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A relation among tangle, 3-tangle, and von Neumann entropy of entanglement

for three qubits

Dafa Li1∗, Maggie Cheng2, Xiangrong Li 3, Shuwang Li2

In this paper, we derive a general formula of the tangle for pure states of three qubits, and present
three explicit local unitary (LU) polynomial invariants. Our result goes beyond the classical work of
tangle, 3-tangle and von Neumann entropy of entanglement for Aćın et al.’ Schmidt decomposition
(ASD) of three qubits by connecting the tangle, 3-tangle, and von Neumann entropy for ASD with
Aćın et al.’s LU invariants. In particular, our result reveals a general relation among tangle, 3-
tangle, and von Neumann entropy, together with a relation among their averages. The relations
can help us find the entangled states satisfying distinct requirements for tangle, 3-tangle, and von
Neumann entropy. Moreover, we obtain all the states of three qubits of which tangles, concurrence,
3-tangle and von Neumann entropy don’t vanish and these states are endurable when one of three
qubits is traced out. We indicate that for the three-qubit W state, its average von Neumann entropy
is maximal only within the W SLOCC class, and that under ASD the three-qubit GHZ state is the
unique state of which the reduced density operator obtained by tracing any two qubits has the
maximal von Neumann entropy.

INTRODUCTION

Quantum entanglement is considered as a unique
quantum mechanical resource [1]. Entanglement
takes an important role in quantum information and
computation. Examples include quantum telepor-
tation, quantum cryptography, quantum metrology,
and quantum key distribution. Considerable efforts
have been made to explore the entanglement classi-
fication via local unitary operators (LU), local op-
erations and classical communication (LOCC), and
Stochastic LOCC (SLOCC) [2]-[12]. It is known that
any two states of the same LU class have the same
amount of entanglement [3, 4, 11]. Under SLOCC,
pure states of three qubits were partitioned into six
equivalence classes: GHZ, W, A-BC, B-AC, C-AB,
and A-B-C [3]. It has been established that two bi-
partite states are LU equivalent if and only if their
Schmidt coefficients coincide [1, 12]. Aćın et al. pro-
posed the Schmidt decomposition for three qubits
[8, 9]. Kraus introduced a standard form for multi-
partite systems and showed that two states are LU
equivalent if and only if their standard forms coin-
cide [11, 12].

Coffman et al. defined the tangle for the reduced
density operator ρAB (i.e., trCρABC) of a three-
qubit state below [13]. Let

ρAB = σy ⊗ σyρ
∗
ABσy ⊗ σy, (1)

where ρ∗AB is the complex conjugate of ρAB and σy

is the Pauli matrix. Note that ρABρAB has only
real and non-negative eigenvalues η21, η

2
2, η

2
3, and η

2
4,

where η1 ≥ η2 ≥ η3 ≥ η4. Then, the entanglement

tangle of ρAB is defined as

τAB = [max{η1 − η2 − η3 − η4, 0}]2. (2)

The tangle τAC of ρAC (= trCρABC) and the tangle
τBC of ρBC (= trAρABC) can be similarly defined.

The idea of taking average measure of entangle-
ments comes from an extremely useful technique in
quantum information theory, the “average subsys-
tem approach” proposed by Page [19]. For a pure
state |ψ〉 of three qubits, Dür et al. defined its av-
erage residual entanglement as ǭ(ψ) = 1

3 (ǫ(ρAB) +
ǫ(ρAC)+ǫ(ρBC)), where ǫ(ρxy) is some entanglement
measure, where notation xy means AB,AC, or BC
[3]. If ǫ(ρxy) is the tangle (the von Neumann en-
tropy), then the average residual entanglement ǭ(ψ)
is the average tangle (von Neumann entropy). A
state of four qubits is defined to be maximally en-
tangled if its average bipartite entanglement (for ex-
ample, the average tangle or the average entropy)
with respect to all possible bi-partite cuts is maxi-
mal [18]. Significant efforts have contributed to the
average tangle [3, 18, 20, 21] and von Neumann en-
tropy, specially, the average entropy in bipartite, tri-
partite, and multi-partite scenarios [14–18, 20, 22],
and reference [23]. Dür et al. showed that the W
state of three qubits has the maximal average tan-
gles and indicated that for the GHZ state of three
qubits, the tangle vanishes [3].
Considerable efforts have also been undertaken on

the study of polynomial invariants for n qubits [8,
24–27] [28]. SLOCC (LU) polynomial invariants can
be used for SLOCC (LU) entanglement classification
of pure states of n qubits and can also be used as
entanglement measure.

http://arxiv.org/abs/2203.09610v2
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In this paper, we derive a general formula of the
tangle for three qubits, and obtain three LU poly-
nomial invariants of degree 4. We calculate tangle,
average tangle, 3-tangle, von Neumann entropy , and
average von Neumann entropy in the framework of
ASD. We derive an equation which tangle, 3-tangle,
and von Neumann entropy satisfy. Via the equa-
tion, we present relations among tangles and von
Neumann entropy, among tangle, 3-tangle, and von
Neumann entropy , among the average tangles, the
average von Neumann entropy , and 3-tangle, and
among von Neumann entropy and Aćın et al.’s LU
invariants. The relations can help us find the entan-
gled states satisfying distinct requirements for tan-
gle, 3-tangle, and von Neumann entropy.
We obtain all three-qubit states whose tangle, con-

currence, 3-tangle and von Neumann entropy do not
vanish. Via von Neumann entropy for ASD, we in-
dicate that the GHZ state is the unique three-qubit
state under ASD that has the maximal von Neu-
mann entropy of ln 2, and the average von Neumann
entropy of the W state is maximal only within the
W SLOCC class.

TANGLES FOR ASD

In this section, we derive the formulas for tangles
for pure states of three qubits and for the ASD, and
present a relation between tangles and Aćın et al.’s
LU polynomial invariants.

Homogeneous polynomial of degree 4 for tangle

Let |ψ〉 =
∑7

i=0 ci|i〉. By solving Eq. (2), we
obtain τAB, τAC , and τBC as follows,

τAB = ∆− τABC

2
, (3)

τAC = Φ− τABC

2
, (4)

τBC = Ψ− τABC

2
, (5)

where ∆, Φ, Ψ are defined in Eqs. (A3, A8, A12) in
Appendix A. Following [31], the 3-tangle τABC can
be written as

τABC = 4|(c0c7 − c2c5 − c1c6 + c3c4)
2

−4(c0c3 − c1c2)(c4c7 − c5c6)|. (6)

Note that ∆, Φ, and Ψ are LU homogeneous poly-
nomial invariants of degree 4 in the state coefficients

and their complex conjugates. Therefore, one needs
only ”+,−,×” operations of the state coefficients
and their complex conjugates to compute the tan-
gles.
Williamson et al. obtained I(ãb̃) = tr[ρabρ̃ab] =

τab+
1
2τabc, where ρ̃ab = σy⊗σyρ

T
abσy⊗σy [32]. Note

that Coffman et al. used ρ∗ab (which is the complex
conjugate of ρab) in Eq. (1) rather than ρTab. It is
known that it is complicated to compute the reduced
density operator ρab and tr[ρabρ̃ab]. Comparatively,
it is easier and simpler to compute ∆ than tr[ρabρ̃ab].

Tangles for ASD

Aćın et al. proposed the following Schmidt de-
composition for pure states of three qubits,

|ψ〉 = λ0|000〉+ λ1e
iφ|100〉+ λ2|101〉

+λ3|110〉+ λ4|111〉, (7)

where λi ≥ 0, i = 0, 1, · · · , 4, 0 ≤ φ < 2π, and
∑

λ2i = 1 [8, 9]. Equation (7) is referred to the ASD
of |ψ〉. It is known that any state of three qubits is
LU equivalent to its ASD. For ASD, 3-tangle τABC

in Eq. (6) can be reduced to

τABC = 4λ20λ
2
4. (8)

τAB in Eq. (3) and τAC in Eq. (4) can be reduced
similarly,

τAB = 4λ20λ
2
3, (9)

τAC = 4λ20λ
2
2. (10)

To reduce τBC in Eq. (5) for ASD, we write Ψ in
Eq. (A12) as Ψ = 2Π, where Π = [λ20λ

2
4 + 2(λ1λ4 −

λ2λ3)
2 + 8λ1λ2λ3λ4 sin

2 φ
2 ]. Then, we have

τBC = 2
(

Π− λ20λ
2
4

)

= 4[(λ1λ4 − λ2λ3)
2 + 4λ1λ2λ3λ4 sin

2 φ

2
]

= 4|λ1λ4eiφ − λ2λ3|2. (11)

In Table 1, we summarize the tangles τAB , τAC ,
τBC , and 3-tangle τABC for ASD.
From Table I, it is straightforward to calculate the

tangles and 3-tangle for any ASD. Because of the LU
equivalence between a state and its ASD, a state
and its ASD have the same tangles, 3-tangle. For
example, the ASD of the W state is (1/

√
3)(|000〉+
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TABLE I. τAB, τAC , and τBC for ASD

τAB = 4λ2
0λ

2
3 = 4J3

τAC = 4λ2
0λ

2
2 = 4J2

τBC = 4|λ1λ4e
iφ − λ2λ3|

2 = 4J1

τABC = 4λ2
0λ

2
4 = 4J4

|101〉+ |110〉). From Table 1, we conclude that the

tangles of the W state τAB = τAC = τBC =
4

9
, and

the 3-tangle τABC vanishes.
For ASD, Aćın et al. proposed five LU invariants

Ji, i = 1, 2, 3, 4, 5, where J1 = |λ1λ4eiφ−λ2λ3|2, and
Ji = (λ0λi)

2 for i = 2, 3, 4 [8, 9]. Thus, for ASD, the
tangles and 3-tangle in Eqs. (9, 10, 11, 8) can be
rewritten in terms of LU invariants Ji (see Table I),

τAB = 4J3, (12)

τAC = 4J2, (13)

τBC = 4J1, (14)

τABC = 4J4. (15)

VON NEUMANN ENTROPY FOR ASD AND

A RELATION BETWEEN TANGLES AND

VON NEUMANN ENTROPY

von Neumann entropy for ASD

von Neumann entropy is defined as

S(ρ) = −
∑

ηi ln ηi, (16)

where ηi ≥ 0 are the eigenvalues of ρ, and
∑

i ηi = 1.
Note that 0 ln 0 = 0. Via ASD, it is easy to verify
that

S(ρA) = S(ρBC), (17)

S(ρB) = S(ρAC), (18)

S(ρC) = S(ρAB). (19)

It is well known that the eigenvalues of ρ is just
the roots of the characteristic polynomial of ρ . A
tedious calculation derives the characteristic polyno-
mials of the reduced density operators ρµ, µ = A, B,

C, which are X2−X+αµ, where αµ is just the sum
of tangles and 3-tangle, ref. Table II. Thus, we es-
tablish a relation among the entanglement measures:
the von Neumann entropy, tangle and 3-tangle.
From results in Table I and via ASD, a calculation

yields Table II, in which abbreviation CP stands for
the characteristic polynomial of the reduced density
operator, ρµ.

TABLE II. S(ρµ) for ASD

µ RDO CP of ρµ αµ

A ρA X2 −X + αA αA = J2 + J3 + J4

= τAB+τAC+τABC

4

=
τA(BC)

4

B ρB X2 −X + αB αB = J1 + J3 + J4

= τAB+τBC+τABC

4

=
τB(AC)

4

C ρC X2 −X + αC αC = J1 + J2 + J4

= τAC+τBC+τABC

4

=
τC(AB)

4

In Table II, the notation τA(BC) stands for the
tangle between a qubit A and a qubit pair BC, where
the qubit pair BC is considered a single object [13].

Let η
(1)
µ and η

(2)
µ be the two eigenvalues of ρµ. We

have

η(1)µ =
1+

√
1−4αµ

2 , (20)

η(2)µ =
1−

√
1−4αµ

2 . (21)

Then, from Eq. (16), one can see that

S(ρµ) = −(η(1)µ ln η(1)µ + η(2)µ ln η(2)µ ), (22)

where µ ∈ {A,B,C} and 0 ≤ αµ ≤ 1/4.

Equation (22) and Table II reveal a relation
among tangles, 3-tangle and von Neumann entropy .
In other words, tangles, 3-tangle, and von Neumann
entropy for any pure three-qubit state must satisfy
Eq. (22). See Table III for the GHZ state, the W
state, as well as other states. We will explore the
relation for details below.
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For µ ∈ {A,B,C}, the derivative of the von Neu-
mann entropy S(ρµ) with respect to αµ is given by

(S(ρµ))
′
αµ

= − 1
√

1− 4αµ

ln
1−

√

1− 4αµ

1 +
√

1− 4αµ

(23)

S(ρµ))
′
αµ

> 0 when 0 < αµ < 1/4. Hence, S(ρµ)
increases monotonically as αµ increases. Recall that
0 ≤ αµ ≤ 1/4. Thus, 0 ≤ S(ρµ) ≤ ln 2, and S(ρµ) =
ln 2 iff αµ = 1/4, and S(ρµ) = 0 iff αµ = 0. This
means that the maximal von Neumann entropy for
one particle ρµ is ln 2.

For the GHZ state, αµ = 1
4 and S(ρµ) = ln 2; and

for the W state, αµ = 2
9 and S(ρµ) = 3 ln 3−2 ln 2

3 .
Thus, for three qubits, the GHZ state has the max-
imal von Neumann entropy for any kind of the re-
duced density operator ρµ.

Relation between tangles and von Neumann

entropy

Proposition 1. For any pure state of three qubits,
two different types of tangles are equal iff the corre-
sponding the von Neumann entropy are equal. That
is,

(1) S(ρAC) = S(ρBC) iff τAC = τBC ,

(2) S(ρAB) = S(ρBC) iff τAB = τBC ,

(3) S(ρAB) = S(ρAC) iff τAB = τAC .

Clearly, S(ρAB) = S(ρAC) = S(ρBC) iff τAB =
τAC = τBC (see Table III).

Let uvw and xyz be two different three-character
strings from the set {ABC,BAC,CAB}. Then, also
τu(vw) = τx(yz) iff S(ρu) = S(ρx).
Proof of (1): If τAC = τBC , then from Table II,

αA = αB, and then S(ρA) = S(ρB), which leads to
S(ρBC) = S(ρAC) from Eqs. (17 – 18). Conversely,
if S(ρAC) = S(ρBC), then S(ρB) = S(ρA), then
αB = αA because S(ρ) is strictly increasing, and
then τAC = τBC from Table II. Similarly, claims (2)
and (3) also hold.

Proposition 2. For any pure state of three qubits,
two different types of tangles satisfy τuv > τxy iff
the corresponding the von Neumann entropy satisfy
S(ρuv) < S(ρxy). That is,

(1) τAC > τBC iff S(ρAC) < S(ρBC),

(2) τAB > τBC iff S(ρAB) < S(ρBC),

(3) τAB > τAC iff S(ρAB) < S(ρAC).

Let uvw and xyz be two different three-character
strings from the set {ABC,BAC,CAB}. Then, also
τu(vw) > τx(yz) iff S(ρu) > S(ρx).
Proof of (1): If τAC > τBC , then αA > αB from

Table II, and then S(ρA) > S(ρB), i.e S(ρBC) >
S(ρAC), because S(ρ) is strictly increasing. Con-
versely, if S(ρAC) < S(ρBC), i.e. S(ρB) < S(ρA),
then αB < αA because S(ρ) is strictly increasing,
and then τAC > τBC . Similarly, claims (2) and (3)
also hold.

Next, we study the relation between the difference
of two tangles and the difference of the correspond-
ing von Neumann entropy s. Using the differential
Mean Value theorem, we have

S(ρA)− S(ρB) = (S(ρµ))
′
αµ

(ξ1)(αA − αB) (24)

S(ρA)− S(ρC) = (S(ρµ))
′
αµ

(ξ2)(αA − αC) (25)

S(ρB)− S(ρC) = (S(ρµ))
′
αµ

(ξ3)(αB − αC) (26)

From Eq. (23), we have (S(ρµ))
′
αµ

(ξi) > 0, i =
1, 2, 3. Clearly, we can also use Eqs. (24, 25, 26)
to prove Propositions 1 and 2. We next calculate
S(ρµ))

′
αµ

using the second order Taylor expansion
of ln(1 ± x),

(S(ρµ))
′
αµ

= − 1
√

1− 4αµ

[ln(1 −
√

1− 4αµ)− ln(1 +
√

1− 4αµ)]

≈ − 1
√

1− 4αµ

×

[(−
√

1− 4αµ − 1− 4αµ

2
)− (

√

1− 4αµ − 1− 4αµ

2
)]

= 2.

Therefore, (S(ρµ))
′
αµ

(ξi) ≈ 2. Via Eqs. (24, 25,
26) we arrive at the following Proposition.

Proposition 3. For any pure state of three qubits,
the difference of two tangles is approximately twice
as large as the difference of the corresponding von
Neumann entropy . We further explain this in de-
tails below.

Let different uvw and xyz belong to
{ABC,BAC,CAB}. Then,

τu(vw) − τx(yz) = τyz − τvw ≈ 2[S(ρvw)− S(ρyz)].

That is,

τA(BC) − τB(AC) = τAC − τBC ≈ 2[S(ρBC)− S(ρAC)],

τA(BC) − τC(AB) = τAB − τBC ≈ 2[S(ρBC)− S(ρAB)],

τB(AC) − τC(AB) = τAB − τAC ≈ 2[S(ρAC)− S(ρAB)].
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Relation between the von Neumann entropy

and Aćın et al.’s LU invariants

It is well known that LU invariants are consid-
ered as entanglement measure [8, 9, 25]. So far, no
one discusses the relations between LU invariants (as
measures) and other entanglement measures. Here,
we establish the relation between von Neumann en-
tropy and LU invariants (as entanglement measure)
Ji, i = 1, 2, 3, 4. From Eq. (22) and Table II, we can
write the von Neumann entropy with Aćın et al.’s
LU invariants Ji, i = 1, 2, 3, 4. Thus, we have the
following immediate results.
(1). For any pure state of three qubits, two dif-

ferent types of Aćın et al.’s LU invariants are equal
iff the corresponding the von Neumann entropy are
equal. That is, S(ρA) = S(ρB) iff J2 = J1;
S(ρA) = S(ρC) iff J3 = J1; S(ρB) = S(ρC) iff
J3 = J2.
(2). S(ρA) > S(ρB) iff J2 > J1; S(ρA) > S(ρC)

iff J3 > J1; S(ρB) > S(ρC) iff J3 > J2.
Via Eqs. (24, 25, 26) and (S(ρµ))

′
αµ

(ξi) ≈ 2, then
we obtain the following.
(3). For any pure state of three qubits, the differ-

ence of two von Neumann entropy is approximately
twice as large as the difference of the corresponding
Aćın et al.’s LU invariants.

S(ρA)− S(ρB) ≈ 2(J2 − J1) (27)

S(ρA)− S(ρC) ≈ 2(J3 − J1) (28)

S(ρB)− S(ρC) ≈ 2(J3 − J2) (29)

RELATION AMONG TANGLE, 3-TANGLE,

AND VON NEUMANN ENTROPY

Equation (22) can be reduced to

S(ρµ) = −[η(1)µ ln(1 +
√

1− 4αµ)

+η(2)µ ln(1−
√

1− 4αµ)− ln 2]. (30)

Then by the second order Taylor expansion of ln(1±
x), we approximate S(ρµ) as follows,

S(ρµ) ≈ −[η(1)µ (
√

1− 4αµ − 1− 4αµ

2
)

+η(2)µ (−
√

1− 4αµ − 1− 4αµ

2
)− ln 2]

= ln 2− 1

2
+ 2αµ, (31)

where µ ∈ {A,B,C}. From Eq. ( 31), we obtain the
following relation among tangle, 3-tangle, and the

von Neumann entropy :

2S(ρA) ≈ 2 ln 2− 1 + τA(BC)

= 2 ln 2− 1 + τAB + τAC + τABC ,

2S(ρB) ≈ 2 ln 2− 1 + τB(AC)

= 2 ln 2− 1 + τAB + τBC + τABC ,

2S(ρC) ≈ 2 ln 2− 1 + τC(AB)

= 2 ln 2− 1 + τAC + τBC + τABC .

The states in Table III satisfy the above relations.
The above relations can help us find the states which
satisfy special requirements for tangle, 3-tangle, and
von Neumann entropy, or the states of which tangle,
3-tangle, and von Neumann entropy are as big as
possible. For example, for the state |κ〉 in Table III,
S(ρA) = 0.687, τAB = τAC = 4/9, and τABC =
8/81.
Next, we demonstrate how to use the above rela-

tion to explore properties of tangle, 3-tangle, and
von Neumann entropy. Let S(ρA) = ln 2 (maxi-
mum). Then, tangles τAB and τAC , and 3-tangle
τABC must satisfy the following.

τAB + τAC + τABC ≈ 1. (32)

For example, if τABC = 1, then τAB and τAC

vanish; if τABC = 1/2, then τAB + τAC = 1/2.

RELATION AMONG THE AVERAGE

TANGLE, THE AVERAGE VON NEUMANN

ENTROPY, AND 3-TANGLE

Lots of efforts have contributed to investigate the
the average tangle [3, 18] and the average von Neu-
mann entropy [23]. So far, no one discusses the re-
lation among them. In this subsection, we establish
the relation.

Definition for the average tangle

Let A(ψ) be the average tangles for the state |ψ〉.
Then,

A(ψ) =
τAB + τAC + τBC

3
. (33)

We explain how to calculate the average tangle
A. First, take partial traces over qubit A (resp. B
and C) to get the reduced density operators ρBC

(resp. ρAC , and ρAB), then by the definition of the
tangle in Eq. (2) calculate the tangle τAB (resp.
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τAC , and τBC) for the reduced density operator ρAB

(resp. ρAC , and ρBC). Finally make the average of
the tangles τAB, τAC , and τBC to get the average
tangle A.
One can see that A = 0 for the GHZ state and

A = 4/9 for the W state. It is known that the W
state has the maximal average tangles A = 4/9 [3].
Thus, 0 ≤ A ≤ 4/9.

Definition for the average von Neumann entropy

Let m(ψ) be the average of the von Neumann en-
tropy of all the reduced density operators for the
state |ψ〉. Then,

m(ψ) =
S(ρA) + S(ρB) + S(ρC)

3
. (34)

We explain how to calculate the average von Neu-
mann entropy m. First, take partial traces over
qubits A and B (resp. A and C, and B and C) to
get the reduced density operators ρC (resp. ρB, and
ρA), then calculate the von Neumann entropy S(ρA)
(resp. S(ρB), and S(ρC)) of ρA(resp. ρB, and ρC)
by the definition in Eq. (16). Finally, make the aver-
age of S(ρA), S(ρB), and S(ρC)) to get the average
von Neumann entropy m.
It is easy to see that the GHZ state has the maxi-

mal average von Neumann entropy of ln 2, while the
W state has the average von Neumann entropy of
3 ln 3− 2 ln 2

3
.Thus, 0 ≤ m ≤ ln 2.

Relation among the average tangle, the average

von Neumann entropy, and 3-tangle

So far, no one explains why the GHZ state has
the maximal 3-tangle but vanishing tangle and con-
versely, and why the W state has the maximal av-
erage tangle but vanishing 3-tangle. We will answer
why the states GHZ and W have the opposite prop-
erties.
Using Eq. (31), the average von Neumann entropy

and the average tangle satisfy the following equation
for any pure state of three qubits.

m−A− τABC

2
≈ ln 2− 1

2
, (35)

where 0 ≤ m ≤ ln 2 and 0 ≤ A ≤ 4/9.
Eq. (35) reveals a relation among the average von

Neumann entropy m, the average tangle A, and the

3-tangle τABC . Clearly, m = ln 2, A = 4/9, τABC

= 1 don’t satisfy Eq. (35). It means that for any
state, the average von Neumann entropy, the aver-
age tangle, and 3-tangle cannot reach the maximum
simultaneously. Below, we will investigate when m
(resp. A and τABC) reaches the maximum, what
happen to other two measures.

Equation (35) implies that the value of (m − A),
i.e. the difference between the average von Neumann
entropy and the average tangle, increases linearly
with the 3-tangle τABC . For the GHZ SLOCC class,
0 < τABC ≤ 1 and almost ln 2 − 1/2 < m − A ≤
ln 2. While for other SLOCC classes, τABC = 0
and (m − A) ≈ ln 2 − 1/2. Thus, we obtain almost
ln 2 − 1/2 ≤ (m − A) ≤ ln 2 for any state of three
qubits.

The relation can help find the states which

satisfy different requirements for the average

von Neumann entropy and the average tangle

and 3-tangle.

Clearly, the requirements for the average tangle,
the average von Neumann entropy, and 3-tangle
must satisfy Eq. (35). For example, |G〉 in Table
III has A = 1/4, m = 0.56, and τABC = 1/4.

It is known that the GHZ state has vanishing tan-
gle. This means that for the GHZ state, if one of
three qubits is traced out, the corresponding reduced
density operator becomes separable. In other words,
the entanglement properties of the GHZ state are
fragile under particle losses [3]. One can use Eq.
(35) to find the states of which the average von Neu-
mann entropy, the average tangle, and 3-tangle are
big enough. Clearly, the states are genuine entan-
gled ones even losing one particle.

The relation helps understand properties of the

average tangle, 3-tangle, and the average von

Neumann entropy

We next explore when a state has the maximal
average von Neumann entropy, then what Eq. (35)
can tell us about the average tangle and the 3-tangle
for this state.

Let m = ln 2 (for example, for the GHZ state).
Then, Eq. (35) becomes

A+
τABC

2
≈ 1

2
. (36)
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Clearly, if A = 0 then τABC ≈ 1, and vice versa.
Eq. (36) tells us if a state has the maximal average
von Neumann entropy, then the average tangle and
the 3-tangle must satisfy Eq. (36).

For example, Eq. (36) tells us there are the states
with m = ln 2, τABC ≈ 1/2, and A ≈ 1/4. One can
see that these states belong to GHZ SLOCC class,
but different from the states GHZ state. The three
entanglement measures: tangle, 3-tangle, and von
Neumann entropy tell us that the states are genuine
entangled state even though one of three qubits is
traced over and have the maximal average von Neu-
mann entropy.

We next explore when a state has the maximal
3-tangle, then what Eq. (35) can tell us about the
average von Neumann entropy and the average tan-
gle for this state.

Let τABC = 1 (for example, for the GHZ state).
For the case, Eq. (35) becomes

m− ln 2 ≈ A. (37)

It is easy to see that m = ln 2 and A = 0 is the
unique solution of Eq. (37) because if m < ln 2 then
A < 0.

This explains when a state has the maximal 3-
tangle, then the state must have the maximal aver-
age von Neumann entropy and vanishing the aver-
age tangle, i.e. τµν = 0, where µν = {AB,AC,BC}.
This is why the GHZ state has the maximal 3-tangle
and the maximal average von Neumann entropy but
vanishing tangle τµν , where µν = {AB,AC,BC}.
We next explore when a state has the maximal

average tangles of 4/9, then what Eq. (35) can tell
us about the average von Neumann entropy and the
3-tangle for this state.

Let A = 4/9 (for example, for the W state). Via
Eq. (35), one can know that max τABC ≈ 1/9 when
m = ln 2 and minm ≈ ln 2 − 1/18 = 0.637 59 when
τABC = 0. It means the average von Neumann en-
tropy almost is maximal.

This explains when a state has the maximal av-
erage tangle of 4/9, then the state has almost van-
ishing 3-tangle and the almost maximal average von
Neumann entropy. This is why the W state has the
maximal average tangles but vanishing 3-tangle.

TANGLES AND VON NEUMANN ENTROPY

FOR GHZ SLOCC CLASS

It is well known that an ASD state belongs to
the GHZ SLOCC class iff λ0λ4 6= 0 [29, 30]. So,
in this section we assume λ0λ4 6= 0. We first dis-
cuss the properties of tangle. It is known that if
τµν , vanishes, then ρµν is separable, where µν ∈
{AB,AC,BC}. From Table I, one can see that the
tangles for the GHZ SLOCC class have the following
properties.

Property (1). 0 ≤ τAB, τAC , τBC < 1.

Property (2).

(2.1). τAB = 0 iff λ3 = 0.

(2.2). τAC = 0 iff λ2 = 0.

(2.3). τBC = 0 iff λ1λ4 = λ2λ3 6= 0 and φ = 0 or
λ1 = 0 and λ2λ3 = 0.

Property (3). When only one of τAB, τAC , and
τBC vanishes,

(3.1). τAB = 0 and τACτBC 6= 0 iff λ3 = 0 and
λ1λ2 6= 0.

(3.2). τAC = 0 and τABτBC 6= 0 iff λ2 = 0 and
λ1λ3 6= 0.

(3.3). τBC = 0 and τABτAC 6= 0 iff λ1λ4 =
λ2λ3 6= 0 and φ = 0.

Proof of (3.3): Clearly, τABτAC 6= 0 iff λ2λ3 6= 0.

If τBC = 0, then from Table I, λ1λ4e
iφ − λ2λ3 = 0,

i.e. λ1λ4 = λ2λ3 6= 0 and φ = 0. Conversely, if
λ1λ4 = λ2λ3 6= 0 and φ = 0, then τABτAC 6= 0 and
τBC = 0.

Property (4). When only two of τAB, τAC , and
τBC vanish,

(4.1). τAB = τAC = 0 and τBC 6= 0 iff λ2 = λ3 =
0 and λ1 6= 0.

(4.2). τAB = τBC = 0 and τAC 6= 0 iff λ1 = λ3 =
0 and λ2 6= 0.

(4.3). τAC = τBC = 0 and τAB 6= 0 iff λ1 = λ2 =
0 and λ3 6= 0.

Property (5). When all τAB , τAC , and τBC van-
ish,

τAB = τAC = τBC = 0 iff λ1 = λ2 = λ3 = 0,
i.e. the state is of the form λ0|000〉 + λ4|111〉. For
instance, the GHZ state.

Property (6). When none of the tangles vanishes,
τABτACτBC > 0 iff (i). λ2λ3 6= 0 and λ1 = 0, or
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(ii). λ1λ2λ3(λ1λ4 − λ2λ3) 6= 0 and φ = 0, or (iii).
λ1λ2λ3 6= 0 and φ 6= 0.

The GHZ state is the unique one under ASD

which has the maximal von Neumann entropy .

In Appendix B, we show that for any ASD state
of three qubits, if S(ρµ) = ln 2, then the state must
be GHZ. It means that the GHZ state is the unique
state of three qubits under ASD such that S(ρµ)
achieves the maximal value. Thus, for any state of
GHZ LU class, S(ρµ) = ln 2, where µ ∈ {A,B,C}.

TANGLE AND VON NEUMANN ENTROPY

FOR W SLOCC CLASS

Each state of the W SLOCC class is of the follow-
ing form [29, 30],

|ψ〉 = λ0|000〉+λ1eiφ|100〉+λ2|101〉+λ3|110〉, (38)

where λ0λ2λ3 6= 0 and λ4 = 0.

Tangle for the W SLOCC class

From Table I, we obtain tangles for the W SLOCC
class,

τAB = 4λ20λ
2
3,

τAC = 4λ20λ
2
2,

τBC = 4λ22λ
2
3,

τABC = 0.

Clearly, 0 < τAB, τAC , τBC < 1.

The W state is the unique state of the W

SLOCC class under ASD whose average von

Neumann entropy is the maximal within the W

SLOCC class.

Next, we show that the average von Neumann en-
tropy of the W state is maximal only within the W
SLOCC class. From Table II, for W SLOCC class,
one can see that

αA = λ20(λ
2
2 + λ23), (39)

αB = λ23(λ
2
0 + λ22), (40)

αC = λ22(λ
2
0 + λ23). (41)

Let µνυ be a string from the set
{ABC,BAC,CAB}. When αµ = 1/4, S(ρµ) = ln 2,
S(ρν) < ln 2 and S(ρυ) < ln 2. It means that
the von Neumann entropy of the W state is not
maximal even within the W SLOCC class. We next
show that the average von Neumann entropy of the
W state is maximal within the W SLOCC class.

In Appendix C, we derive the extrema of m
with the constraint

∑3
i=0 λ

2
i = 1. A straightfor-

ward and tedious calculation yields that m has the
extrema 3 ln 3−2 ln 2

3 at λ1 = 0 and λ0 = λ2 = λ3 =

1/
√
3, which is just the ASD of the W state, and the

extrema is the maximum. Therefore, the W state is
the unique state under ASD of which the average
von Neumann entropy of all kinds of the reduced
density operators is maximal within the W SLOCC
class, although the W state does not have the max-
imal average of the von Neumann entropy for all
states of three qubits.

THE STATES FOR WHICH THE TANGLE,

CONCURRENCE, 3-TANGLE AND VON

NEUMANN ENTROPY DON’T VANISH

It is known that τABC vanishes for the SLOCC
classes W, A-BC, B-AC, C-AB, and A-B-C and the
tangles τAB ≥ 0, τAC ≥ 0, and τBC ≥ 0 for the
GHZ SLOCC class. Next, we present all the states
for which the tangles, concurrence, 3-tangle and von
Neumann entropy do not vanish. We know these
states can only come from the GHZ SLOCC class.
For these states, when one of three qubits is traced
out, their reduced density operators are entangled
while the reduced density operator of the GHZ state
is separable. It seems that the states are more en-
tangled than the GHZ state under tangle and the
W state under 3-tangle, respectively. Note that the
tangle is the square of the concurrence. Therefore,
if a tangle does not vanish, the concurrence does
not either, and hence, we do not need to discuss the
concurrence separately.

Therefore, if a state satisfies τABτACτBC 6= 0,
S(ρA)S(ρB)S(ρC) 6= 0, and τABC 6= 0, then the
state belongs to the GHZ SLOCC class and it falls
in one of the three cases: (i). λ2λ3 6= 0 and λ1 = 0,
i.e., the state is

|̟1〉 = λ0|000〉+ λ2|101〉+ λ3|110〉+ λ4|111〉, (42)

or (ii). λ1λ2λ3(λ1λ4−λ2λ3) 6= 0 and φ = 0, i.e., the
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state is

|̟2〉 = λ0|000〉+λ1|100〉+λ2|101〉+λ3|110〉+λ4|111〉,
(43)

where λ1λ4 6= λ2λ3, or (iii). λ1λ2λ3 6= 0 and φ 6= 0,
i.e., the state is

|̟3〉 = λ0|000〉+ λ1e
iφ|100〉+ λ2|101〉

+λ3|110〉+ λ4|111〉. (44)

Thus, all states with non-vanishing tangles, 3-
tangle, and von Neumann entropy can be written
in the form of |̟1〉, |̟2〉 or |̟3〉 with suitable λ’s.
For example, the following states in the form of |̟1〉.

|κ〉 = 2

3
|000〉+ 1

2
|101〉+ 1

2
|110〉+

√
2

6
|111〉,(45)

|G〉 = 1

2
(|000〉+ |101〉+ |110〉+ |111〉), (46)

|ϑ〉 =
√
5

10
(3|000〉+ |101〉+ |110〉+ 3|111〉). (47)

See Table III for details. Furthermore, there ex-
ist other interesting states approximating the tangle
and 3-tangle of the W state and the GHZ state.

(a). Let λ2 = λ3 = λ0 in |̟1〉, we obtain a new
state

|ω〉 = λ0|000〉+ λ0|101〉+ λ0|110〉+ λ4|111〉.

The tangles are

τAB = τAC = τBC = A = 4λ40 =
4

9
(1− λ24)

2. (48)

From Eq. (48), we know that when λ4 is small
enough, then the tangles, the average tangle, 3-
tangle, and von Neumann entropy of |ω〉 are almost
equal to those of the W state.

(b). Let λ4 = λ0, and let λ3 = λ2, we obtain a
new state

|κ〉 = λ0|000〉+ λ2|101〉+ λ2|110〉+ λ0|111〉.

The tangles and 3-tangle are given by

τAB = τAC = 4λ20λ
2
2, τBC = 4λ42, τABC = 4λ40.

(49)
For |κ〉, we have limλ2→0 S(ρµ) = ln 2, where µ ∈

{A,B,C}, limλ2→0 τABC = 1, and limλ2→0 τµυ = 0,
where µυ ∈ {AB,AC,BC}. Thus, when λ2 is small
enough, then the tangles, the average tangle, 3-
tangle, and von Neumann entropy of |κ〉 are almost

equal to those of the GHZ state. See |ϑ〉 in Table
III.

Next, we demonstrate that tangles τAB, τAC , and
τBC with τABτACτBC 6= 0 determine a unique state
of the form of |̟1〉. In other words, the LU invari-
ants {Ji|i = 1, 2, 3} with J1J2J3 6= 0 can determine
a unique state of the form of |̟1〉.

Suppose the tangles τAB = 4λ20λ
2
3 = p4, τAC =

4λ20λ
2
2 = q4, and τBC = 4λ22λ

2
3 = r4, where pqr 6= 0.

It is known that p4 + q4 + r4 < 4/3 from the CKW
inequality τAB + τAC + τBC < 4/3 (see Appendix
B and also [3]). The unique state corresponding to
the tangles is

1√
2

pq

r
|000〉+ 1√

2

qr

p
|101〉+ 1√

2

pr

q
|110〉+ λ4|111〉,

where λ24 = 1− 1
2 ((

pq
r
)2 + ( qr

p
)2 + (pr

q
)2).

On the other hand, the five LU invariants {Ji|i =
1, . . . 5} cannot uniquely determine a state of three
qubits. For instance, for |̟1〉, from that λ20 +
∑4

i=2 λ
2
i = 1 we can derive J4 =

√

J2J3/J1 −
(J2J3/J1 + J2 + J3). That is, J4 is a function of
J1, J2, and J3, which explains why {Ji|i = 1, · · · , 5}
cannot determine a unique state of three qubits [9].

TABLE III. Tangle, 3-tangle and von Neumann entropy
for some states (δ = 3 ln 3−2 ln 2

3
= 0.63651)

State τAB τAC τBC S(ρA) S(ρB) S(ρC) τABC

GHZ 0 0 0 ln 2 ln 2 ln 2 1

W 4

9

4

9

4

9
δ δ δ 0

|G〉 1

4

1

4

1

4
0.56 0.56 0.56 1

4

|κ〉 4

9

4

9

1

4
0.687 0.587 0.587 8

81

|ϑ〉 9

100

9

100

1

100
0.688 0.647 0.647 81

100
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CKW INEQUALITIES FOR GHZ SLOCC

CLASS

For GHZ SLOCC class, λ0λ4 6= 0, we have the fol-
lowing CKW inequalities. The arguments for CKW
inequalities are summarized in Appendix D.

1. If λ1 = λ2 = λ3 = 0, then τAB + τAC + τBC =
0. This is the generated GHZ state p|000〉 +
q|111〉.

2. If λ1 = λ2 = 0, and λ3 6= 0, then τAB + τAC +
τBC < 1.

3. If λ1 = λ3 = 0, and λ2 6= 0, then τAB +
τAC + τBC < 1.

4. If λ2 = λ3 = 0, and λ1 6= 0, then τAB + τAC +
τBC < 1.

5. If λ1 = 0, and λ2λ3 6= 0, then τAB + τAC +
τBC < 4

3 .

6. If λ2 = 0, and λ1λ3 6= 0, then τAB + τAC +
τBC ≤ 1

2 .

7. If λ3 = 0, and λ1λ2 6= 0, then τAB + τAC +
τBC ≤ 1

2 .

8. If λ1λ2λ3 6= 0, then τAB + τAC + τBC ≤ 1.

SUMMARY

In this paper, we have given a general formula of
the tangles for pure states of three qubits, which are
LU polynomial invariants of degree 4. We derived
tangles and von Neumann entropy for ASD, and pre-
sented a relation among tangles, 3-tangle, and von
Neumann entropy , as well as a relation among the
average tangle, the average von Neumann entropy ,
and 3-tangle.

Via the von Neumann entropy for ASD, we indi-
cated that the GHZ state is the unique state of three
qubits under ASD that has the maximal von Neu-
mann entropy for all kinds of the reduced density
operators, while the average von Neumann entropy
of the W state is maximal only within the W SLOCC
class.

It is known that the tangles of the GHZ state and
the 3-tangle of the W state would vanish. We ob-
tained all states of three qubits with non-vanishing

tangle, concurrence, 3-tangle and von Neumann en-
tropy . For example, |ϑ〉 is such a state. It means
that when one of the three qubits is traced out, the
remaining state from |ϑ〉 is still entangled, while the
remaining state of the GHZ state becomes separable.
From Table III, it is shown that S(ρµ) of |ϑ〉 is big-
ger than that of the W state, where µ ∈ {A,B,C}.
Therefore, state |ϑ〉 seems to be more entangled than
the GHZ state under tangle and more tangled than
the W state under von Neumann entropy and 3-
tangle.

APPENDIX A. CALCULATION OF

TANGLES.

(A) Calculating τAB

From the definition of τAB in Eq. (2), we ob-
tain the characteristic polynomial (CP) of ρABρAB

as follows,

(X2 −∆X +Θ2)X2, (A1)

where

Θ = |(c0c7 − c2c5)
2 + (c1c6 − c3c4)

2

−2(c0c7 + c2c5)(c1c6 + c3c4)

+4c0c3c5c6 + 4c1c2c4c7|, (A2)

∆ = 2
(

|c0|2 + |c1|2
)(

|c6|2 + |c7|2
)

+2
(

|c2|2 + |c3|2
)(

|c4|2 + |c5|2
)

+2 |c0c∗6 + c1c
∗
7|

2
+ 2 |c2c∗4 + c3c

∗
5|

2

−4 ∗ re((c0c∗2 + c1c
∗
3) (c6c

∗
4 + c7c

∗
5))

−4 ∗ re((c0c∗4 + c1c
∗
5) (c6c

∗
2 + c7c

∗
3)), (A3)

and re(c) indicates the real part of a complex num-
ber c. Moreover, one can find

4Θ = τABC . (A4)

Hence, the eigenvalues of ρABρAB are 0, 0, and
∆±

√
∆2−4Θ2

2 . It is known that ρABρAB has only real
and non-negative eigenvalues [13]. Then, by the def-
inition of τAB in Eq. (2), we obtain

τAB =





√

∆+
√
∆2 − 4Θ2

2
−

√

∆−
√
∆2 − 4Θ2

2





2

= ∆− 2Θ

= ∆− τABC

2
. (A5)
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(B) Calculating τAC

Similarly, we can obtain the CP of ρACρAC as
follows,

X2(X2 − ΦX +Υ2), (A6)

where

Υ = Θ, (A7)

Φ = 2
(

|c0|2 + |c2|2
)(

|c5|2 + |c7|2
)

+2
(

|c1|2 + |c3|2
)(

|c4|2 + |c6|2
)

+2 |c0c∗5 + c2c
∗
7|2 + 2 |c1c∗4 + c3c

∗
6|2

−4 ∗ re((c0c∗1 + c2c
∗
3) (c5c

∗
4 + c7c

∗
6))

−4 ∗ re((c0c∗4 + c2c
∗
6) (c5c

∗
1 + c7c

∗
3)).

(A8)

Then, we obtain

τAC = Φ− 2Υ = Φ− τABC

2
. (A9)

(C) Calculating τBC

Similarly, the characteristic polynomial of
ρBCρBC is given by

X2(X2 −ΨX +̥
2), (A10)

where

̥ = Θ, (A11)

Ψ = 2
(

|c0|2 + |c4|2
)(

|c3|2 + |c7|2
)

+2
(

|c1|2 + |c5|2
)(

|c2|2 + |c6|2
)

+2 |c0c∗3 + c4c
∗
7|2 + 2 |c1c∗2 + c5c

∗
6|2

−4 ∗ re((c0c∗1 + c4c
∗
5) (c3c

∗
2 + c7c

∗
6))

−4 ∗ re((c0c∗2 + c4c
∗
6) (c3c

∗
1 + c7c

∗
5)).(A12)

Then, we obtain

τBC = Ψ− 2̥ = Ψ− τABC

2
. (A13)

(D) By solving CKW equations [13]

τAB + τAC + τABC = τA(BC), (A14)

τAB + τBC + τABC = τB(AC), (A15)

τAC + τBC + τABC = τC(AB), (A16)

where τA(BC) = 4detρA, τB(AC) = 4det ρB, and
τC(AB) = 4detρC , we obtain

τAB =
τA(BC)+τB(AC)−τC(AB)−τABC

2 , (A17)

τAC =
τA(BC)−τB(AC)+τC(AB)−τABC

2 , (A18)

τBC =
−τA(BC)+τB(AC)+τC(AB)−τABC

2 . (A19)

When the 3-tangle τABC is zero, we obtain the fol-
lowing,

∆ =
τA(BC) + τB(AC) − τC(AB)

2
, (A20)

Φ =
τA(BC) − τB(AC) + τC(AB)

2
, (A21)

Ψ =
−τA(BC) + τB(AC) + τC(AB)

2
. (A22)

Obviously, ∆, Φ, Ψ are simple polynomial of de-
gree 4 although it is hard to compute det ρA, det ρB ,
and det ρC .

APPENDIX B THE GHZ STATE IS UNIQUE

STATE OF THREE QUBITS WHICH HAS

MAXIMALLY VON NEUMANN ENTROPY

Claim: If a state of three qubits possesses the max-
imal von Neumann entropy , S(ρµ) = ln 2, where
µ ∈ {A,B,C}, then the state must be GHZ.

Proof: Clearly, S(ρµ) increases strictly monoton-
ically as αµ increases. Therefore, S(ρµ) = ln 2 iff
αµ = 1/4. Thus, we have the following equations

αA = J2 + J3 + J4 = 1/4, (B1)

αB = J1 + J3 + J4 = 1/4, (B2)

αC = J1 + J2 + J4 = 1/4, (B3)

and we obtain

J1 = J2 = J3. (B4)

Using Tables I and II, equation (B1) leads to

λ40 − λ20(1− λ21) + 1/4 = 0. (B5)

From (B5), we have a solution

λ1 = 0, (B6)

λ0 = 1/
√
2, (B7)

λ22 + λ23 + λ24 = 1/2. (B8)

Using J2 = J3 in Eq. (B4), we have

λ2 = λ3. (B9)
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From that J1 = J2 in Eq. (B4), we obtain

λ2λ3 = λ0λ2. (B10)

There are two scenarios for λ2: λ2 6= 0 and λ2 = 0.
The first scenario is impossible since if λ2 6= 0, then
from Eqs. (B7, B9, B10), we obtain

λ0 = λ2 = λ3 = 1/
√
2. (B11)

From Eq. (B8), we know clearly that Eq. (B11)
cannot hold. Therefore, λ2 must be zero.
With λ2 = 0, from Eqs. (B8, B9) we obtain

λ2 = λ3 = 0, (B12)

λ4 = 1/
√
2. (B13)

The state satisfying Eqs. (B6, B7, B12, B13) is just
GHZ.

APPENDIX C THE EXTREMA FOR W

SLOCC CLASS

We next find an extrema of m with the constraint
of
∑3

i=0 λ
2
i = 1 for the W SLOCC class. For states

of W SLOCC class, αA = λ20(λ
2
2+λ

2
3), αB = λ23(λ

2
0+

λ22), and αC = λ22(λ
2
0 + λ23)

We define

F =
1

3
(S(ρA)+S(ρB)+S(ρC))+ℓ(

3
∑

i=0

λ2i−1), (C1)

where ℓ is the Lagrange multiplier. In light of the
constrained extreme theorem, we need to solve the
equations ∂F

∂λi
= 0, for i = 0, 1, 2, 3, and ∂F

∂ℓ
= 0 to

find the extrema. From ∂F
∂λ1

= 2ℓλ1 = 0, we obtain
λ1 = 0. Then, F is reduced to

F =
1

3
(S(ρA)+S(ρB)+S(ρC))+ℓ(λ

2
0+λ

2
2+λ

2
3−1).

(C2)
From ∂F

∂ℓ
= 0 we obtain

λ20 + λ22 + λ23 = 1. (C3)

From Eq. (C2), we obtain

∂F

∂λ0
=

1

3

[

∂S(ρA)

∂λ0
+
∂S(ρB)

∂λ0
+
∂S(ρC)

∂λ0

]

+ 2ℓλ0,

(C4)
where

∂S(ρµ)

∂λ0
=
dS(ρµ)

dαµ

∂αµ

∂λ0
, µ ∈ {A,B,C}. (C5)

The derivative of S(ρA) is

dS(ρA)

dαA

= −
[

dη
(1)
A

dαA

(1 + ln η
(1)
A ) +

dη
(2)
A

dαA

(1 + ln η
(2)
A )

]

,

(C6)
where

dη
(1)
A

dαA

= − 1√
1− 4αA

,
dη

(2)
A

dαA

=
1√

1− 4αA

. (C7)

Thus,

dS(ρA)

dαA

= −
[

−1 + ln η
(1)
A√

1− 4αA

+
1 + ln η

(2)
A√

1− 4αA

]

= − 1√
1− 4αA

ln
η
(2)
A

η
(1)
A

. (C8)

Similarly, we obtain

dS(ρB)

dαB

= − 1√
1− 4αB

ln
η
(2)
B

η
(1)
B

, (C9)

dS(ρC)

dαC

= − 1√
1− 4αC

ln
η
(2)
C

η
(1)
C

. (C10)

From Eqs. (C5, C8, C9, C10), we obtain

∂S(ρA)

∂λ0
= −2λ0(λ

2
2 + λ23)√

1− 4αA

ln
η
(2)
A

η
(1)
A

, (C11)

∂S(ρB)

∂λ0
= − 2λ0λ

2
3√

1− 4αB

ln
η
(2)
B

η
(1)
B

, (C12)

∂S(ρC)

∂λ0
= − 2λ0λ

2
2√

1− 4αC

ln
η
(2)
C

η
(1)
C

. (C13)

From Eqs. (C4, C11, C12, C13) and ∂F
∂λ0

= 0, we
obtain

ℓ =
1

3

(

λ22 + λ23√
1− 4αA

ln
η
(2)
A

η
(1)
A

+
λ23√

1− 4αB

ln
η
(2)
B

η
(1)
B

+
λ22√

1− 4αC

ln
η
(2)
C

η
(1)
C

)

. (C14)

Similarly, we consider

∂F

∂λ2
=

1

3

(

∂S(ρA)

∂λ2
+
∂S(ρB)

∂λ2
+
∂S(ρC)

∂λ2

)

+ 2ℓλ2.

(C15)
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Clearly,

∂S(ρµ)

∂λ2
=
dS(ρµ)

dαµ

∂αµ

∂λ2
, µ ∈ {A,B,C}. (C16)

From Eqs. (C8, C9, C10, C15, C16) and ∂F
∂λ2

= 0,
we obtain

ℓ =
1

3

(

λ20√
1− 4αA

ln
η
(2)
A

η
(1)
A

+
λ23√

1− 4αB

ln
η
(2)
B

η
(1)
B

+
λ20 + λ23√
1− 4αC

ln
η
(2)
C

η
(1)
C

)

. (C17)

Similarly, from ∂F
∂λ3

= 0 we obtain

ℓ =
1

3

(

λ20√
1− 4αA

ln
η
(2)
A

η
(1)
A

+
λ20 + λ22√
1− 4αB

ln
η
(2)
B

η
(1)
B

+
λ22√

1− 4αC

ln
η
(2)
C

η
(1)
C

)

. (C18)

From Eqs. (C3, C14, C17), we obtain

1− 2λ20√
1− 4αA

ln
η
(2)
A

η
(1)
A

=
1− 2λ22√
1− 4αC

ln
η
(2)
C

η
(1)
C

. (C19)

From Eqs. (C3, C14, C18), we obtain

1− 2λ20√
1− 4αA

ln
η
(2)
A

η
(1)
A

=
1− 2λ23√
1− 4αB

ln
η
(2)
B

η
(1)
B

. (C20)

From Eqs. (C3, C17, C18), we obtain

1− 2λ23√
1− 4αB

ln
η
(2)
B

η
(1)
B

=
1− 2λ22√
1− 4αC

ln
η
(2)
C

η
(1)
C

. (C21)

When λ0 = λ2 = λ3, Eqs. (C19, C20, C21)
hold. Via Eq. (C3), one can see that λ0 = λ2 =
λ3 = 1/

√
3 is an extrema of m with the constraint

∑3
i=0 λ

2
i = 1.

APPENDIX D. CKW INEQUALITIES FOR

GHZ SLOCC CLASS.

Note that for the GHZ SLOCC class, λ0λ4 6= 0.
There is also an additional constraint

∑4
i=0 λ

2
i = 1.

(A) When λ1 = λ3 = 0 and λ2 6= 0, we have

A =
4

3
(λ20λ

2
2).

Clearly,

A =
4

3
(λ20λ

2
2) ≤

4

3

(

λ20 + λ22
2

)2

=
1

3

(

1− λ24
)2
<

1

3

Similarly, we can obtain A < 1
3 for the case with

λ1 = λ2 = 0, λ3 6= 0 and the case with λ2 = λ3 =
0, λ1 6= 0.

(B) When λ1λ3 6= 0 and λ2 = 0, A is reduced to

A =
4

3
(λ20λ

2
3 + λ21λ

2
4).

In light of constrained extreme theorem, we consider
the following function

U =
4

3
(λ20λ

2
3 + λ21λ

2
4) + q(λ20 + λ21 + λ23 + λ24 − 1).

From ∂U
∂λi

= 0, obtain only one extreme λ0 = λ1 =

λ3 = λ4 = 1
2 , i.e.

1
2 (|000〉+ |100〉+ |110〉+ |111〉), at

which maxA = 1
6 .

(C) When λ1λ2 6= 0 and λ3 = 0, A is reduced to

A =
4

3
(λ20λ

2
2 + λ21λ

2
4).

The discussion is similar to (B), there is only one
extreme λ0 = λ1 = λ2 = λ4 = 1

2 , i.e. 1
2 (|000〉 +

|100〉+ |101〉+ |111〉), maxA = 1
6 .

(D) When λ1 = 0 and λ2λ3 6= 0, then

A =
4

3
(λ20λ

2
3 + λ20λ

2
2 + λ22λ

2
3).

The constraint is

λ20 + λ22 + λ23 + λ24 = 1,

where λ4 is considered as a parameter. In light of
constrained extreme theorem, for a fixed λ4, when
λ0 = λ2 = λ3, i.e., λ0|000〉 + λ0|101〉 + λ0|110〉 +
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λ4|111〉, then A has the maximum A = 4λ40 = 4
9 (1−

λ24)
2 < 4

9 .

(E) When λ1λ2λ3 6= 0, let

f =
4

3
(λ20λ

2
3 + λ20λ

2
2 + (λ1λ4 + λ2λ3)

2).

Clearly, A ≤ f . We next calculate the maximum
value of f . The constraint reads λ20+λ21+λ22+λ23 +
λ24 = 1. In light of the constrained extreme theorem,
we consider the function

F = f + g(λ20 + λ21 + λ22 + λ23 + λ24 − 1).

From ∂F
∂λi

= 0, i = 0, 1, 2, 3, 4, we obtain λ1 =
λ2 = λ3 = λ4 and λ0 = 0. Thus, f has the maximum
value 1

3 . However, we require that λ0 do not vanish.

From
∑4

i=0 λ
2
i = 1, we get λ20+4λ24 = 1. Thus, when

λ1 = λ2 = λ3 = λ4, A = 4
3 ((2λ

2
4))(1 − 2λ24) < 1/3.

Clearly, limλ0→0A = 1
3 . For example, when λ20 =

1
100 , then A = 3333

10 000 ≈ 1
3 .
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[9] A. Aćın et al., J. Phys. A: Math. Theor. 34, 6725

(2001).
[10] M. Grassl et al., Phys. Rev. A 58 , 1833 (1998).
[11] B. Kraus, PRL 104, 020504 (2010).
[12] B. Kraus, Phys. Rev. A 82, 032121 (2010).
[13] V. Coffman et al., Phys.Rev.A 61,052306,2000.

[14] C. Soo and C.C. Y. Lin, I. J. Quantum Info. 2, 183-
200 (2004).

[15] A. B. Kallin et al., Phys. Rev. Lett. 103, 117203
(2009).

[16] Wen-Long You et al., Phys. Rev. B 86, 094412
(2012).

[17] P. Koscik, Phys. Lett. A 379, 293 (2015).
[18] Gilad Gour, and Nolan R. Wallach, J. Math. Phys.

51 (11), 112201 (2010).
[19] D. N. Page, Phys. Rev. Lett. 71, 3743 (1993).
[20] Ana Alonso–Serrano and Matt Visser, Phys. Rev. A

96, 052302 (2017).
[21] K. Chen et al., Rep. Math. Phys. 58, 325-334 (2006).
[22] S. Kumar and A. Pandey, J. Phys. A: Math. Theor.

44, 445301 (2011). e-print 1105.5418.
[23] A. Mollabashi et al., Phys. Rev. Lett. 126, 081601

(2021); M. van Regemortel et al., Phys. Rev. Lett.
126, 123604 (2021); G. Styliaris et al., Phys. Rev.
Lett. 126, 030601 (2021); M. J. Gullans et al., Phys.
Rev. Lett. 125, 070606 (2020); L. Vidmar et al.,
Phys. Rev. Lett. 121, 220602 (2018); Z.-W. Liu et
al., 120, 130502 (2018); L. Vidmar et al., Phys. Rev.
Lett. 119, 220603 (2017); L. Vidmar et al., 119,
020601 (2017); L. Pastur et al., Phys. Rev. Lett.
113, 150404 (2014); S. Kumar and A. Pandey, J.
Phys. A: Math. Theor. 44, 445301 (2011); D. N.
Page, Phys. Rev. Lett. 71, 1291 (1993); A. Datta,
Phys. Rev. A81 (2010) 052312; S. Sen, Phys. Rev.
Lett. 77, 1 (1996); E. Lubkin, J. Math. Phys. 19
(1978) 1028.

[24] N. Linden, S. Popescu, and A. Sudbery, Phys. Rev.
Lett. 83, 243 (1999).

[25] A. Sudbery, J. Phys. A 34 (2001), 643-652.
[26] M.S. Leifer and N. Linden, Phys. Rev. A 69, 052304

(2004).
[27] T.-G. Zhang et al., Int. J. Theor. Phys. 52, 3020-

3025 (2013).
[28] J. Schlienz and G. Mahler, Physics Letters A

39 (1996); M. Grassl et al., Phys.Rev.A58:1833-
1839,1998; O. Viehmann, C. Eltschka, and J. Siew-
ert, Phys. Rev. A 83, 052330 (2011); A. Wong
and N. Christensen, Phys. Rev. A 63, 044301
(2001); J.-G. Luque and J.-Y. Thibon, Phys. Rev.
A 67, 042303 (2003); M. S. Leifer, N. Linden, and
A.Winter, Phys. Rev. A 69, 052304 (2004); P. Lévay,
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