(A9)
which can also be written as the 2-norm,

E(ρ|ψ〉) = ‖C(ρ|ψ〉)‖2 , (A10)

of the subspace concurrence vector,

C(ρ|ψ〉) ≡ [C(ρ
{1,2,4,5}
|ψ〉 ), C(ρ

{1,3,4,6}
|ψ〉 ), C(ρ

{2,3,5,6}
|ψ〉 )].

(A11)
The form in (A10–A11) is much easier to work with

than (A3). To get I-concurrence for mixed states, use
the convex-roof extension as in (5).

Note that not all sets of four indices are used in (A9)
and (A11). See App. B for physical meanings of the spe-
cial quartets that appear in these quantities.
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Appendix B: Quartets

In (5) and (A9), we see sets of levels we call quartets:

q1 ≡ {1, 2, 4, 5}, q2 ≡ {1, 3, 4, 6}, q3 ≡ {2, 3, 5, 6}.
(B1)

Furthermore, in (5) and (A9) we take concurrences of
subspaces of pure states as C(ρ

{qk}
|ψ〉 ). Yet since there are(

6
4

)
= 15 possible sets of 4 levels in n = 6 dimensions, the

three sets in (B1) must have some special significance.
It turns out that the quartets in (B1) all have product

form in the sense that expanding them in the coincidence
basis forms an ordered basis factorizable as a tensor prod-
uct of basis sets in each mode, as we will show.

For example, in 2× 2, the only quartet possible is

q′1 ≡ {1, 2, 3, 4}, (B2)

corresponding to coincidence-form computational basis,

{|1〉|1〉, |1〉|2〉, |2〉|1〉, |2〉|2〉} = {|1〉, |2〉}⊗{|1〉, |2〉}. (B3)

Thus, its quartet is formed from a tensor product of two
pairs of single-mode basis states, which we call a product
quartet (or just quartet) which forms a product subspace.

Note also that the outer pair of quartet indices forms
the basis of an inseparable qubit as does the inner pair;

{1, 4} = {11, 22}, {2, 3} = {12, 21}, (B4)

where for brevity we omit ket symbols and commas in
coincidence strings (such as writing 21 instead of {2, 1}),
and we use “inseparable” instead of “entangled” since
these are subsets of basis states rather than actual states.

To see that the 2 × 3 quartets in (B1) have product
form, note that mode 1 only has two levels, but mode 2,
being a 3-level system, has three pairs of two levels. Thus
the full set of 2× 2 product subspaces in 2× 3 (including
the map from coincidences to single indices) is{

11 12 13 21 22 23
1 2 3 4 5 6

}
{1, 2}{1, 2} = {11, 12, 21, 22} = {1, 2, 4, 5}
{1, 2}{1, 3} = {11, 13, 21, 23} = {1, 3, 4, 6}
{1, 2}{2, 3} = {12, 13, 22, 23} = {2, 3, 5, 6},

(B5)

which confirms that the quartets of (B1) are exactly the
set of 2× 2 product subspaces in 2× 3. (Note that these
are not just any quartets. For example, {1, 2, 3, 6} =
{11, 12, 13, 23} does not factor as a tensor product, and
also does not have an inseparable qubit in the inner pair.)

Appendix C: Brief Review of Physical
Decompositions of Mixed States into Pure States

Decomposition of any generally mixed state ρ into a
convex sum of pure states is well-known, and already
covered in [29, 43]. Here we briefly review it to explain
our parameterization for the sake of reproducibility.

Any n-level density matrix ρ of rank r expands as

ρ =
∑D>r
j=1 pj |wj〉〈wj | =

∑D>r
j=1 |wj〉〈wj |, (C1)

where D ∈ [r,∞), with normalized decomposition states

|wj〉 ≡ 1√
pj

∑r
k=1 Uj,k

√
λk|ek〉, (C2)

where λ1 > · · · > λn are eigenvalues of ρ with corre-
sponding eigenstates |ek〉, and U ≡ U [D] is any D-level
unitary matrix. The decomposition probabilities are

pj ≡
∑r
k=1 |Uj,k|2λk = 〈wj |wj〉, (C3)

and subnormalized pure decomposition states are

|wj〉 ≡
√
pj |wj〉, (C4)

to get the form on the right in (C1) which is useful
for degree-1 homogeneous entanglement measures like I-
concurrence for which E(pρ) = pE(ρ).

From (C1), the dependence on U enters as

|wj〉〈wj | =
∑r,r
k,l=1,1 Uj,kU

∗
j,l

√
λkλl|ek〉〈el|. (C5)

so U is special unitary, since global matrix phase would
cancel in (C5). In the simplest case where D = 2,

U =

(
a b
−b∗ a∗

)
; (a, b) ≡ (cθe

iϕ, sθe
iχ), (C6)

where θ ∈ [0, π2 ], and ϕ, χ ∈ [0, 2π), but (υj)k,l ≡ Uj,kU∗j,l
act as elements of pure states with density matrices υj ,
so to gauge the effective degrees of freedom (DOF) of U
in the decomposition, we must view {υj} collectively as

υ1 =

(
c2θ sθcθe

−i(χ−ϕ)

sθcθe
i(χ−ϕ) s2

θ

)
υ2 =

(
s2
θ −sθcθe−i(χ−ϕ)

−sθcθei(χ−ϕ) c2θ

)
,

(C7)

which only has two DOF which are {θ, (χ − ϕ)}, so we
can set φ ≡ χ − ϕ ∈ [0, 2π) where the range of φ is lim-
ited by the functions in which it appears in (C7). Thus,
noting that the off-diagonals of υ1, υ2 still reach all the
same values if we set ϕ ≡ 0, then φ = χ, so our final
parameterization of U for D = 2 is

U =

(
a b
−b∗ a∗

)
; (a, b) ≡ (cθ, sθe

iφ), (C8)

where θ ∈ [0, π2 ] and φ ∈ [0, 2π). Since two DOF can be
searched efficiently, this allows useful numerical searches
for minimum average entanglement. However, as shown
in [52–54], separable states can require up to D = r2 to
find an optimal decomposition.

For D > 3, the number of DOF quickly becomes in-
tractable to search deterministically. However, the states
we are studying are simple enough (due to spacewise or-
thogonality) that a random search can give a reasonable
approximation, as seen in our plots for D = 3, 4 which
show average I-concurrence approaching the theoretical
minimum average value.

Again, we did not rely on numerical searches to reach
any of our conclusions; they are merely checks to show
that we cannot find any contradictions to our proofs.
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Appendix D: Additional Facts about TGX States

From [25, 43], TGX states also have diagonal reductions
(see App. H of [46] for a brief history of TGX states). ME
TGX states always have balanced superposition (nonzero
coefficients all with the same magnitude) as seen in (38)
(as proved in [43] for all systems), and are also the core
states in the multipartite Schmidt decomposition pre-
sented in [43] and detailed in [47].

Furthermore, each column of ME TGX states in (38)
forms a maximally entangled basis (MEB) as proposed
in [25], the general existence of which was proved for
all systems in [43]. As shown in [25], the union of
all nonzero elements of ME TGX states gives the full
set of 2 × 3 TGX states as seen in (17) (which is just
one of many different characterizations of TGX states).

Appendix E: Generalized Concurrence in 2× 3

Despite the close ties of I-concurrence to 2× 2 subspace
concurrences, it is not equivalent to generalized concur-
rence CG [48]. Here we briefly derive the maximal value
of CG wrt spectrum, which is used in the text to show
that CG is not I-concurrence.

From [48], generalized concurrence of mixed ρ is

CG(ρ) = max{0, cG(ρ)}, (E1)

where cG is the minimum average generalized preconcur-
rence over all decompositions of ρ, given by

cG ≡ ξ1 −
rank(R)∑
l=2

ξl, (E2)

where ξ1 > ξ2 > · · · , and R is defined as

R ≡ R(ρ) ≡
√√

ρρ̃
√
ρ, (E3)

where ρ̃ is an antilinearly unitary (antiunitary) conjuga-
tion of ρ (which is defined in [48]), and

{ξl} ≡ eig(R) = sing(ρρ̃). (E4)

Since we want to maximize CG wrt spectrum, we
need to find a singular-value inequality involving cG of
(E2). Following [35], from [55] (which covers a wider
array of situations than we use here), for any complex
square matrices C = AB, where A,B,C each have n
dimensions with {λl} ≡ {λl(C)} ≡ eig(C) and singu-

lar values {σl} ≡ {σl(C)} ≡ {
√
λl(CC†)} ≡ sing(C) for

l ∈ 1, . . . , n such that σ1 > · · · > σn, then

k∑
l=1

σl(AB) 6
k∑
l=1

σl(A)σl(B), (E5)

for k ∈ 1, . . . , n, and also

k∑
t=1

σlt(AB) >
k∑
t=1

σlt(A)σn−t+1(B), (E6)

for k ∈ 1, . . . , n and integers lt s.t. 1 6 l1 < · · · < lk 6 n.

For the desired inequality, first set k = 1 in (E5) to get

σ1(AB) 6 σ1(A)σ1(B). (E7)

Then, since we want five terms subtracted from σ1 [by
(E2) with max{rank(R)}=n= 6], set k= 5 in (E6) and
since we want those indices to be {2, 3, 4, 5, 6}, let

{l1, . . . , lk} = {l1, l2, l3, l4, l5} ≡ {2, 3, 4, 5, 6}, (E8)

which put in (E6) and multiplied by −1 yields

−(σ2 + σ3 + σ4 + σ5 + σ6)(AB) 6 −[ σ2(A)σ6(B)
+ σ3(A)σ5(B)
+ σ4(A)σ4(B)
+ σ5(A)σ3(B)
+ σ6(A)σ2(B)].

(E9)
where (AB) on the left represents the argument for that
entire quantity. Then, adding (E7) and (E9) gives

(σ1 − σ2 − σ3 − σ4 − σ5 − σ6)(AB) 6 σ1(A)σ1(B)
−σ2(A)σ6(B)
−σ3(A)σ5(B)
−σ4(A)σ4(B)
−σ5(A)σ3(B)
−σ6(A)σ2(B).

(E10)

In [35], it was shown that (E4) can be rewritten as

{ξl} = sing(
√

ΛV
√

Λ), (E11)

where V is unitary and Λ ≡ diag{λ1, . . . , λn} ≡ eig(ρ).
So then, letting

A ≡
√

Λ, B ≡ V
√

Λ, (E12)

that causes the singular values in (E10) to become

σl(AB) = ξl, and σl(A) = σl(B) =
√
λl, (E13)

so then, putting (E12) and (E13) into (E10) yields

(σ1 −
6∑
l=2

σl)(
√

ΛV
√

Λ)6λ1 − λ4 − 2
√
λ2λ6 − 2

√
λ3λ5.

(E14)
Then maximizing (E14) over all V gives

max(cG) ≡ max
∀V

[
(σ1 −

∑6
l=2 σl)(

√
ΛV
√

Λ)
]

= λ1 − λ4 − 2
√
λ2λ6 − 2

√
λ3λ5,

(E15)

so putting (E15) into (E1) maximized over all V gives

max(CG) = max{0,max(cG)}
= max{0, λ1 − λ4 − 2

√
λ2λ6 − 2

√
λ3λ5},

(E16)
which is the maximal value of CG wrt spectrum in (42).
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