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Abstract. Inspired by the classical spectral analysis of birth-death chains using orthogonal polynomials, we study
an analogous set of constructions in the context of open quantum dynamics and related walks. In such setting,
block tridiagonal matrices and matrix-valued orthogonal polynomials are the natural objects to be considered. We
recall the problems of the existence of a matrix of measures or weight matrix together with concrete calculations
of basic statistics of the walk, such as site recurrence and first passage time probabilities, with these notions being
defined in terms of a quantum trajectories formalism. The discussion concentrates on the models of quantum
Markov chains, due to S. Gudder, and on the particular class of open quantum walks, due to S. Attal et al. The
folding trick for birth-death chains on the integers is revisited in this setting together with applications of the
matrix-valued Stieltjes transform associated with the measures, thus extending recent results on the subject. We
also consider the case of non-symmetric weight matrices and explore some examples.

1. Introduction

In the classical theory of Markov chains, discrete-time birth-death chains on Z≥0 are described by a transition
probability matrix of the form

P =


r0 p0 0 0 · · ·
q1 r1 p1 0 · · ·
0 q2 r2 p2 · · ·
...

...
...

. . .
. . .

 , r0 + p0 ≤ 1, pn + rn + qn = 1, n ≥ 1.

Let {Qn(x)}n≥0 be the sequence of polynomials defined by the three-term recurrence relation

Q0(x) = 1, Q−1(x) = 0,

xQn(x) = pnQn+1(x) + rnQn(x) + qnQn−1(x), n ≥ 0,

that is, xQ(x) = PQ(x), where Q(x) = (Q0(x), Q1(x), . . .)T . Then we have xnQ = PnQ, i.e.

(1) xnQi(x) =

∞∑
k=0

PnikQk(x), i ≥ 0.

For a birth-death chain with transition probabilities pn, rn, qn+1, n ≥ 0, Favard’s Theorem [9, 23] assures the
existence of a probability measure ψ supported on [−1, 1] such that the polynomials {Qn(x)}n≥0 are orthogonal
with respect to ψ. Multiplying both sides of the equation (1) by Qj(x) and integrating with respect to ψ, we
obtain the Karlin-McGregor formula [23], which gives the probability of reaching vertex j in n steps, given that
the process started at vertex i. This formula is given by

Pnij =

∫ 1

−1
xnQi(x)Qj(x)dψ(x)∫ 1

−1
Q2
j (x)dψ(x)

.

From a theoretical point of view, it is interesting to ask whether such classical constructions can be adapted
so that one can also study quantum systems as well. This has been done in the case of unitary quantum walks,
where the relevant orthogonal polynomials are described in terms of the theory of CMV matrices [13, 14].
Regarding the setting of open quantum dynamics [4, 15, 25], the problem of obtaining orthogonal polynomials
and associated measures is an interesting one as well, although we would have to consider operators which are
no longer unitary.
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The main purpose of this paper is to explore the basic theory of matrix-valued orthogonal polynomials
applied to an open quantum setting by providing results on weight matrices and describing several examples,
hopefully encouraging the communities of quantum dynamics and orthogonal polynomials to attempt further
developments on this line of research. A first step in this direction has been discussed in [21], where a procedure
for obtaining weight matrices associated with open quantum walks (OQWs) [1] on the half-line was described,
this being in terms of a well-known result due to Durán [12].

The setting we will consider in this paper concerns the class of quantum Markov chains (QMCs) on the line,
as defined by S. Gudder [19]. This model is revised in detail in Section 2. The main difference with OQWs
is that the transition maps are not only given by conjugations of the form X 7→ V XV ∗, but, instead, the
effect transitions can be chosen to be any completely positive map. This larger class of examples expands the
potential applicability of the theory and also makes it easier to find evolutions which are distinct from classical
dynamics.

With an improved understanding of weight matrices, one is now able to present basic results on recurrence
and positive recurrence of QMCs, as we will see in Sections 3 and 4. The use of the Stieltjes transform allows
us to further extend recent results on homogeneous OQWs on the line regarding criteria for site-recurrence [22].
Sections 5 and 6 illustrate the theory with examples on finite segments and on the half-line, while Section 7
explains how to consider QMCs acting on the integer line, further extending the applicability of the theory.
Finally, by a proper variation of the Karlin-McGregor formula for weight matrices, we are able to discuss weight
matrices which are not necessarily symmetric. This has been examined by Zygmunt [27, 28], and such theory
leads to interesting examples of QMCs, as we will see in Section 8.

2. Preliminaries

Let H be a separable Hilbert space with inner product 〈 · | · 〉, whose closed subspaces will be referred to as
subspaces for short. The superscript ∗ will denote the adjoint operator. The Banach algebra B(H) of bounded
linear operators on H is the topological dual of its ideal I(H) of trace-class operators with trace norm

‖ρ‖1 = Tr(|ρ|), |ρ| =
√
ρ∗ρ,

through the duality [2, Lec. 6]

(2) 〈ρ,X〉 = Tr(ρX), ρ ∈ I(H), X ∈ B(H).

If dimH = k < ∞, then B(H) = I(H) is identified with the set of square matrices of order k, denoted by
Mk(C). The duality (2) yields a useful characterization of the positivity of an operator ρ ∈ I(H):

ρ ∈ I(H) : ρ ≥ 0 ⇔ Tr(ρX) ≥ 0, ∀X ∈ B(H), X ≥ 0,

and similarly for the positivity of X ∈ B(H).

In this paper, we assume that we have a quantum particle acting either on the integer line, the integer
half-line, or on a finite segment, that is, we have that the set of vertices V is labeled by Z, Z≥0 or a finite set
{0, 1, . . . , N}, respectively. In this work, vertices are also called sites. The state of the system is described by
a column vector

(3) ρ =


ρ0

ρ1

ρ2
...

 , ρi ∈ I(H), ρi ≥ 0,
∑
i∈V

Tr(ρi) = 1.

After one time step, the system evolves to the state Φ(ρ) given by Φ(ρ)i =
∑

j∈V Φij(ρj), where

Φ =


Φ00 Φ01 Φ02 . . .

Φ10 Φ11 Φ12 . . .

Φ20 Φ21 Φ22 . . .
. . . . . . . . . . . .

 ,
is called a Quantum Markov Chain (QMC) [19]: this means that the Φij are completely positive (CP) maps
on I(H) and the column sums

∑
i∈V Φij are trace-preserving (TP) (the summations are assumed to converge
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in the strong operator topology), see Figure 1. A density ρ of the form (3) will be called a QMC density. The
set of density operators acting on a subspace K of H will be denoted by D(K).

An important particular class of CP maps is given by the ones of the form

(4) Φij(ρ) = BijρB
∗
ij , Bij ∈ B(H),

∑
k∈V

B∗kjBkj = I, ∀ i, j ∈ V.

The summation above must be understood in the strong sense, and the corresponding identity is the trace-
preserving condition for the columns of the QMC Φ. We will say that Bij is the effect matrix of transitioning
from vertex j to vertex i. QMCs for which Φij can be written in the form (4) are called Open Quantum
Random Walks (OQWs), following the terminology established by S. Attal et al. [1]. Explicitly, OQWs are
QMCs of the form

(5) Φ(ρ) =
∑
i∈V

∑
j∈V

BijρjB
∗
ij

⊗ |i〉〈i|,
and, as any QMC, they may be alternatively seen as CP-TP maps on I(H⊗ V ).

i j

kl

... ...

......

Φji

Φij

ΦkjΦjkΦliΦil

Φkl

Φlk

Figure 1. Schematic illustration of QMCs. The walk is realized on a graph with a set of
vertices denoted by i, j, k, l, . . . and each operator Φij is a completely positive map describing a
transformation in the internal degree of freedom of the particle during the transition from vertex
j to vertex i. For simplicity of illustration some edges are not labeled. In the particular case
that all maps are conjugations, i.e., for every i, j, Φij = Bij · B∗ij for certain matrices Bij the
QMC is called an open quantum walk. In this work, the graphs considered will be either a line
segment, the half-line, or the integer line.

The vector representation vec(A) of A ∈ Mk(C), given by stacking together its rows, will be a useful tool.
For instance,

A =

[
a11 a12

a21 a22

]
⇒ vec(A) :=


a11

a12

a21

a22

 .
The vec mapping satisfies vec(AXBT ) = (A⊗B) vec(X) [20] for any square matrices A,B,X, with ⊗ denoting

the Kronecker product. In particular, vec(BXB∗) = vec(BXB
T

) = (B⊗B) vec(X), from which we can obtain

the matrix representation Φ̂ for a CP map
∑

iBi ·B∗i when the underlying Hilbert space H is finite-dimensional:

Φ̂ =
∑
i

dBie, dBe := B ⊗B.

Here the operators Bi are identified with some matrix representation. We have that dBe∗ = dB∗e, where B∗

denotes the Hermitian transpose of a matrix B. Then, the vector and matrix representation of states and CP
3



maps may be easily adapted to QMCs. In fact, since any element of IV (H) is block diagonal, when dimH <∞,
it may be represented by combining the vector representations of the finite diagonal blocks,

ρ =
∑
i∈V

ρi ⊗ |i〉〈i| ⇒ −→ρ :=

vec(ρ1)
vec(ρ2)

...

 .
Then, the OQW (5) admits the block matrix representation

−−→
Φ(ρ) = Φ̂−→ρ , Φ̂ =

dB00e dB01e · · ·
dB10e dB11e · · ·

...
...

 ,
and analogously for QMCs. We will often identify Φ with its block matrix representation and omit the hat,
as the usage of such object will be clear from the context. Also, we will sometimes write X instead of dXe in
contexts where no confusion arises.

Although the above definitions concern QMCs on general graphs, we remark that in this paper we will deal
exclusively with the one-dimensional situation, more specifically, with the nearest neighbor QMC or quantum
birth-death chain, e.g.,

(6) Φ =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 ,
for certain operators Ai, Bi, Ci, and the remaining ones being equal to zero.

2.1. The calculation of probabilities for QMCs. By letting ρ⊗ |i〉〈i| be an initial density matrix concen-

trated at site |i〉, we can describe n iterations of the QMC (6). By setting ρ(0) = ρ⊗ |i〉〈i|, Tr(ρ) = 1, we write
(assume C0 = 0)

Φn(ρ⊗ |i〉〈i|) =
∑
k≥0

ρ
(n)
k ⊗ |k〉〈k|, ρ

(n)
k = Ckρ

(n−1)
k+1 C∗k +Bkρ

(n−1)
k B∗k +Akρ

(n−1)
k−1 A∗k, n = 1, 2, . . .

Then, the probability of reaching site |j〉 at the n-th step, given that we started at site |i〉 with initial density
ρ concentrated at i is given by

pji;ρ(n) = pn(ρ⊗ |i〉 → |j〉) := Tr(ρ
(n)
j ) = Tr

(
vec−1

[
(Φ̂n)jivec(ρ)

])
,

where (Φ̂n)ji is the (j, i)-th block of the block matrix Φ̂n, the n-th power of the block representation Φ̂.
Following [3, 8], we say that vertex i is recurrent with respect to ρ, or simply ρ-recurrent, if

∞∑
n=0

pii;ρ(n) =∞.

Otherwise, we say that vertex i is transient with respect to ρ, or ρ-transient. We say that, with respect to
a fixed QMC, vertex i is recurrent if it is ρ-recurrent with respect to every density ρ concentrated in i, and
transient if it is ρ-transient with respect to every density in i. Finally, we say that a QMC Φ is recurrent if
every site is recurrent, and we define transient QMCs analogously.

Remark 2.1. We note that in the setting of QMCs, one can also consider the notion of monitored recurrence,
see e.g. [3, 17, 22]. For simplicity, we will not consider such definition in this work, and we refer the reader to
the references for a detailed discussion on such matter.

Finally, we will be able to discuss expected return times to sites of QMCs in terms of the following notion.
Let T denote a positive map (that is, such that if X ≥ 0 then T (X) ≥ 0) acting on the space I(H) of trace-class
operators of a Hilbert space H. We say that T is irreducible if the only orthogonal projections P such that
T (PI(H)P ) ⊂ PI(H)P , are P = 0 and P = I, see [6, 7] for more on this. Then, we say that a QMC Φ is
positive recurrent if it is irreducible and if it admits an invariant distribution. We note that by [[3], Thm.
4.3 and 4.5] for positive recurrent OQWs, we have finite expected return times for every density and site, and
the same reasoning provides the analogous result in the case of QMCs.
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2.2. Auxilliary notation: compact form. In some of the examples we study in this paper we will use the
following algebraic simplification. We know that the matrix representation of the conjugation map induced by
an order 2 matrix M = (mij) is given by

dMe = M ⊗M =


|m11|2 m11m12 m11m12 |m12|2
m11m21 m11m22 m12m21 m12m22

m11m21 m12m21 m11m22 m12m22

|m21|2 m21m22 m21m22 |m22|2

 =


a b b c
d e f g

d f e g
h j j k

 , mij ∈ C.

Let us consider the setting for which all of the above coefficients are real, and acting on positive semidefinite
matrices with real entries. Then

dMevec(ρ) =


a b b c
d e f g
d f e g
h j j k



x
y
y
z

 =


ax+ 2by + cz

dx+ (e+ f)y + gz
dx+ (e+ f)y + gz
hx+ 2jy + kz

 , ρ =

[
x y
y z

]
.

In this particular setting we note that the above computation can be codified in a more economic way, namely,
via the correspondence

(7) dMevec(ρ) ↔ M̌ρ̌ :=

a 2b c
d e+ f g
h 2j k

xy
z

 =

 a+ 2by + cz
dx+ (e+ f)y + gz
hx+ 2jy + kz

 .
We call the map M̌ the compact form of the conjugation induced by M , or simply the compact form of M .
It is clear that many calculations coming from quantum mechanical models can be written in terms of real
numbers only and, even though the real coefficient assumption often precludes us from complete generality, we
are still able to learn useful information about 1-qubit quantum channels.

The following properties of the compact form are proven by a routine calculation:

(1) (̌MR) = M̌Ř for any matrices, resembling the matrix representation property dMRe = dMedRe.
(2) The compact form preserves the computation of product of conjugations acting on positive definite

matrices. That is, if M and R are matrices then dMedRevec(ρ) corresponds to M̌Řρ̌.

3. Weight matrices

Let W be a weight matrix, i.e. a N × N matrix of measures supported in the real line such that dW (y) −
dW (x) ≥ 0 (positive semidefinite) for x < y. We also allow the case of discrete measures, those appearing
naturally in the case of walks acting on a finite number of vertices. Define the matrix-valued inner product
given by

(8) (P,Q) :=

∫
R
P ∗(x)dW (x)Q(x).

Also regarding positive semidefiniteness, we recall that (P, P ) ≥ 0, (P, P ) > 0 whenever det(P ) 6≡ 0 and
(P, P ) = 0 if and only if P ≡ 0. Let {Qn(x)}n≥0 denote a sequence of matrix-valued orthogonal polynomials
with respect to such product, with nonsingular leading coefficients. Then∫

R
Q∗n(x)dW (x)Qm(x) = ‖Qn‖2δnm.

The set of polynomials will be called orthonormal if ‖Qn‖2 = (Qn, Qn) = I, n ≥ 0. It is well-known that any
family of matrix-valued orthogonal polynomials satisfies a three-term recurrence relation of the form

(9) xQn(x) = Qn+1(x)An +Qn(x)Bn +Qn−1(x)Cn, n ≥ 0, Q0(x) = I, Q−1(x) = 0,

for certain An, Bn, Cn+1, n ≥ 0, square matrices. This gives rise to a block tridiagonal Jacobi matrix of the
form

(10) P =


B0 C1 0
A0 B1 C2

A1 B2 C3

0
. . .

. . .
. . .

 ,
5



so that (9) can be written as xQ(x) = Q(x)P , where Q(x) = (Q0(x), Q1(x), . . . ). Let us now see the inverse
problem, i.e. under what conditions we can guarantee the existence of a weight matrix given a block tridiagonal
matrix of the form (10). As discussed previously, namely, whenever the weight matrix exists, the (i, j)-th block
of the block matrix Pn can be written as

(Pn)ij = (Qi(x), Qi(x))−1

(∫
R
xnQ∗i (x)dW (x)Qj(x)

)
.

However, unlike the one-dimensional case, a system of matrix-valued polynomials {Qn(x)}n≥0 satisfying such
recurrence relation is not necessarily orthogonal with respect to an inner product induced by a weight matrix.
In view of this, Dette et al. describe an existence criterion:

Theorem 3.1. ([10, Theorem 2.1]) Assume that the matrices An, Cn+1, n ≥ 0, in the one-step block tridiagonal
transition matrix (10) are nonsingular. There exists a weight matrix W supported on the real line such that
the polynomials defined by (9) are orthogonal with respect to the measure dW (x) if and only if there exists a
sequence of nonsingular matrices {Rn}n≥0 such that

(1) RnBnR
−1
n is Hermitian, ∀ n = 0, 1, 2, . . . .

(2) R∗nRn =
(
A∗0 · · ·A∗n−1

)−1
(R∗0R0)C1 · · ·Cn, ∀ n = 1, 2, . . . .

In the case of a QMC with block tridiagonal matrix of the form

(11) Φ̂ =


dB0e dC1e 0
dA0e dB1e dC2e

dA1e dB2e dC3e

0
. . .

. . .
. . .

 ,
then, in order to find the corresponding weight matrix, we need to find nonsingular matrices {Rn}n≥0 such that

Πn := R∗nRn = (dA0e∗ · · · dAn−1e∗)−1Π0dC1e · · · dCne and ΠndBne = dBne∗Πn, n = 1, 2, . . .

Finally, we note that we have a version of the Karlin-McGregor formula for QMCs, in close analogy with the
result seen in [21, Theorem 2.1]:

Theorem 3.2. (Karlin-McGregor formula for QMCs). Let Φ̂ in (11) be the matrix representation of a QMC

Φ. Assume that there exists a weight matrix W associated with Φ̂. Then we have

pji;ρ(n) = Tr

(
vec−1

[
(Qj(x), Qj(x))−1

(∫
R
xnQ∗j (x)dW (x)Qi(x)

)
vec(ρ)

])
,

where ρ = ρi⊗|i〉〈i| is a density matrix concentrated on vertex i and {Qn(x)}n≥0 are the matrix-valued orthogonal
polynomials defined by (9).

Remark 3.3. The inner product introduced in (8) is different from the one used in many papers on this subject
(see for instance [10, 12, 16, 21, 27, 28] and references therein). The standard inner product used is called left
inner product

(P,Q)L :=

∫
R
P (x)dW (x)Q∗(x),

which is different from the one defined by (8), which sometimes is called right inner product (see [26]). We
obviously have (P,Q) = (P ∗, Q∗)L.

4. Recurrence and first passage time probabilities

Consider the Stieltjes transform of a weight matrix W with support on the real line given by

(12) B(z;W ) :=

∫
R

dW (x)

z − x
, z ∈ C\R.

Let N ∈ {1, 2, . . .} and Φ be a QMC described by

(13) Φ =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 ,
6



where An, Bn, Cn+1 ∈MN2(C), n ≥ 0. Assume there exists a weight matrix W such that

(14) Φ
(n)
ij = Πi

(∫
R
xnQ∗i (x)dW (x)Qj(x)

)
,

where Πi =
(∫

RQ
∗
i (x)dW (x)Qi(x)

)−1
. Now let us define a generating function associated with hitting proba-

bilities from j to i with respect to the QMC Φ, i.e.

(15) Φij(s) :=
∞∑
n=0

Φ
(n)
ij s

n, Φ
(n)
ij = PiΦnPj ,

where Pk is the projection map onto the space generated by the state |k〉 on Z≥0. We will start with the
following result concerning ρ-recurrence.

Theorem 4.1. Let ρ be some density. A vertex i ∈ V is ρ-recurrent if and only if

lim
s↑1

Tr

[
vec−1

(
Πi

∫
R

1

1− sx
Q∗i (x)dW (x)Qi(x)vec(ρ)

)]
=∞.

As a consequence, vertex |0〉 is ρ-recurrent if and only if

(16) lim
z↓1

Tr
[
vec−1 (B(z;W )vec(ρ))

]
=∞,

where B(z;W ) is defined by (12).

Proof. By Fubini’s Theorem and for |sx| <∞ we have

Φji(s) =
∞∑
n=0

snΦ
(n)
ji =

∞∑
n=0

Πj

∫
R

(sx)nQ∗j (x)dW (x)Qi(x)

= Πj

∫
R

∞∑
n=0

(sx)nQ∗j (x)dW (x)Qi(x) = Πj

∫
R

1

1− sx
Q∗j (x)dW (x)Qi(x).

(17)

Then

lim
s↑1

Tr
(
vec−1 (Φji(s)vec(ρ))

)
= lim

s↑1

∞∑
n=0

Tr
(
vec−1

(
snΦ

(n)
ji vec(ρ)

))
=
∞∑
n=0

pji;ρ(n).

By taking s = 1/z, we obtain (16).

�

In a similar way we can prove that an irreducible QMC Φ with associated weight matrix W is recurrent with
respect to some density ρ if and only if

lim
s↑1

Tr

(∫
dW (x)

1− xs
ρ

)
=∞.

Regarding positive recurrence in terms of the spectral matrix W , we have the following:

Proposition 4.2. For an irreducible QMC Φ (13) admitting a weight matrix W , the walk is positive recurrent
if and only if the weight matrix W has a finite jump at x = 1.

Proof. An irreducible, positive recurrent QMC always admits a faithful (strictly positive), invariant distri-
bution by [24, Theorem 5.8]. Therefore, we conclude, by [6, Corollary 5.4], that

lim
n→∞

Tr(P0Φ2nP0ρ) > 0.

Since x2n → 0 monotonically in x ∈ (−1, 1), from Theorem 3.2 we see that the limit is positive if the spectral
measure has positive jumps at x = 1 or at x = −1. However, there cannot be a jump at x = −1 since, otherwise,
the size of the jump would be

− lim
n→∞

Tr

(
vec−1

[∫ 1

−1
x2n+1dW (x)vec(ρ)

])
= − lim

n→∞
Tr(P0Φ2n+1P0ρ) ≤ 0.

But this quantity must be positive, so there is no jump at x = −1, for any choice of density ρ. Therefore, the
QMC is positive recurrent if and only if there is a jump at x = 1.

�
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Let us now derive an expression for first passage probabilities of QMCs in terms of matrix-valued polynomials
only. The following discussion is inspired by the classical reasoning presented in [11], with the main result being
formula (24) presented below, which allows us to obtain first visit probabilities in terms of matrix polynomials
in a simple manner. For k ≥ 0, consider the QMC Φ with matrix representation

Φ =



B0 C1

A0 B1 C2

. . .
. . .

. . .

Ak−1 Bk Ck+1

Ak Bk+1 Ck+2

Ak+1 Bk+2 Ck+3

. . .
. . .

. . .


,

where Bn, An, Cn+1 ∈MN (C), n ≥ 0. As usual, we recursively define the following matrix-valued polynomials,

Q0(x) = IN , Q−1(x) = 0

xQn(x) = Qn+1(x)An +Qn(x)Bn +Qn−1(x)Cn,
(18)

that is, xQ(x) = Q(x)Φ, where Q(x) = (Q0(x), Q1(x), . . .). Suppose that Φ satisfies the conditions of Theorem
3.1, so the polynomials defined by (18) are orthogonal with respect to a weight matrix W and ΠΦ = Φ∗Π, where
Π = diag(Π0,Π1, . . .) and Πj = R∗jRj , j ≥ 0. Analogously to the classical case, we define the k-th associated
polynomials

xQ(k)
n (x) = δnk +Q

(k)
n+1(x)An +Q(k)

n (x)Bn +Q
(k)
n−1(x)Cn.

Note that Q
(k)
n (x) = 0 if 0 ≤ n ≤ k and deg(Q

(k)
n (x)) = n − k − 1 if n > k. Consider the generating function

Φ(s) associated with Φ defined by (15). Assuming ‖sΦ‖ < 1, Φji(s) converges for every i, j, thus

∞∑
n=0

(sΦ)n(I − sΦ) = I ⇒ Φ(s)− Φ(s)(sΦ) = I.

Therefore, we have the equation

Φ(s) = I + Φ(s)(sΦ),

which can be rewritten by blocks as

Φj0(s) = δj0 + Φj0(s)B0 + Φj1(s)A0, j ≥ 0

Φji(s) = δji + Φj,i−1(s)Ci + Φj,i(s)Bi + Φj,i+1(s)Ai, i ≥ 1, j ≥ 0.
(19)

A particular solution of (19) is given by

Φji(s) = s−1Q
(j)
i (s−1).

On the other hand, the general solution of Φ(s) = Φ(s)(sΦ), which is

Φji(s) = gj(s)Qi(s
−1)

gives

Φji(s) = Φj,i−1(s)Ci + Φj,i(s)Bi + Φj,i+1(s)Ai,

and consequently, the general solution of (19) is

Φji(s) = s−1Q
(j)
i (s−1) + gj(s)Qi(s

−1).

Since Q
(j)
0 = 0 and Q0 = 1, one has Φj0(s) = gj(s)Q0(s−1) = gj(s). Moreover, since Φ

(n)
ji = Π−1

j Φ
(n)∗
ij Πi, we

have

Φj0(s) =

∞∑
n=0

snΠ−1
j Φ

(n)∗
0j Π0 = Π−1

j Φ0j(s)
∗Π0,

so we obtain the general solution for gj(s) :

gj(s) = Φj0(s) = Π−1
j Φj0(s)∗Π0

= Π−1
j

(
s−1Q

(0)
j (s−1) + g0(s)Qj(s

−1)
)∗

Π0 = Π−1
j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0.
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Therefore the general solution for Φij(s) is given by

(20) Φji(s) = s−1Q
(j)
i (s−1) + Π−1

j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0Qi(s
−1).

If we assume i < j, then Q
(j)
i = 0 and (20) becomes

(21) Φji(s) = Π−1
j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0Qi(s
−1).

Now consider the first passage time operator F (s) satisfying

F (s) = [Fji(s)]j,i=0,1,2,...

Fji(s) = Φjj(s)
−1(Φji(s)− δjiI),

(22)

that is, with definition given by

(23) F (z) = zPΦ(I − zQΦ)−1,

where P and Q = I − P are bounded projections from H onto supplementary closed subspaces of H. Further,
we denote by Pk the projection map onto the space generated by the state |k〉 on Z≥0 and Qk := I−Pk. In this
way, we are able to calculate the probability of every reaching vertex j, given that we have started at vertex i
and density ρ, by writing

p(ρ⊗ |i〉 → |j〉) = lim
z↑1

Tr (Fji(z)ρ) = lim
z↑1

Tr
(
zPjΦ(I − zQjΦ)−1ρ

)
.

By [18], F (s) defined as above indeed satisfies equation (22). So, let i < j and ρ ∈MN (C), then by equation
(21)

Fji(s) = Φjj(s)
−1Φji(s)

= Qj(s
−1)−1Π−1

0

[(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗]−1

Πj

×Π−1
j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0Qi(s
−1) = Qj(s

−1)−1Qi(s
−1).

Therefore, by (22), we obtain

(24) Fji(s) = Qj(s
−1)−1Qi(s

−1), i < j.

In particular, the condition Q0 = I gives

(25) F10(s) = Q1(s−1)−1 =

[(
1

s
I −B0

)
A−1

0

]−1

= sA0(I − sB0)−1.

Example 4.3. Let Φ be the representation matrix of an OQW on V = {0, 1, 2} of the form

Φ =

 0 dCe
dAe 0 dCe

dAe 0

 , A =
1

2

[
−1 0

1
√

2

]
, C =

1

2

[
1 −

√
2

−1 0

]
.

Since A∗A < I, the walk has an absorbing barrier in the frontier. Also, we have

(I − sQ1Φ) =

I4 X 0
0 I4 0
0 Y I4

 , X =
s

4


−1

√
2

√
2 −2

1 0 −
√

2 0

1 −
√

2 0 0
−1 0 0 0

 , Y =
s

4


−1 0 0 0

1
√

2 0 0

1 0
√

2 0

−1 −
√

2 −
√

2 −2

 .
and

F10(s) = sP1Φ(I − sQ1Φ)−1P0 =
s

4


1 0 0 0

−1 −
√

2 0 0

−1 0 −
√

2 0

1
√

2
√

2 2

 .
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The first two associated polynomials are given by

Q0(x) = I4, Q1(x) := 2x


2 0 0 0

−
√

2 −
√

2 0 0

−
√

2 0 −
√

2 0
1 1 1 1

 ,
from which we can calculate the product Q1(s−1)−1Q0(s−1), which equals F10(s) as expected. Then, for ρ =[
a b
b∗ 1− a

]
, we obtain

p(ρ⊗ |0〉 → |1〉) = lim
s↑1

Tr(F10(s)ρ) =
1 +
√

2Re(b)

2
∈

[
2−
√

2

4
,
2 +
√

2

4

]
,

since Re(b) ∈ [−1/2, 1/2].

♦

Example 4.4. Let γ ∈ R and kγ = 2 + 2γ2 and Φ be the representation matrix of an OQW of the form

Φ =


dB0e dC1e
dA0e dB1e dC2e

dA1e dB2e dC3e
. . .

. . .
. . .

 , B0 =
1√
kγ

[
−1

√
2γ

0 1

]
, A0 =

1√
kγ

[√
2γ 1
1 0

]
.

We notice that F10(s) does not depend on the blocks Ak, Bk, Ck for k = 1, 2, 3, . . . , thus such blocks can be
chosen arbitrarily so that A∗kAk +B∗kBk + C∗kCk = I for k ≥ 1. Then, equation (23) gives

F10(s) =
s

2 + 2γ2 − s


2γ2

√
2γ(2γ2s+2−2γ2−s)

2+s+2γ2

√
2γ(2γ2s+2−2γ2−s)

2+s+2γ2
s+4γ2s+4γ4s+2+2γ2

2+s+2γ2√
2γ − 2γ2s

2+s+2γ2
2γ2+2−2γ2s−s

2+s+2γ2

√
2γ(1+2γ2)
2+s+2γ2√

2γ 2γ2+2−2γ2s−s
2+s+2γ2

− 2γ2s
2+s+2γ2

√
2γ(1+2γ2)
2+s+2γ2

1 −
√

2γs
2+s+2γ2

−
√

2γs
2+s+2γ2

2γ2s
2+s+2γ2

 ,

and, as expected, this is the same matrix obtained by formula (25). For ρ =

[
a b
b∗ 1− a

]
, we obtain, for every

ρ, that

p(ρ⊗ |0〉 → |1〉) = lim
s↑1

Tr (F10(s)ρ)

= lim
s↑1

4γ4(as− a− s) + 4γ
√

2(s− 1)Re(b)(γ2 + 1) + 2γ2(2as− 3s− 2a− 1)− 2− s
(2 + s+ 2γ2)(−2 + s− 2γ2)

= 1.

We note that, in principle, we are able to obtain probabilities regarding vertices which are arbitrarily distant
from one another but, as the distance between them increases, the task of performing explicit calculations may
become unpractical. In such cases, it may be preferable to use the generating function (23).

♦

5. An example of a QMC on a finite number of vertices

Let us first consider a walk induced by the block matrix on the N + 1 nodes indexed as {0, 1, . . . , N},

Φ =



B rI
tI B rI

tI B rI
. . .

. . .
. . .

tI B rI
tI B


, 0 < r, t < 1,
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where if B = dΦBe, ΦB = V ∗1 · V1 + V ∗2 · V2, with

V1 =
√
s

[
a b
b −a

]
, V2 =

√
s(1− a2 − b2)I2.

We can write

B = s


1− b2 ab ab b2

ab 1− 2a2 − b2 b2 −ab
ab b2 1− 2a2 − b2 −ab
b2 −ab −ab 1− b2

 .
For simplicity we assume 0 < a, b, s < 1, a2 + b2 < 1. In this way we have that Tr(Φ(X)) = sTr(X), so we
suppose that r + s + t = 1 in order to have that Φ is trace-preserving, with the exception of the first and last
nodes (we remark that another restriction on r, s, t will be needed, see below).

By the classical symmetrization

R = diag(R0, R1, . . . , RN ), Ri =

(√
r

t

)i−1

I4, i = 1, . . . , N, R0 = I4,

we obtain

J = RΦR−1 =



B kI
kI B kI

kI B kI
. . .

. . .
. . .

kI B kI
kI B


, k =

√
rt.

The matrix-valued polynomials {Qn}n≥0 defined by

Q0(x) = 1, Q−1(x) = 0,

xQ0(x) = Q0(x)B + kQ1(x),

xQi(x) = kQi−1(x) +Qi(x)B + kQi+1(x), i = 1, . . . , N − 1,

can be identified with the Chebyshev polynomials of the second kind {Un}n≥0. Indeed, it is possible to see that
Qn(x) = Un ((x−B)/2k) , n ≥ 0. Now, if we define

RN+1(x) := QN (x)(x−B)− kQN−1(x),

we have that the zeros of det(RN+1(x)) coincide with the eigenvalues of J = RΦR−1. A simple calculation
shows that

RN+1(x) = kUN+1

(
x−B

2k

)
.

We would like to solve the equation det(RN+1(x)) = 0. Recalling the representation

Un

(z
2

)
=

n∏
j=1

(
z − 2 cos

(
jπ

n+ 1

))
,

we obtain, for the matrix-valued case at hand,

det(RN+1(x)) = k4det

(
UN+1

(
x−B

2k

))
= k4det

N+1∏
j=1

(
xI4 −B

k
− 2 cos

(
jπ

N + 2

)
I4

)

= k4
N+1∏
j=1

det

[(
xI4 −B

k
− 2 cos

(
jπ

N + 2

)
I4

)]
.
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Noting that the eigenvalues of B are s and s(1− 2a2 − 2b2) (both with multiplicity 2) we have

det

[(
xI4 −B

k
− 2 cos

(
jπ

N + 2

)
I4

)]

= det



x−s
k − 2 cos

(
jπ
N+2

)
0 x−s

k − 2 cos
(

jπ
N+2

)
x−s(1−2a2−2b2)

k − 2 cos
(

jπ
N+2

)
x−s(1−2a2−2b2)

k − 2 cos
(

jπ
N+2

)


=

[
x− s
k
− 2 cos

(
jπ

N + 2

)]2 [x− s(1− 2a2 − 2b2)

k
− 2 cos

(
jπ

N + 2

)]2

.

Hence,

det(RN+1(x)) = k4
N+1∏
j=1

[
x− s
k
− 2 cos

(
jπ

N + 2

)]2 [x− s(1− 2a2 − 2b2)

k
− 2 cos

(
jπ

N + 2

)]2

, k =
√
rt,

which is a polynomial of degree 4(N + 1) having 2(N + 1) distinct roots (all of multiplicity 2). Therefore, the
roots are of the form

xj = s+ 2k cos

(
π
j + 1

N + 2

)
, j = 0, . . . , N,

yj = s(1− 2a2 − 2b2) + 2k cos

(
π
j + 1

N + 2

)
, j = 0, . . . , N,

all being of multiplicity 2, except in the case where the collection of zeros xN and yN overlap, so the multiplicity
changes accordingly (see the example below). The expressions on the roots also make clear that we must have
further restrictions on the values of r, s and t (recall k =

√
rt) so that xj , yj ∈ [−1, 1], for all j = 0, . . . , N . For

instance, by imposing 0 < k < 1/4 we obtain a corresponding restriction on s (we omit the details).

The above root calculation should be compared with the classical case with a translation of s units, for which
the roots of RN+1 are

xj = s+ 2
√
rt cos

(
π
j + 1

N + 1

)
, j = 0, . . . , N,

once again regarding a random walk with a proper restriction on r, s, t so that xj ∈ [−1, 1], for all j.

Now we compute the matrix weights on the zeros above. Such calculation needs to take in consideration
the fact that each root is double (we omit the discussion for the case of larger multiplicities). In this case the
residue calculation gives us that

(26) Wj = g′j(λj), gj(λ) := −(λj − λ)2(J − λI)−1
00 , λj = xj , yj , j = 0, . . . , N,

an expression which can be deduced from (see [16])

(J − λI)−1
ij =

N∑
k=0

P ∗i (λk)WkPj(λk)

λk − λ
,

and noting that this corresponds to the Laurent sum of the operator on the left-hand side except for the sign
change λk − λ = −(λ− λk). With formula (26), a calculation shows that for every N we have a corresponding
set of multiples of the matrices given by

Wa,b;1 :=
1

2(a2 + b2)


2a2 + b2 ab ab b2

ab b2 b2 −ab
ab b2 b2 −ab
b2 −ab −ab 2a2 + b2

 , Wa,b;2 :=
1

2(a2 + b2)


b2 −ab −ab −b2
−ab b2 + 2a2 −b2 ab
−ab −b2 b2 + 2a2 ab
−b2 ab ab b2

 .
More precisely, we have a collection of 4(N + 1) roots with weights

ψ(xj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
Wa,b;1, j = 0, . . . , N,
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ψ(yj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
Wa,b;2, j = 0, . . . , N.

This should be compared with the classical setting, recalling that in such case,

(27) ψ(xj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
=

1

2pq(N + 2)
(4pq − x2

j ), j = 0, . . . , N.

We note a few basic properties of Wa,b;1 and Wa,b;2. First, both are positive semidefinite matrices with eigenval-
ues 0 and 1 (multiplicity 2). Moreover, seen as linear maps, Wa,b;1 is trace-preserving, whereas Wa,b;2 transforms
densities into traceless matrices. Also Wa,b;1 admits the following Kraus representation

Wa,b;1 =
3∑
i=1

W 1
i ⊗W

1
i , W 1

1 =
1

2(a2 + b2)

[
a b
b −a

]
, W 1

2 =
a

2(a2 + b2)
I2, W 1

3 =
b

2(a2 + b2)
I2,

from which we conclude that such weight represents a completely positive map. However, Wa,b;2 does not
represent a positive map in general, as illustrated by an inspection with certain density examples.

For a specific instance of the above take N = 4 (5 sites), so we have 20 roots, with weights

1

3
Wa,b;1,

1

3
Wa,b;2,

associated with zeros s and s(1− 2a2 − 2b2) respectively; weights

1

4
Wa,b;1,

1

4
Wa,b;2,

associated with zeros s± k, s(1− 2a2 − 2b2)± k respectively; and weights

1

12
Wa,b;1,

1

12
Wa,b;2,

associated with zeros s±
√

3k, and s(1− 2a2 − 2b2)±
√

3k respectively. If, moreover, s = a = b = k = 1/2, we
have

{xj}j=0...4 =

{
−
√

3

2
,−1

2
, 0,

1

2
,

√
3

2

}
, {yj}j=0...4 =

{
−
√

3 + 1

2
, 0,

1

2
, 1,

√
3 + 1

2

}
,

each with multiplicity 2 except for 0 and 1/2 with multiplicity 4 (noting that in this case, 1− 2a2 − 2b2 = 0).
This should be compared with the classical setting, see (27).

6. An example of a QMC on Z≥0

Consider the walk induced by the block matrix on Z≥0 given by

(28) Φ =


0 C 0
A 0 C

A 0 C

0
. . .

. . .
. . .

 ,
where A and C are the compact forms (see (7)) of R1⊗R1 +R2⊗R2 and L1⊗L1 +L2⊗L2, respectively, and

L1 =
√
p/2I2, L2 =

√
(1− p)/2

[
0 1
1 0

]
, R1 =

√
q/2

[
1 0
0 −1

]
, R2 =

√
(1− q)/2

[
0 1
1 0

]
.

Observe that R∗1R1 +R∗2R2 + L∗1L1 + L∗2L2 = I2. Therefore,

A =
1

2

 q 0 1− q
0 1− 2q 0

1− q 0 q

 , C =
1

2

 p 0 1− p
0 1 0

1− p 0 p

 .
The matrices A and B are simultaneously diagonalizable, i.e.,

(29) A = U

1/2
1/2− q

q − 1/2

U∗, C = U

1/2
1/2

p− 1/2

U∗, U =
1√
2

1 0 −1

0
√

2 0
1 0 1

 .
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Choosing

Πn =


1

(1− 2q)n (
1− 2q

1− 2p

)n
 ,

we can symmetrize the operator (28), getting that each of the nonzero blocks are given by

1

2
U

1 √
1− 2q √

(1− 2p)(1− 2q)

U∗.
The Stieltjes transform associated with (28) is given by

(30) B(z;W ) = 2U


z −
√
z2 − 1

z −
√
z2 − (1− 2q)

1− 2q
z −

√
z2 − (1− 2p)(1− 2q)

(1− 2p)(1− 2q)

U∗.
Therefore, we get an absolutely continuous weight matrix given by

dW (x) =
2

π
UD(x)U∗dx,

where

D(x) =

[ω1(x)]+
[ω2(x)]+

[ω3(x)]+

 ,
where

(31) ω1(x) =
√

1− x2, ω2(x) =

√
1− 2q − x2

1− 2q
, ω3(x) =

√
(1− 2p)(1− 2q)− x2

(1− 2p)(1− 2q)
.

Here we are using the notation [f(x)]+ = f(x) if f(x) ≥ 0 and 0 otherwise. Similar results can be obtained if
we do not consider the compact form.

Now consider the same walk as before in (28), but adding a matrix B at the upper-left corner, i.e.

(32) Φ̃ =


B C 0
A 0 C

A 0 C

0
. . .

. . .
. . .

 ,
where B is a matrix which we assume it can be written as

(33) B =
1

2
U

b1 b2
b3

U∗,
with U defined by (29). According to Theorem 2.6 of [10], the Stieltjes transform B(z; W̃ ) associated with (32)

can be written as B(z; W̃ ) = (B(z;W )−1 − B)−1. Since we are assuming (33) and taking in mind (30), we
obtain

B(z; W̃ ) = 2U



1

z −
√
z2 − 1

− b1
1− 2q

z −
√
z2 − (1− 2q)

− b2

(1− 2p)(1− 2q)

z −
√
z2 − (1− 2p)(1− 2q)

− b3



−1

U∗.
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After rationalization and some computations we obtain
(34)

B(z; W̃ ) = 2U



−z + b1 +
√
z2 − 1

2b1z − 1− b21
−z + b2 −

√
z2 − (1− 2q)

2b2z − 1 + 2q − b22
−z + b3 +

√
z2 − (1− 2p)(1− 2q)

2b3z − (1− 2p)(1− 2q)− b23


U∗.

Therefore the weight matrix is given by W̃ = W̃ac + W̃d, where the absolutely continuous part is given by

dW̃ac(x) =
2

π
U



[√
1− x2

]
+

1 + b21 − 2b1x [√
1− 2q − x2

]
+

1− 2q + b22 − 2b2x [√
(1− 2p)(1− 2q)− x2

]
+

(1− 2p)(1− 2q) + b23 − 2b3x


U∗dx.

Observe that the denominators are always nonnegative in the range of the definition of each square root. The

discrete part W̃d is given by three Dirac deltas located at the poles of the Stieltjes transform (34), i.e.

W̃d(x) = U

W̃ ({z1}) δz1(x)

W̃ ({z2}) δz2(x)

W̃ ({z3}) δz3(x)

U∗,
where

z1 =
1 + b21

2b1
, z2 =

1− 2q + b22
2b2

, z3 =
(1− 2p)(1− 2q) + b23

2b3
,

and

W̃ ({z1}) =
b21 − 1

b21
1{b21>1},

W̃ ({z2}) =
b22 − (1− 2q)

b22
1{b22>1−2q},

W̃ ({z3}) =
b23 − (1− 2p)(1− 2q)

b23
1{b23>(1−2p)(1−2q)}.

Observe that in principle b1, b2 and b3 can be taken as any real numbers, but we are interested in finding under

what conditions the points z1, z2 and z3 are located inside the interval [−1, 1] (so that all the support of W̃ is
inside the interval [−1, 1]). By the definition it is possible to see that |z1| ≤ 1, |z2| ≤ 1, |z3| ≤ 1, if and only if
b1 = 1, and

b2 ∈ [−1−
√

2q,−1 +
√

2q] ∪ [1−
√

2q, 1 +
√

2q],

b3 ∈ [−1−
√

2(p+ q − 2pq),−1 +
√

2(p+ q − 2pq)] ∪ [1−
√

2(p+ q − 2pq), 1 +
√

2(p+ q − 2pq)].

Joining this with the conditions under we have positive jumps, we have that W̃ ({z1}) = 0 and W̃ ({z2}) , W̃ ({z3})
are positive if

b2 ∈ [−1−
√

2q,−
√

1− 2q) ∪ (
√

1− 2q, 1 +
√

2q],

b3 ∈ [−1−
√

2(p+ q − 2pq),−
√

(1− 2p)(1− 2q)) ∪ (
√

(1− 2p)(1− 2q), 1 +
√

2(p+ q − 2pq)].

The particular case where B = A is given by b1 = 1, b2 = 1−2q, b3 = 2q−1. Therefore z1 = 1, z2 = 1−q, z3 =

p+ q − 1, W̃ ({z1}) = W̃ ({z2}) = 0 and

W̃ ({z3}) =
2(p− q)
1− 2q

1{p>q}.
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The weight matrix is then given by W̃ = W̃ac + W̃d, where

(35) dW̃ac(x) =
1

π
U



[√
1 + x

1− x

]
+ [√

1− 2q − x2
]

+

(1− 2q)(1− q − x) [√
(1− 2p)(1− 2q)− x2

]
+

(1− 2q)(1− p− q + x)


U∗dx.

and

(36) W̃d(x) =
p− q
1− 2q

1{p>q}

 1 0 −1
0 0 0
−1 0 1

 δp+q−1(x).

Observe that in this situation, as expected, the support of W̃ is inside the interval [−1, 1].

Let us now study recurrence of this QMC in terms of the corresponding weight matrices. Note that the QMC
determined by (28) is such that vertex 0 admits a transition to an absorbing state, so we have the transience
of this walk with respect to such site. Let us prove this in terms of the associated measure. First, recall that
the trace is invariant by the change of coordinates U which, on its turn, does not depend on x. Therefore, we
need only to examine the behavior of ω1 and ω3 in (31). Regarding ω1, a calculation gives that

lim
z↑1

∫ 1

−1

√
1− x2

1− zx
dx = lim

z↑1

π(z2 − 1 +
√

1− z2)

z2
√

1− z2
= π,

so the above limit is finite. Regarding ω3, note that since 0 < p, q < 1, we have a := (1− 2p)(1− 2q) > 0 if and
only if both p and q are greater than 1/2 or both are less than 1/2. If this is the case, we have that ω3(x) ≥ 0
if x ∈ (−

√
a,
√
a). If we write q = p+ ε (with ε ∈ (1

2 − p, 1− p) if 1
2 < p < 1), we obtain

(37) lim
z↑1

∫ √a
−
√
a

√
a− x2

1− zx
dx = π(1−

√
4p(1− p) + 2ε(1− 2p)),

which is also a finite number (as expected, the term inside the root is always positive under the above restric-
tions). A similar reasoning holds in the case 0 < p < 1

2 , where we write q = p + ε, with ε ∈ (−p, 1
2 − p). In

the case that ω3 does not have a positive part, the trace computation is determined by ω1. Since U∗ρ is also a
density matrix we conclude that, in every case, site 0 is transient with respect to any initial density.

Now considering (32) with B = A (see (35) and (36)), we have, regarding ω̃1, that

lim
z↑1

∫ 1

−1

1

1− zx

√
1 + x

1− x
dx = lim

z↑1

π(1 + z −
√

1− z2)

z
√

1− z2
=∞.

Regardind ω̃3, we note that the denominator is positive if x ∈ (−
√
a,
√
a), which can be seen as in the transient

walk above (i.e., consider the cases for which p, q ∈ (0, 1
2) or p, q ∈ (1

2 , 1)). But then the limit to be examined is
the same as for the transient walk, namely, eq. (37), which is finite. We have concluded that recurrence of site
0 depends on the initial choice of density matrix. For instance, the densities

ρα =

[
1 0
0 0

]
⊗ |0〉〈0|, ρβ =

[
0 0
0 1

]
⊗ |0〉〈0|,

are such that site 0 is recurrent with respect to ρα but transient with respect to ρβ. More generally, site 0 will
be recurrent with respect to any density matrix ρ ⊗ |0〉〈0| for which ρ11 > 0. It would be interesting to find
examples of matrices B at the block position (0, 0) for which the resulting walks are irreducible (if this is in
fact possible, a guess would be to obtain a change of coordinates V distinct from U).

Remark 6.1. If B in (33) is not simultaneously diagonalizable with A and C, it is possible to derive again the
weight matrix assuming that B = 1

2Vdiag{b1, b2, b3}V∗, where V is unitary. The corresponding weight matrix
will be also unitarily diagonalizable.
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7. QMCs on Z

In this section, we treat the case of tridiagonal QMCs on the real line, that is, the set of vertices V will
consist of the integers, thus the walk will have one-step transition probabilities from |i〉 to |i− 1〉 , |i〉 or |i+ 1〉
and there are no barriers. Starting from a tridiagonal QMC Φ on Z, where each of the blocks of the matrix
representation is of order N2 × N2, we will construct a new tridiagonal QMC on Z≥0 × {1, 2}, where each of
the blocks of the matrix representation is of dimension 2N2 × 2N2 with a possible barrier on site |0〉. This is
what we call the folding trick and was introduced for the first time in [5]. Finally, recurrence of this type of
walks will be discussed via an application of the Stieltjes transform.

Consider then the matrix representation for a tridiagonal QMC on Z, given by

(38) Φ =



. . .
. . .

. . . B−2 C−1

A−2 B−1 C0

A−1 B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .


,

where each block Ak, Bk, Ck is an N2 ×N2 matrix given by a summation

Xk =

tk∑
r=1

dYre, Yr ∈MN (C), dYre = Yr ⊗ Yr,

and we assume that there exists a sequence of Hermitian matrices (En)n∈Z ∈MN2(C) and non-singular matrices
(Rn)n∈Z ∈MN2(C) such that

A∗nR
∗
n+1Rn+1 = R∗nRnCn+1, n ≥ 0

R∗−n−1R−n−1C−n = A∗−n−1R
∗
−nR−n, n ≥ 0,

RnBn = EnRn, n ∈ Z.(39)

The previous conditions coincide with those of Theorem 3.1 when we consider the first line with the walk
restricted to Z≥0 and the second line with the walk restricted to Z<0. Let us define

Πj := R∗jRj ∈MN2(C), j ∈ Z.

Consider the two independent families of matrix-valued polynomials defined recursively from (38) as

Q1
0(x) = IN2 , Q2

0(x) = 0,

Q1
−1(x) = 0, Q2

−1(x) = IN2 ,

xQαn(x) = Qαn+1(x)An +Qαn(x)Bn +Qαn−1(x)Cn, α = 1, 2, n ∈ Z.
(40)

and the block vectors Qα(x) =
(
. . . , Qα−2(x), Qα−1(x), Qα0 (x), Qα1 (x), Qα2 (x), . . .

)
, α = 1, 2, are linearly indepen-

dent solutions, depending on the initial values at n = 0, of the eigenvalue equation xQα(x) = Qα(x)Φ.
As in the classical case, we introduce the block tridiagonal matrix

Φ̆ =


G0 N1

M0 G1 N2

M1 G2 N3

. . .
. . .

. . .

 ,
where each block entry is a 2N2 × 2N2 matrix, given by

G0 =

[
B0 A−1

C0 B−1

]
, Mn =

[
An 0
0 C−n−1

]
, n ≥ 0,

Gn =

[
Bn 0
0 B−n−1

]
, Nn =

[
Cn 0
0 A−n−1

]
, n ≥ 1.

The term folding trick comes from the transformation of the original walk Φ, whose graph is represented in
Figure 2, to the QMC described by Φ̆, which is represented by the folded walk in Figure 3.
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−2 −1 0 1 2 . . .. . .
A−3 A−2 A−1 A0 A1 A2

C2C1C1C0C−1C−2

B1 B2B−2 B−1 B0

Figure 2. QMC Φ on Z.

0 1 2 . . .

−1 −2 −3 . . .

A0 A1 A2

C1 C2 C3

B0 B1 B2

C−1 C−2 C−3

A−2 A−3 A−4

B−1 B−2 B−3

C0A−1

Figure 3. Folded walk of Φ on Z≥0 × {1, 2} given by Φ̆.

Note that Φ̆ is a block tridiagonal matrix on Z≥0, thereby we can apply all the properties we have seen in
previous sections. The following polynomials are defined in terms of (40),

(41) Qn(x) =

[
Q1
n(x) Q1

−n−1(x)
Q2
n(x) Q2

−n−1(x)

]
∈M2N2(C), n ≥ 0,

and these satisfy

xQ0(x) =Q1(x)M0 +Q0(x)G0, Q0(x) = I2N2 ,

xQn(x) =Qn+1(x)Mn +Qn(x)Gn +Qn−1(x)Nn, n = 1, 2, . . .

The leading coefficient of Qn(x) is always a nonsingular matrix. Moreover, for

R̆n :=

[
Rn 0N2

0N2 R−n−1

]
, n ≥ 0, Ĕ0 :=

[
E0 R0A−1R

−1
−1

R−1C0R
−1
0 E−1

]
, Ĕn :=

[
En 0N2

0N2 E−n−1

]
, n ≥ 1,

we see that the block matrices of Φ̆ satisfy the conditions (39) for n ≥ 0 :

M∗nR̆
∗
n+1R̆n+1 = R̆∗nR̆nNn+1, R̆nGn = ĔnR̆n,

where matrices R̆n are non-singular and Ĕn are Hermitian for all n ≥ 0. Defining

Π̆j := R̆∗j R̆j ∈M2N2(C), j = 0, 1, 2, . . . ,

the correspondence between Π̆j and Πj is

Π̆j :=

[
Πj 0N2

0N2 Π−j−1

]
.

By [10] (see also (14)), there exists a weight matrix W leading to the Karlin-McGregor formula for Φ̆ :

(42) Φ̆
(n)
ji = Π̆j

∫
R
xnQ∗j (x)dW (x)Qi(x).

Once we have found the weight matrix appearing on (42), we can also obtain the blocks Φ
(n)
ji of the original

walk Φ. The key for this operation is the following proposition:
18



Proposition 7.1. Assume that Φ is a QMC of the form (38). The relation between Φ̆
(n)
ij and Φ

(n)
ij is

(43) Φ̆
(n)
ji =

[
Φ

(n)
ji Φ

(n)
j,−i−1

Φ
(n)
−j−1,i Φ

(n)
−j−1,−i−1

]
, i, j ∈ Z≥0.

Proof. Since Φ̆ji = 02d2 for |i− j| > 1, it is easy to see that (43) holds for n = 1. So, suppose that (43) is valid
for some n, then

Φ̆
(n+1)
ji = [Φ̆Φ̆n]ji =

∞∑
k=0

Φ̆jkΦ̆
(n)
ki = Φ̆j,j−1Φ̆

(n)
j−1,i + Φ̆jjΦ̆

(n)
ji + Φ̆j,j+1Φ̆

(n)
j+1,i

= Mj−1Φ̆
(n)
j−1,i +GjΦ̆

(n)
ji +Nj+1Φ̆

(n)
j+1,i.

By the induction hypothesis and the result above,

Φ̆
(n+1)
ji =[
Aj−1 0

0 C−j

] [
Φ

(n)
j−1,i Φ

(n)
j−1,−i−1

Φ
(n)
−j,i Φ

(n)
−j,−i−1

]
+

[
Bj 0
0 B−j−1

][
Φ

(n)
j,i Φ

(n)
j,−i−1

Φ
(n)
−j−1,i Φ

(n)
−j−1,−i−1

]

+

[
Cj+1 0

0 A−j−2

][
Φ

(n)
j+1,i Φ

(n)
j+1,−i−1

Φ
(n)
−j−2,i Φ

(n)
−j−2,−i−1

]

=

[
Aj−1Φ

(n)
j−1,i +BjΦ

(n)
j,i + Cj+1Φ

(n)
j+1,i Aj−1Φ

(n)
j−1,−i−1 +BjΦ

(n)
j,−i−1 + Cj+1Φ

(n)
j+1,−i−1

C−jΦ
(n)
−j,i +B−j−1Φ

(n)
−j−1,i +A−j−2Φ

(n)
−j−2,i C−jΦ

(n)
−j,−i−1 +B−j−1Φ

(n)
−j−1,−i−1 +A−j−2Φ

(n)
−j−2,−i−1

]

=

[
Φ

(n+1)
ji Φ

(n+1)
j,−i−1

Φ
(n+1)
−j−1,i Φ

(n+1)
−j−1,−i−1

]
.

�

Note that we can evaluate Φ̆
(n)
ji by (42) and then extract the block Φ

(n)
ji as in (43). Further, for a density

operator ρ ∈MN (C), we have

pji;ρ(n) = Tr
(

Φ
(n)
ji ρ

)
= Tr

([
Φ

(n)
ji 0

0 0

] [
ρ
0

])
= Tr

([
IN2 0
0 0

]
Φ̆

(n)
ji

[
IN2 0
0 0

] [
ρ
0

])
.

However, we would like to obtain the probability above avoiding the evaluation of Φ̆
(n)
ji . This can be done via a

generalization of the Karlin-McGregor formula on Z≥0. We proceed as follows: first, write the decomposition

dW (x) =

[
dW11(x) dW12(x)
dW21(x) dW22(x)

]
,

where dW21(x) = dW ∗12(x), since dW (x) is positive definite. Then one has for i, j ∈ Z≥0,

Φ̆
(n)
ji = Π̆j

∫
R
xnQ∗j (x)dW (x)Qi(x)

(41)
=

[
Πj 0
0 Π−j−1

] ∫
R
xn
[
Q1
j (x) Q1

−j−1(x)

Q2
j (x) Q2

−j−1(x)

]∗ [
dW11(x) dW12(x)
dW ∗12(x) dW22(x)

] [
Q1
i (x) Q1

−i−1(x)
Q2
i (x) Q2

−i−1(x)

]
=

2∑
α,β=1

[
Πj

∫
R x

nQα∗j (x)dWαβ(x)Qβi (x) Πj

∫
R x

nQα∗j (x)dWαβ(x)Qβ−i−1(x)

Π−j−1

∫
R x

nQα∗−j−1(x)dWαβ(x)Qβi (x) Π−j−1

∫
R x

nQα∗−j−1(x)dWαβ(x)Qβ−i−1(x)

]
.

Joining equation above and Proposition 7.1, we obtain the Karlin-McGregor formula for a QMC on Z, given by

(44) Φ
(n)
ji =

2∑
α,β=1

Πj

∫
R
xnQα∗j (x)dWαβ(x)Qβi (x), for any i, j ∈ Z, n ≥ 0.
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Conversely, if there exist weight matrices dW11(x), dW12(x), dW22(x) such that Φ
(n)
ji is of the form (44), then

Φ̆
(n)
ji is of the form

Φ̆
(n)
ji = Π̆j

∫
R
xnQ∗j (x)dW (x)Qi(x).

The weight matrix

W (x) =

[
W11(x) W12(x)
W ∗12(x) W22(x)

]
,

is called the spectral block matrix of Φ.

Remark 7.2. Extending Theorem 4.1 to the QMC on Z, we observe that, since Q1
0 = Q2

−1 = IN and Q2
0 =

Q1
−1 = 0N , we obtain

∞∑
n=0

p00;ρ(n) =

∞∑
n=0

Tr
[
Φ

(n)
00 vec(ρ)

]
= lim

z→1

∞∑
n=0

znTr

[
Π0

∫
R
xnQ1∗

0 (x)dW11Q
1
0(x)vec(ρ)

]

= lim
z→1

∞∑
n=0

Tr

[
Π0

∫
R

(zx)n(x)dW11(x)vec(ρ)

]
= lim

z→1
Tr

[
Π0
dW11(x)

1− zx
vec(ρ)

]
= lim

z→1
z Tr

[
Π0B(z−1;W11)vec(ρ)

]
= lim

z→1
Tr [Π0B(z;W11)vec(ρ)] ,

where B(z;W ) is the Stieltjes transform of a weight matrix W defined by (12). Analogously,

∞∑
n=0

p−1,−1;ρ(n) = lim
z→1

Tr [Π−1B(z;W22)vec(ρ)] .

Since we are assuming that Π0 and Π−1 are positive definite matrices, vertex |0〉 is ρ-recurrent if and only if

lim
z↓1

Tr (B(z;W11)vec(ρ)) =∞,

and vertex |−1〉 is ρ-recurrent if and only if

lim
z↓1

Tr (B(z;W22)vec(ρ)) =∞.

Let us write the matrix Φ in the form

(45) Φ =

[
Φ− C
A Φ+

]
, C =

 ...
...

...
0 0 0 · · ·
C0 0 0 · · ·

 , A =


· · · 0 0 A−1

· · · 0 0 0
· · · 0 0 0

...
...

...

 ,

Φ+ =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 , Φ− =


. . .

. . .
. . .

A−4 B−3 C−2

A−3 B−2 C−1

A−2 B−1

 .
Our goal now is to write the Stieltjes transforms associated with the weight matrices Wαβ, α, β = 1, 2, in terms
of the Stieltjes transforms associated with W±, the weight matrices associated with Φ±. For that we will need
the following lemma.

Lemma 7.3. [18] Let B be a Banach space and T1 : Dom(T1)→ B and T2 : Dom(T2)→ B be linear operators
with block representations

T1 =

[
A 0
C D

]
and T2 =

[
A C
0 D

]
,

respectively. If A and D are invertible, then T1 and T2 have inverses, given by

T−1
1 =

[
A−1 0

−D−1CA−1 D−1

]
and T−1

2 =

[
A−1 −A−1CD−1

0 D−1

]
.
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Denote by Pk, P−k and P+
k the projection maps onto the space generated by site |k〉 on Z, Z<0 and Z≥0,

respectively, and Qk = IZ − Pk, Q−k = IZ<0 − P−k , Q
+
k = IZ≥0

− P+
k . Then, applying Lemma 7.3, we obtain

Φ(I − zQ0Φ)−1 =

[
Φ− C
A Φ+

] [
I − zΦ− −zC

0 I − zQ+
0 Φ+

]−1

=

[
Φ− C
A Φ+

] [
(I − zΦ−)−1 z(I − zΦ−)−1C(I − zQ+

0 Φ+)−1

0 (I − zQ+
0 Φ+)−1

]
=

[
Φ−(I − zΦ−)−1

[
zΦ−(I − zΦ−)−1 + I

]
C(I − zQ+

0 Φ+)−1

A(I − zΦ−)−1 [zA(I − zΦ−)−1C + Φ+](I − zQ+
0 Φ+)−1

]
.

(46)

By the same arguments,

Φ(I − zQ−1Φ)−1 =

[
Φ− C
A Φ+

] [
I − zQ−−1Φ− 0
−zA I − zΦ+

]−1

=

[
Φ− C
A Φ+

] [
(I − zQ−−1Φ−)−1 0

z(I − zΦ+)−1A(I − zQ−−1Φ−)−1 (I − zΦ+)−1

]
=

[
(Φ− + zC(I − zΦ+)−1A)(I − zQ−−1Φ−)−1 C(I − zΦ+)−1(
I + zΦ+(I − zΦ+)−1

)
A(I − zQ−−1Φ−)−1 Φ+(I − zΦ+)−1

]
,

and

C(I − zQ0Φ+)−1 =

 ...
...

...
0 0 0 · · ·
C0 0 0 · · ·

[I 0
∗ ∗

]−1

=

 ...
...

0 0 · · ·
C0 0 · · ·

 .
Denoting

Φ−(z) :=
∞∑
n=0

zn
(
Φ−
)n

= (I − zΦ−)−1, Φ+(z) :=
∞∑
n=0

zn
(
Φ+
)n

= (I − zΦ+)−1,

we obtain

F00(z) = zP0Φ(I − zQ0Φ)−1P0

=

[
0 0
0 zP+

0

[
zA(I − zΦ−)−1C(I − zQ0Φ+)−1 + Φ+(I − zQ+

0 Φ+)−1
]
P+

0

]
,

where the only non-null block equals

=z2P+
0



· · · A−1Φ−−1,−2(z) A−1Φ−−1,−1(z)

· · · 0 0
· · · 0 0

...
...


 ...

...
...

0 0 0 · · ·
C0 0 0 · · ·


P+

0 + F+
00(z)

= z2P+
0

[
A−1Φ−−1,−1(z)C0 0

0 0

]
P+

0 + F+
00(z) = z2

[
A−1Φ−−1,−1(z)C0 0

0 0

]
+ F+

00(z).

Note that F00(z) has only one non-null N2 × N2 block, due to the projections multiplying on the left and on
the right-hand side. Without loss of generality, we will rewrite this kind of blocks as its only non-null block.
For instance, we have

F00(z) = z2A−1Φ−−1,−1(z)C0 + F+
00(z).

Applying twice the equation

(47) Fji(s) = Φjj(s)
−1(Φji(s)− δjiI),

for F00(z) and F+
00(z), we obtain

I − Φ00(z)−1 = z2A−1Φ−−1,−1(z)C0 + I − Φ+
00(z)−1,

and after some algebra, we get

(48) Φ00(z) = Φ+
00(z)(I − z2A−1Φ−−1,−1(z)C0Φ+

00(z))−1.
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Analogously,

F−1,−1(z) = zP−−1

[
Φ−(I − zQ−1Φ−)−1 + zC(I − zΦ+)−1A(I − zQ0Φ−)−1

]
P−−1

= F−−1,−1(z) + z2CΦ+
00(z)A−1,

thus

Φ−1,−1(z) = (I − F−1,−1(z))−1 = (I − F−−1,−1(z)− z2CΦ+
00(z)A−1)−1

= Φ−−1,−1(z)(I − z2C0Φ+
00(z)A−1Φ−−1,−1(z))−1,

that is,

(49) Φ−1,−1(z) = Φ−−1,−1(z)(I − z2C0Φ+
00(z)A−1Φ−−1,−1(z))−1.

Now we use equation (46) to obtain

F0,−1(z) = zP0A(I − zΦ−)−1P−1 = zA−1Φ−−1,−1(z),

which, together with equations (47) and (48), gives

(50) Φ0,−1(z) = Φ00(z)F0,−1(z) = zΦ+
00(z)(I − z2A−1Φ−−1,−1(z)C0Φ+

00(z))−1A−1Φ−−1,−1(z).

In the same way,

F−1,0(z) = zC0Φ+
00(z),

gives

(51) Φ−1,0(z) = Φ−1,−1(z)F−1,0(z) = zΦ−−1,−1(z)(I − z2C0Φ+
00(z)A−1Φ−1,−1(z))−1C0Φ+

00(z).

We notice that the block matrices of both Φ+ and Φ− satisfy the conditions of equation (39), thus there are
positive weight matrices W± associated with Φ± for which the associated polynomials are orthogonal. Then,
we can write

Π+
0 :=

∫
R
dW+ and Π−−1 :=

∫
R
dW− .

Recalling that (see (15))

Φji(s) = Πj

∫
R

1

1− sx
Q∗j (x)dW (x)Qi(x),

and Q1
0 = Q2

−1 = IN2 , Q2
0 = Q1

−1 = 0N2 , we obtain the following Stieltjes transforms relations

B(z−1;W11) = zΠ−1
0 Φ00(z), B(z−1;W22) = zΠ−1

−1Φ−1,−1(z), B(z−1;W12) = zΠ−1
−1Φ0,−1(z),

B(z−1;W21) = zΠ−1
−1Φ−1,0(z), B(z−1;W+) = z(Π+

0 )−1Φ+
00(z), B(z−1;W−) = z(Π−−1)−1Φ−−1,−1(z).

Joining with the identities (48),(49),(50),(51), the new Stieltjes transform identities are obtained:

Π0B(z;W11) = Π+
0 B(z;W+)(I −A−1Π−−1B(z;W−)C0Π+

0 B(z;W+))−1,

Π−1B(z;W22) = Π−−1B(z;W−)(I − C0Π+
0 B(z;W+)A−1Π−−1B(z;W−))−1,

Π0B(z;W12) = Π+
0 B(z;W+)(I −A−1Π−−1B(z;W−)C0Π+

0 B(z;W+))−1A−1Π−−1B(z;W−),

Π−1B(z;W21) = Π−−1B(z;W−)(I − C0Π+
0 B(z;W+)A−1Π−−1B(z;W−))−1C0Π+

0 B(z;W+).

(52)

Sometimes the operators Π+
i and Π−i are equal to the identity operator. In this case, (52) are reduced to

Π0B(z;W11) = B(z;W+)(I −A−1B(z;W−)C0B(z;W+))−1,

Π−1B(z;W22) = B(z;W−)(I − C0B(z;W+)A−1B(z;W−))−1,

Π0B(z;W12) = B(z;W+)(I −A−1B(z;W−)C0B(z;W+))−1A−1B(z;W−),

Π−1B(z;W21) = B(z;W−)(I − C0B(z;W+)A−1B(z;W−))−1C0B(z;W+).

(53)

The above results will be applied in the following examples so that one is able to conclude recurrence properties
of the walk.
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Example 7.4. Let Φ be a homogeneous OQW on S = Z with matrix representation

Φ =



. . .
. . .

. . . 0 dLe
dRe 0 dLe

dRe 0 dLe
dRe 0 dLe

dRe 0 dLe
. . .

. . .
. . .


, R =

[
1√
3

0

0 1√
2

]
, L =

[√
2√
3

0

0 1√
2

]
.

In order to study recurrence or transience of the walk for each density operator on C2, we will apply the Stieltjes
transformation discussed above. The polynomials associated with Φ are

Q1
0(x) = I4, Q2

0(x) = 04

Q1
−1(x) = 04, Q2

−1(x) = I4

xQαn(x) = Qαn+1(x)dRe+Qαn−1(x)dLe, α, β = 1, 2, n ∈ Z.

The weight matrix associated with Φ+ is

W+(x) =



3
√

2
4π

[√(
4− 9x2

2

)]
+

21/4
√

3
2π

[√(√
2(2
√

2− 3x2)
)]

+

21/4
√

3
2π

[√(√
2(2
√

2− 3x2)
)]

+
2(x2−1+

√
1−x2)

x2(1−x2)


and since the matrices are diagonal, it is easy to see that W+(x) = W−(x). The weight matrix W11(x) is obtained
by an application of the first formula of (52),

B(z;W11) = B(z;W+)(I −A−1B(z;W+)C0B(z;W+))−1,

and then we apply the Perron-Stieltjes inversion formula to obtain the referred measure. After some calculus,

we have, for a density matrix ρ =

[
a b
b∗ 1− a

]
on C2,

∞∑
n=0

p00;ρ(n) =
∞∑
n=0

Tr
(

Φ
(n)
00 vec(ρ)

)
= lim

z→∞
Tr (Φ00(z)vec(ρ)) = lim

z→∞
Tr (B(W11, z)vec(ρ))

(48)
= lim

z→∞

1− a√
1− z2

+
6a(8
√

2z2 + 3
√

18− 16z2 − 9
√

2)

(3
√

2 +
√

18− 16z2)(18− 16z2)
=

{
∞, if a < 1

3, if a = 1
.

Therefore site |0〉 is ρ-transient for ρ =

[
1 0
0 0

]
and ρ-recurrent otherwise.

♦

It is worth recalling that the weight matrix of the example above is a particular case of Proposition 1.3 of
[21].

Example 7.5. Consider a QMC Φ̂ induced by the block matrix on V = {0, 1, 2, . . .} given by

Φ =


B rI
tI B rI

tI B rI
. . .

. . .
. . .

 , 0 < r, t < 1,

where B = [σB], σB = V ∗1 · V1 + V ∗2 · V2, where V1 and V2 are the same as in the example appearing in Section
5. For simplicity we assume 0 < a, b, s < 1, a2 + b2 < 1. In this way we have that Tr(σ(X)) = sTr(X), so we
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suppose that r + s + t = 1 in order to have that Φ̂ is trace-preserving. The matrices Rn =
(√

r
t

)n
satisfy the

conditions of Equation (39), thus we denote

Πn = R∗nRn =
(r
t

)n
.

By the classical symmetrization

Y = diag(Y0, Y1, . . .), Yi =

(√
r

t

)i−1

I4, i = 0, 1, . . . ,

we obtain

J = YΦY−1 =


B kI
kI B kI

kI B kI
. . .

. . .
. . .

 , k =
√
rt.

The matrix B is symmetric, thus we can apply the spectral theorem to get

B = UDU∗, D = s


1 0 0 0
0 1 0 0
0 0 1− 2a2 − 2b2 0
0 0 0 1− 2a2 − 2b2

 ,
where

U =

√
2

2


1 a√

a2+b2
− b√

2a2+b2
− ab√

2a2+b2
√
a2+b2

0 b√
a2+b2

2a√
2a2+b2

− b2√
2a2+b2

√
a2+b2

0 b√
a2+b2

0
√

2a2+b2√
a2+b2

1 − a√
a2+b2

b√
2a2+b2

ab√
2a2+b2

√
a2+b2

 ,
which gives

H(x) := U


(s−x)2

k2
− 4 0 0 0

0 (s−x)2

k2
− 4 0 0

0 0 (s(1−2a2−2b2)−x)2

k2
− 4 0

0 0 0 (s(1−2a2−2b2)−x)2

k2
− 4

U∗,
and then the associated weight matrix is ([12])

dW (x) =
1

4πk(a2 + b2)
×[w1(x)]+


2a2 + b2 ab ab b2

ab b2 b2 −ab
ab b2 b2 −ab
b2 −ab −ab 2a2 + b2

+ [w2(x)]+


b2 −ab −ab −b2
−ab 2a2 + b2 −b2 ab
−ab −b2 2a2 + b2 ab
−b2 ab ab b2


 dx,

where

w1(x) =

√
4− (s− x)2

k2
, w2(x) =

√
4− (s(1− 2a2 − 2b2)− x)2

k2
.

Note that we can rewrite the weight matrix in terms of w1(x), w2(x) and B by

(54)

dW (x) =
w1(x)

4πk(a2 + b2)

(
(2a2 + 2b2 − 1)I4 + 1

sB
)

+
w2(x)

4πk(a2 + b2)

(
I4 − 1

sB
)

=
1

2kπ
U


[w1(x)]+

[w1(x)]+
[w2(x)]+

[w2(x)]+

U∗,
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whose support is given by

R := supp(dW ) = {y ∈ R :
1

k
(yI4 −B) has an eigenvalue in [−2, 2]}

= [−2k + s(1− 2a2 − 2b2), s+ 2k].
(55)

The Stieltjes transform of W is

(56) B(z;W ) =

∫
R

1

2kπ
U


w1(x)
z−x

w1(x)
z−x

w2(x)
z−x

w2(x)
z−x

U∗dx,
where the integrals of the elements on the diagonal are∫

R

w1(x)dx

z − x
=
π

k
(z − s− i

√
4k2 − (s− z)2) := 2kπh1(z),∫

R

w2(x)dx

z − x
=
π

k
(z − s(1− 2a2 − 2b2)− i

√
4k2 − (s(1− 2a2 − 2b2)− z)2) := 2kπh2(z).

(57)

The transience of this walk can be computed by using Theorem 4.1:

lim
z↓1

Tr

[
z vec−1

(
B(z;W )vec

([
u v
v∗ 1− u

]))]
=

1− s+
√
s2 − 2s+ 1− 4k

2k2

=
r + t+

√
r2 − 2rt+ t2

2rt

=

{
1/r, if t ≥ r
1/t, otherwise.

Since this limit is valid for any density operator ρ =

[
u v
v∗ 1− u

]
∈ M(C2), we conclude that this QMC is

transient.

Let us extend the above QMC to the real line: now the set of vertices is V = Z and the new QMC Φ has
matrix representation

Φ =


. . .

. . .
. . .

tI B rI
tI B rI

tI B rI
. . .

. . .
. . .

 .
Take the splitting of equation (45) applied to Φ :

Φ =

[
Φ− C
A Φ+

]
, C =

 ...
...

...
0 0 0 · · ·
rI 0 0 · · ·

 , A =


· · · 0 0 tI
· · · 0 0 0
· · · 0 0 0

...
...

...

 .
The weight matrix associated with Φ+ is W+ = W , where W is given by (54) and with support R given by
(55). We have Π+

0 = Π−−1 = I4 and the Stieltjes transform of W+ is given by (56) and (57). The operators

Π0 = R∗0R0 and Π−1 = R∗−1R−1 are the ones obtained by equation (39), giving Π0 = I and Π−1 = A−1C = r
t I.

For simplicity, assume s = 2k. Then, we apply formula (52) to obtain

B(z;W11) = U


l1(z)

l1(z)
l2(z)

l2(z)

U∗,
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where

l1(z) =

√
z(4k − z)
z(z − 4)

, l2(z) =

√
−z(z + 4k)

z(4k − z)
,

and we evaluate

B(z;W22) =
t

r
B(z;W11)

B(z;W21) = B(z;W12) = tB(z;W11)B(z;W+) = tU


h1(z)l1(z)

h1(z)l1(z)
h2(z)l2(z)

h2(z)l2(z)

U∗,
where hi(z), i = 1, 2 are defined by (57). Applying [[11], eq. (1.10)] we obtain the spectral measure of Φ,

dW (x) =

[
U 0
0 U

] [
D11(x) D12(x)
D12(x) t

rD11(x)

] [
U∗ 0
0 U∗

]
,

where

D11(x) = diag

 −1[√
x(4k − x)

]
+

,
−1[√

x(4k − x)
]

+

,
−1[√

−x(4k + x)
]

+

,
−1[√

−x(4k + x)
]

+

 ,

D12(x) = diag

 2k − x

2r
[√

x(4k − x)
]

+

,
2k − x

2r
[√

x(4k − x)
]

+

,
−2k − x

2r
[√
−x(4k + x)

]
+

,
−2k − x

2r
[√
−x(4k + x)

]
+

 .

The procedure to obtain the spectral measure for Φ was inspired by the classical case. The reader can note that
the expressions appearing in (53) are analogous to the classical reasoning. However, some of the transition
matrices do not commute, thus the order of the operators in such formulae has to be maintained.

Now, for any density operator on C2, we have by Remark 7.2 that

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr
(
Π−1

0 B(z;W11)vec(ρ)
)

= lim
z→1

1√
z(z − 4k)

=

{
1√

1−4k
, if k < 1/4,

∞, if k = 1/4.

That is, the walk Φ (for s = 2k) is recurrent only when k = 1/4 and this happens for t = r = 1/4. For the
general case we can follow the same steps to obtain

∞∑
n=0

p00;ρ(n) = lim
z→1

1√
z2 − 2sz + s2 − 4k2

=

{
1√

1−2s+s2−4k2
, if s 6= 1− 2k,

∞, ifs = 1− 2k.

Since we are assuming r+ s+ t = 1 and k =
√
rt, recurrence occurs when 0 = r− 2

√
rt+ t = (

√
r−
√
t)2, that

is, when t = r.

♦

Remark 7.6. The example in Section 5 is such that σB + t2I < I, thus
∑∞

j=0 p0j;ρ(n) < 1 for some initial

density operator ρ. This case is interpreted as a walk with a vertex named |−1〉 , which is an absorbing vertex of
the QMC, giving the correction

∑∞
j=−1 p0j;ρ(n) = 1. Now we point out the difference that an absorbing vertex

on the QMC can take: the QMC Φ acting on Z≥0 has an absorbing vertex on site |0〉 , and it is transient for
any choice of t, r, s, a, b. On the other hand, for a, b, s fixed and t = r = 1− s, the extended QMC on the integer
line is always recurrent.

8. The case of non-symmetric weight matrices

As discussed previously, Theorem 3.1 describes the fundamental conditions regarding the existence of a
positive weight matrix associated with a given QMC. Then, a natural question arises: is there anything that
can be done in the case of QMC that do not satisfy such conditions, perhaps involving a non symmetric matrix
of measures? Based on [28], we are in fact able to discuss a non-general Karlin-McGregor formula for Φ by
using a different kind of polynomial orthogonality, where the term non-general means that we obtain the (i, j)-th
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block entry of Φn only for i = 0, which will allow us to obtain certain developments for the recurrence problems
we are interested in.

We will be mostly interested in homogeneous QMCs, that is, operators Φ of the form (13), such that An =
A,Bn = B,Cn+1 = C, ∀n = 0, 1, 2, . . . for some A,B,C ∈ MN2(C). For instance, if we have a homogeneous
OQW with

A =
1√
3

[
1 0
−1 1

]
, C =

1√
3

[
1 1
0 1

]
, B = 02,

then A0C1 is not Hermitian, consequently it is not possible to obtain a proper positive definite weight matrix
W that makes the corresponding matrix-valued polynomials orthogonal with respect to W. However, we may
consider another kind of orthogonality for the associated polynomials in terms of a reasoning seen in [28]. For
a homogeneous QMC, Theorem 3.4 of [28] assures the existence of a weight matrix W supported on some
subspace ∆ of C such that the polynomials Qn(x), defined recursively by

Q0(x) = IN2 , Q−1(x) = 0N2 ,

xQn(x) = Qn+1(x)An +Qn(x)Bn +Qn−1(x)Cn,
(58)

satisfy

(59)

∫
∆
xkdW (x)Qn(x) = 0,

for all integers n > k ≥ 0. Polynomials {Qn(x)}n≥0 for which there exists a weight matrix W satisfying (59)
are called semi-orthogonal polynomials with respect to W . Since this concept of orthogonality is weaker,
the Karlin-McGregor formula for non-symmetric QMCs will be weaker as well. Nevertheless, we will be able to
obtain an application of such construction for the problem of recurrence.

For completeness, let us derive the Karlin-McGregor formula for non-symmetric weight matrices with the nec-
essary adaptations with respect to semi-orthogonality. We have xnQ(x) = Q(x)Φn, whereQ(x) = (Q0(x), Q1(x), . . .).
Component-wise,

(60) xnQr(x) =

∞∑
k=0

Qk(x)Φ
(n)
kr .

Fix i, j ∈ Z≥0 vertices. Fix a time parameter n with the extra condition n ≥ i, then multiply Q∗j (x) on the

left-hand side of (60) with r = j + i and integrate on ∆ to obtain

(61)

∫
∆
xnQ∗j (x)dW (x)Qj+i(x) =

∞∑
k=0

∫
∆
Q∗j (x)dW (x)Qk(x)Φ

(n)
k,j+i

(59)
=

j∑
k=0

∫
∆
Q∗j (x)dW (x)Qk(x)Φ

(n)
k,j+i.

Hypothesis n < i in this situation would make the integral on the left-hand side of (61) to vanish, by an
application of (59). The same idea is applied to the right-hand side of (61), where we want the sum of integrals
to become only one term, which happens for the particular case j = 0:∫

∆
xnQ∗0(x)dW (x)Qi(x) =

∫
∆
Q∗0(x)dW (x)Q0(x)Φ

(n)
0,i .

Hence, we obtain the Karlin McGregor Formula for non-symmetric QMCs:

(62) Φ
(n)
0,i =

(∫
∆
dW (x)

)−1 ∫
∆
xndW (x)Qi(x), i ∈ Z≥0, n = 0, 1, 2, . . .

This equation gives, for a fixed vertex i ∈ Z≥0, the (0, i)-th block entry of Φn for any time n ≥ 0. The case n ≥ i
follows from the construction above and, for n < i, Φ

(n)
0,i = 0d2 since Φ is block tridiagonal and the right-hand

side of equation (62) vanishes by equation (59). Therefore, we can obtain the probability for the walker to reach
site |0〉, given that it started on site |i〉 with initial state ρ ∈MN (C), by

p0i;ρ(n) = Tr
(

Φ
(n)
0,i ρ

)
= Tr

((∫
∆
dW (x)

)−1 ∫
∆
xndW (x)Qi(x)ρ

)
, i ∈ Z≥0, n = 0, 1, 2, . . . .
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Regarding the case of a finite number of vertices V = {0, 1, 2, . . . , N}, we proceed as expected: the eigenvalues
of Φ are the roots of the determinant of

RN+1(x) = QN (x)(xI −BN )−QN−1(x)CN ,

where {Qn(x)}Nn=0 are the polynomials associated with Φ. Suppose that Φ describes a homogeneous QMC, then
{Qn(x)}Nn=0 are semi-orthogonal with respect to the measure

Wk = lim
z→λk

(λk − z) ([Φ]− zI)−1
00 ,

that is,
τ∑
k=1

λikWkQj(λk) = 0,

for j > i, where τ is the number of eigenvalues of Φ counting multiplicities. The Karlin-McGregor formula for
this kind of QMC is then

Φ
(n)
0j =

τ∑
k=1

λnkWkQj(λk).

Example 8.1. Let Φ be the homogeneous OQW with 3 vertices defined by

(63) Φ =

 0 dCe 0
dAe 0 dCe

0 dAe 0

 , A =
1√
3

[
1 1
0 1

]
C =

1√
3

[
1 0
−1 1

]
.

The polynomials associated with Φ are

Q0(x) = I4, Q1(x) = xdAe−1, Q2(x) = xQ1(x)dAe−1 − dCedAe−1.

Hence the eigenvalues of Φ are precisely the roots of

R3(x) = xQ2(x)−Q1(x)dCe,

which are

λ1 = 0, λ2 = −
√

2

3
, λ3 =

√
2

3
, λ4 = −

√
3

3
, λ5 =

√
3

3
,

λ6 = −
√

2
√

6− 3

6
+ i

√
2
√

6 + 3

6
, λ7 =

√
2
√

6− 3

6
− i
√

2
√

6 + 3

6
,

λ8 = −
√

2
√

6− 3

6
− i
√

2
√

6 + 3

6
, λ9 =

√
2
√

6− 3

6
+ i

√
2
√

6 + 3

6
.

Joining the results of [16] and [28], we obtain

9∑
k=1

Q∗i (λk)WkQj(λk) =

{
04, if i > j

Fij ∈M4(C),not necessarily null if i ≤ j
,

where

Wk = lim
z→λk

(λk − z)([Φ]− zI12)−1
00

= lim
z→λk

(
(λk − z)

1

81z6 − 3z2 − 2
×

−81z6+9z4−2z2−2
z −27z4+6z2−1

3z −27z4+6z2−1
3z −z(9z2 + 5)

27z4+6z2−1
3z −729z8−162z6−54z4−z2+2

z(9z2−2)
z(81z4+27z2−14)

9z2−2
21z2+1

3z

27z4+6z2−1
3z

z(81z4+27z2−14)
9z2−2

−729z8−162z6−54z4−z2+2
z(9z2−2)

21z2+1
3z

−z(9z2 + 5) −21z2+1
3z −21z2+1

3z −z(81z4 + 7)


 .
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Those values are

W1 =
1

6


6 1 1 0
−1 3 0 1
−1 0 3 1
0 −1 −1 0

 , W2 = W3 =
1

8


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 , W4 = W5 =
1

12


1 1 1 2
−1 −1 −1 −2
−1 −1 −1 −2
2 2 2 4

 ,

W6 = W7 =


3−i
√

5
−90+6i

√
15

− 1
12 − 1

12
7−i
√

15
−30+18i

√
15

− 1
12

5
30−6i

√
15

5
30−6i

√
15

−15−7i
√

15
−180+12i

√
15

− 1
12

5
30−6i

√
15

5
30−6i

√
15

−15−7i
√

15
−180+12i

√
15

7−i
√

15
−30+18i

√
15

15+7i
√

15
−180+12i

√
15

15+7i
√

15
−180+12i

√
15

11+3i
√

15
−30+18i

√
15

 ,

W8 = W9 =


−3−i

√
5

−90+6i
√

15
− 1

12 − 1
12

−7−i
√

15
−30+18i

√
15

− 1
12 − 5

30−6i
√

15
− 5

30−6i
√

15
15−7i

√
15

−180+12i
√

15

− 1
12 − 5

30−6i
√

15
− 5

30−6i
√

15
15−7i

√
15

−180+12i
√

15
−7−i

√
15

−30+18i
√

15
−15+7i

√
15

−180+12i
√

15
−15+7i

√
15

−180+12i
√

15
−11+3i

√
15

30+18i
√

15

 .
A simple calculation shows that

dW (x) =

9∑
k=1

Wk = I4.

Therefore the Karlin-McGregor formula for this OQW is

Φ
(n)
0,i =

(∫
∆
dW (x)

)−1 ∫
∆
xndW (x)Qi(x) =

9∑
k=1

λnkWkQi(λk), i = 0, 1, 2, n ≥ i.

For instance, we have

Φ
(10)
0,2 =

9∑
k=1

λnkWkQ2(λk) =
1

59049


63 −45 −45 54
−27 26 10 −45
−27 10 26 −45
90 −27 −27 63

 ,
which agrees with the corresponding block of Φ10. The probability of the walker to be on site |0〉 after 10 steps,

given that it started on site |2〉 with initial density operator ρ =

[
a b
b∗ 1− a

]
is

p02;ρ(10) = Tr

vec−1

 1

59049


63 −45 −45 54
−27 26 10 −45
−27 10 26 −45
90 −27 −27 63




a
b
b∗

1− a



 =

13 + 4a− 16Re(b)

6561
.

Analogously,

p02;ρ(2) =
1 + 4a− 4Re(b)

9
, p02;ρ(3) = 0, p02;ρ(4) =

1

27
.

However, the general Karlin-McGregor formula does not apply for this OQW. Indeed, we have

Φ
(2)
2,2 =

1

9


0 0 0 1
0 0 −1 1
0 −1 0 1
1 −1 −1 1

 ,
and

1

18


15 37 37 82
24 32 30 18
24 30 32 18
25 29 29 6

 =

(
9∑

k=1

Q∗2(λk)WkQ2(λk)

)−1( 9∑
k=1

λ2
kQ
∗
2(λk)WkQ2(λk)

)
6= Φ

(2)
2,2.
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The reason why this is happening is that Q2 and Q0 are not orthogonal, since

9∑
k=1

Q∗0(λk)WkQ2(λk) =
1

4


−2 4 4 28
−8 −21 −21 −62
−8 −21 −21 −62
4 18 18 68

 .
Let us study now the case of a larger number of sites n. Consider

Φ =


0 dCe
dAe 0 dCe

. . .
. . .

. . .

dAe 0 dCe
dAe 0

 ∈M4n(C),

where A,C are defined by (63). The compact form of Φ is given by

Φ̌ =


0 C
A 0 C

. . .
. . .

. . .

A 0 C
A 0

 ∈M3n(C), A =
1

3

 1 0 0
−1 1 0
1 −2 1

 , C =
1

3

1 2 1
0 1 1
0 0 1

 .

If we evaluate the eigenvalues λ1, . . . , λ3n of Φ̌ and put them on the complex plane, the outcome is a graph of
the form represented in Figure 4. Each dot represents an eigenvalue of Φ̌.

♦

Figure 4. Eigenvalues of Φ̌ with 20 vertices.

Example 8.2. Let Φ be a homogeneous QMC with 5 vertices defined by

Φ =


dB0e dC1e+ dC2e 0 0 0

dA1e+ dA2e dB0e dC1e+ dC2e 0 0
dA1e+ dA2e dB0e dC1e+ dC2e 0

dA1e+ dA2e dB0e dC1e+ dC2e
dA1e+ dA2e dB0e

 ,
where

B0 =

√
5

5

[
0 0
0 1

]
, C1 =

√
5

5

[
1 0
0 1

]
, C2 =

√
5

5

[
0 0
0 1

]
, A1 =

√
5

5

[
1 0
−1 1

]
, A2 =

√
5

5

[
1 0
1 1

]
.
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In compact form, Φ becomes

Φ̌ =


B C 0 0 0
A B C 0 0
0 A B C 0
0 0 A B C
0 0 0 A B

 , B =
1

5

0 0 0
0 0 0
0 0 1

 , A =
1

5

2 0 0
0 2 0
2 0 2

 , C =
1

5

1 0 0
0 1 0
0 0 2

 .
The eigenvalues of Φ̌ are given by

λ1 = 0, λ2 = −1

5
, λ3 =

1

5
, λ4 =

3

5
, λ5 = −

√
2

5
, λ6 =

√
2

5
,

λ7 = −
√

6

5
, λ8 =

√
6

5
, λ9 =

1

5
− 2
√

3

5
, λ10 =

1

5
+

2
√

3

5
,

and the weight matrix is given by

W1 =

 1/3 0 0
0 1/3 0

2/11 0 0

 , W2 =

 0 0 0
0 0 0
−1/2 0 1/4

 , W3 =

 0 0 0
0 0 0

−8/15 0 1/3

 , W4 =

 0 0 0
0 0 0

1/6 0 1/4


W5 =

 1/4 0 0
0 1/4 0

104+
√

2
292 0 0

 , W6 =

 1/4 0 0
0 1/4 0

104−
√

2
292 0 0

 , W7 =

 1/12 0 0
0 1/12 0

−17
√

6
20 −

67
30 0 0

 ,
W8 =

 1/12 0 0
0 1/12 0

−17
√

6
20 −

67
30 0 0

 , W9 =

 0 0 0
0 0 0

10529
4818 + 3016

√
3

2409 0 1/12

 , W10 =

 0 0 0
0 0 0

10529
4818 −

3016
√

3
2409 0 1/12

 .
The polynomials Qn(x) associated with Φ̌ (see (58)) satisfy (59), that is,

10∑
j=1

λnjW (j)Qk(λj) = 0,

for all integers n > k ≥ 0. As an example, formula (62) gives, for ρ =

[
a b
b∗ 1− a

]
, that

Φ̌
(7)
0,3 =

10∑
k=1

λ7
kW (k)Q3(λk) =

8

78125

 52 0 0
0 52 0

907 0 579

 =⇒ p03;ρ(7) =
4632 + 608a

15625
.

♦

Let us now consider the case of infinite vertices. For that we recall that the Stieltjes transform B(z;W )
associated with a homogeneous QMC Φ with matrix representation

Φ =


B C
A B C

A B C
. . .

. . .
. . .

 ,
where A,C ∈MN2(C) are non-singular, is given by

(64) B(z;W ) = (z −B − CB(z;W )A)−1.

Similarly, the Stieltjes transform B(z; W̃ ) associated with a QMC Φ̃ with matrix representation

Φ̃ =


B0 C
A0 B C

A B C
. . .

. . .
. . .

 ,
where A0, A,C ∈MN2(C) are non-singular, is given by

(65) B(z; W̃ ) = (z −B0 − CB(z;W )A0)−1.
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Example 8.3. Take V = Z≥0 and matrices R = L = 1√
2
I2,

B1 =

√
5

5

[
1 0
0 1

]
, B2 =

√
5

5

[
0 0
0 1

]
, R1 =

√
5

5

[
1 0
−1 1

]
, R2 =

√
5

5

[
1 0
1 1

]
.

We define a QMC on V whose compact form is

Φ̌ =


B0 C
A0 0 C

A 0 C
A 0 C

. . .
. . .

. . .

 , B0 = B̌1 + B̌2, A0 = Ř1 + Ř2, C = Ľ, A = Ř.

Denote by Φ̌0 the matrix

Φ̌0 =


0 C
A 0 C

A 0 C
. . .

. . .
. . .

 ,
and W,W0 the weight matrices associated with Φ̌ and Φ̌0, respectively. Using (64) and (65) we obtain

B(z;W0)(z) = (2z + 2
√
z2 − 1)I3.

and

B(z;W ) =
5

5z2 − 6z + 5

 2
√
z2 − 1 + 3z − 1 0 0

0 2
√
z2 − 1 + 3z − 1 0

2((25z2−20z−1)
√
z2−1+25z3−20z2−13z+8)

5z2−18z+13
0 2

√
z2 − 1 + 3z − 3

 .
With the Stieltjes transform, we may obtain the associated weight matrix for Φ̌ by applying the Perron-Stieltjes
inversion formula. A simple calculation shows that the weight matrix W is given by

W (x) =
5

π(5x2 − 6x+ 5)


2
√

1− x2 0 0

0 2
√

1− x2 0

2(25x2 − 20x− 1)
√

1− x2

5x2 − 18x+ 13
0 2

√
1− x2

 , x ∈ [−1, 1].

We now have ∫ 1

−1
Q∗i (x)dW (x)Qj(x) = 0, i > j,

thus formula (62) holds.

Let us now analyze recurrence of the first vertex of both QMCs Φ̌ and Φ̌0. By (16), we are able to conclude
whether the walk is recurrent just by considering the Stieltjes transform associated with the QMC, that is, we
do not need to obtain the explicit weight matrix associated with the referred QMC. Above, we determined the
weight matrix for completeness, and in order to write the transitions probabilities of the walk described by Φ
using the Karlin-McGregor formula.

Applying limits to the Stieltjes transform B(z;W0) and B(z;W ) associated with Φ̌0 and Φ̌, respectively, we
obtain

lim
z→1

Tr(B(z,W0)ρ) = lim
z→1

2z + 2
√
z2 − 1 = 2,

and using l’Hospital’s rule we get

lim
z→1

Tr(B(z,W )ρ) =∞,

for any density operator ρ ∈M2(C). Therefore, by (16), the first vertex |0〉 is transient for Φ̌0 and recurrent for
Φ̌.

♦
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Example 8.4. Take V = Z≥0 and matrices

(66) R1 =
1√
7

[
1 0

−1
√

3

]
, R2 =

1√
7

[
1 0

1
√

3

]
, L1 =

1√
7

[√
3 0

0 1

]
.

We define a QMC on V whose compact form is

Φ̌ =


0 C
A 0 C

A 0 C
. . .

. . .
. . .

 , A = Ř1 + Ř2, C = Ľ1.

The Stieltjes transform associated with Φ̌ satisfies

B(z;W )(zI3 − CB(z;W )A) = I3,

for which a solution is

(67) B(z;W ) =
7

12


7z − i

√
−49z2 + 24 0 0

0 7z − i
√
−49z2 + 24 0

−343z3 + 140z + (49z2 − 8)
√

49z2 − 24

49z2 − 32
0 7z − i

√
−49z2 + 24

 .
The weight matrix associated with Φ̌ is then

W (x) =
7

12


√

24− 49x2 0 0

0
√

24− 49x2 0

−(49x2 + 8)
√

24− 49x2

49x2 − 32
0

√
24− 49x2

 , x ∈

[
−2
√

6

7
,
2
√

6

7

]
.

The polynomials associated with Φ̌, Qk(x), satisfy∫ 2
√
6

7

− 2
√

6
7

xidW (x)Qj(x) = 0, i > j,

thus formula (62) holds. Finally, we conclude that vertex |0〉 is transient, since

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr (B(z,W )ρ)

=
49z − 7

√
49z2 − 24

12
+

7a

12

−343z3 + 140z + (49z2 − 8)
√

49z2 − 24

49z2 − 32
=

119 + 7a

102
<∞.

♦

Example 8.5. Let us consider the QMC on V = Z≥0 whose compact form is

Φ̌ =


C C
A 0 C

A 0 C
. . .

. . .
. . .

 , A = Ř1 + Ř2, C = Ľ1,

where

R1 =
1√
7

[
1 0

−1
√

3

]
, R2 =

1√
7

[
1 0

1
√

3

]
, L1 =

1√
7

[√
3 0

0 1

]
.

This QMC is similar to the one on Example 8.4 with the difference that the first block is replaced by C. Now Φ̌
is trace preserving and the associated Stieltjes transform to Φ̌, B(z;W ), satisfies

B(z;W )(zI3 − C − CB(z; W̃ )A) = I3,
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where B(z; W̃ ) is the associated Stieltjes transform to the QMC on Example 8.4. Thus, we obtain

B(z;W ) =


7
6

7z−6+
√

49z2−24
5−7z 0 0

0 7
2
−7z+2

√
3−
√

49z2−24
7
√

3z−9
0

343z3−196z2−126z+64+(49z2−28z−4)
√

49z2−24
160−384z−21z2+588z3−343z4

0 1
2

7z−2+
√

49z2−24
1−z

 .
Therefore,

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr (B(z;W )ρ)

=
7

3

(343z3 + (49z2 − 20)
√

49z2 − 24− 182z)a

343z3 − 245z2 − 224z + 160
+

1

2

7z − 2 +
√

49z2 − 24

1− z
=∞,

for any density operator ρ =

[
a b
b∗ 1− a

]
. Hence, this QMC is recurrent.

♦

Applying the folding trick to a nonpositive measure. It is worth noting that the folding trick can also
be applied to homogeneous QMCs whose matrix representations are not symmetrizable. Then, we can examine
the associated recurrence problem. In fact, let us recall equation (48):

Φ00(z) = Φ+
00(z)(I − z2A−1Φ−−1,−1(z)C0Φ+

00(z))−1.

In order to analyze recurrence of site |0〉 of a given QMC on Z, we have to calculate
∑∞

n=0 p00;ρ(n) =∑∞
n=0 Tr(Φ

(n)
00 ρ) for each density operator ρ. This can be done by using equation (48) in the following way:

(68)

∞∑
n=0

Φ
(n)
00 = lim

z↑1
Φ00(z) = lim

z↑1
Π+

0 B(z;W+)(I −A−1Π−−1B(z;W−)C0Π+
0 B(z;W+))−1,

where the Stieltjes transform appearing on the right-hand side are obtained by applying (17). Therefore, we have
the following result, which gives a recurrence criterion for a tridiagonal homogeneous QMC with non-singular
coins above and below the main diagonal.

Proposition 8.6. Fix N ∈ {1, 2, 3, . . .}, A,B,C operators on CN2
with A,C non-singular such that

Φ =


. . .

. . .
. . .

A B C
A B C

A B C
. . .

. . .
. . .

 ,

is a QMC on Z. Given a density operator ρ ∈MN (C), a vertex i ∈ Z is ρ-recurrent if and only if

(69) lim
z↑1

Tr
[
B(z;W+)(I −AΠ+

0 B(z;W+)CΠ+
0 B(z;W+))−1ρ

]
=∞,

where B(z;W+) is the solution of (64). Therefore a QMC Φ is recurrent if and only if (69) is satisfied for any
density operator ρ ∈MN (C).

Proof. Vertex |0〉 is ρ-recurrent if and only if

∞∑
n=0

Tr
(

Φ
(n)
00 ρ

)
=∞.

Since the QMC is homogeneous we have Φ+ = Φ−, hence (68) gives the equivalence between recurrence and
equation (69).
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Example 8.7. We will extend the QMC on Z≥0 given by Example 8.4 to Z. Let Φ be a homogeneous QMC
with compact matrix representation given by

Φ̌ =


. . .

. . .
. . .

A 0 C
A 0 C

A 0 C
. . .

. . .
. . .

 , A = Ř1 + Ř2, C = Ľ1,

where R1, R2 and L1 are given by (66). The Stieltjes transform associated with Φ+ is the same as the one given
by (67). Therefore, according to Proposition 8.6, we have

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr(B(z;W+)(I −AΠ+
0 B(z;W+)CΠ+

0 B(z;W+))−1ρ)

= lim
z→1

Tr

7


1√

49z2−24
0 0

0 1√
49z2−24

0

−343z3+84z+(49z2+8)
√

49z2−24
49z2−32

0 1√
49z2−24


 a

2b
1− a




= lim
z→1

Tr




7a√
49z2−24

14b√
49z2−24

7a−343z3+84z+(49z2+8)
√

49z2−24
49z2−32

+ 7(1−a)√
49z2−24




= lim
z→1

7a
−343z3 + 84z + (49z2 + 8)

√
49z2 − 24

49z2 − 32
+

7√
49z2 − 24

=
182a+ 595

425
,

for any density operator ρ =

[
a b
b∗ 1− a

]
. Therefore, we conclude that this QMC is transient.

♦
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of the Instituto de Matemáticas regarding his visit in January 2020, where part of this work was carried out.
NL acknowledges financial support by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior)
during the period 2018-2021.

References

[1] S. Attal, F. Petruccione, C. Sabot and I. Sinayskiy. Open Quantum Random Walks. J. Stat. Phys. (2012) 147:832-852.
[2] S. Attal, Lectures in quantum noise theory, http://math.univ-lyon1.fr/homes-www/attal/chapters.html.
[3] I. Bardet, D. Bernard and Y. Pautrat. Passage times, exit times and Dirichlet problems for open quantum walks. J. Stat. Phys.

(2017) 167:173-204.
[4] F. Benatti. Dynamics, information and complexity in quantum systems. Springer (2009).
[5] Ju. M. Berezans’kii. Expansions in Eigenfunctions of Selfadjoint Operators. Translations of Mathematical Monographs 17,

American Mathematical Society, Rhode Island, 1968.
[6] R. Carbone and Y. Pautrat. Open quantum random walks: reducibility, period, ergodic properties. Ann. Henri Poincaré (2016)

17:99-135.
[7] R. Carbone and Y. Pautrat. Homogeneous open quantum random walks on a lattice. J. Stat. Phys. (2015) 160:1125-1153.
[8] S. L. Carvalho, L. F. Guidi and C.F. Lardizabal. Site recurrence of open and unitary quantum walks on the line. Quantum Inf.

Process. (2017) 16:17.
[9] T. S. Chihara. An Introduction to Orthogonal Polynomials. Courier Corporation, 2011.

[10] H. Dette, B. Reuther, W. J. Studden and M. Zygmunt. Matrix measures and random walks with a block tridiagonal transition
matrix. SIAM J. Matrix Anal. Appl. (2006) 29:117-142.

[11] M. Domı́nguez de la Iglesia. Orthogonal polynomials in the spectral Analysis of Markov processes. Birth-death models and
diffusion. To appear in Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2021.

[12] A. J. Duran. Ratio asymptotics for orthogonal matrix polynomials. J. Approx. Theory (1999) 100:304-344

35

http://math.univ-lyon1.fr/homes-www/attal/chapters.html


[13] M. J. Cantero, L. Moral and L. Velázquez. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear
Algebra Appl. (2003) 362:29-56.
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[18] F. A. Grünbaum and L. Velázquez. A generalization of Schur functions: applications to Nevanlinna functions, orthogonal

polynomials, random walks and unitary and open quantum walks. Adv. Math. (2018) 326:352-464.
[19] S. Gudder. Quantum Markov chains. J. Math. Phys. 49, 072105 (2008).
[20] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press (1991).
[21] T. S. Jacq and C.F. Lardizabal. Open Quantum Random Walks on the Half-Line: The Karlin-McGregor formula, Path Counting

and Foster’s Theorem. J. Stat. Phys. (2017) 169:547-594.
[22] T. S. Jacq and C.F. Lardizabal. Homogeneous open quantum walks on the line: criteria for site recurrence and absorption.

Quantum Information and Computation, Vol. 21, No. 1 and 2 (2021) 0037-0058.
[23] S. Karlin and J. McGregor. Random walks. IIlinois J. Math. (1959) 3:66-81.
[24] C. F. Lardizabal and R.R. Souza. On a class of quantum channels, open random walks and recurrence. J. Stat. Phys. (2015)

159:772-796.
[25] H.-P. Breuer, F. Petruccione. The theory of open quantum systems. Oxford Univ. Press (2002).
[26] A. Sinap and W. van Assche. Orthogonal matrix polynomials and applications. J. Comp. Appl. Math (1996) 66:27-52.
[27] M. J. Zygmunt. Non symmetric random walk on infinite graph. Opuscula Math. (2011) 31:669-674.
[28] M. J. Zygmunt. Matrix polynomials with respect to a non-symmetric matrix of measures. Opuscula Math. (2016) 36:409-423.
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