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Abstract

We calculate the hybrid entanglement entropy between coin and walker degrees of free-
dom in a non-unitary quantum walk. The model possesses a joint parity and time-reversal
symmetry or PT-symmetry and supports topological phases when this symmetry is un-
broken by its eigenstates. An asymptotic analysis at long times reveals that the quantum
walk can indefinitely sustain hybrid entanglement in the unbroken symmetry phase even
when gain and loss mechanisms are present. However, when the gain-loss strength is too
large, the PT-symmetry of the model is spontaneously broken and entanglement vanishes.
The entanglement entropy is therefore an effective and robust parameter for constructing
PT-symmetry and topological phase diagrams in this non-unitary dynamical system.

1 Introduction
In a discrete-time quantum walk [1, 2], the hopping amplitudes between base kets of a
“walker” state space Hw = span({∣n⟩}), n ∈ Z are conditioned on an internal “coin” state in
Hc = span(∣L⟩, ∣R⟩). The dynamics of the quantum state ∣ψ⟩ ∈ Hw ⊗Hc, given an initial
state ∣ψ(0)⟩, is given by the evolution equation

∣ψ(t)⟩ = U t∣ψ(0)⟩, (1)

where the single step operator U = SR typically consists of a shift operation

S =∑
n

∣n + 1⟩⟨n∣⊗ ∣R⟩⟨R∣ + ∣n − 1⟩⟨n∣⊗ ∣L⟩⟨L∣, (2)

preceded by a generic operation R on the coin space, and t is a non-negative integer
denoting the number of steps in the walk. Sometimes, the step operator U consists of
several shift and coin space operations, as in the multi-step quantum walk studied here.

A notable feature of quantum walks is the rapid spread of an initially localized walker,
which can be used to engineer efficient quantum search and targeting algorithms [2].
These walks can also serve as frameworks for other quantum information tasks, such as
universal quantum computation [3, 4] and quantum-state transfer [5]. Experimentally,
quantum walks are often realized in photonic [6] and ultracold atomic setups [7, 8], where
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a great degree of control, reproducibility, and tunability can be routinely achieved [9].
Thus, they have been utilized as robust simulators for difficult-to-engineer Hamiltonians,
such as those involved in the study of localization and topological phases in disordered
systems and non-Hermitian physics [10, 11, 12, 13, 14, 15, 16].

As a quantum walk progresses and the wavefunction spreads over space, entanglement
can be generated between the walker and coin spaces [17, 18, 19]. This hybrid entan-
glement involving distinct degrees of freedom is valuable because it can be used to store
additional quantum information in internal state spaces [20, 21, 22], and several strategies
aimed at improving entanglement yield in unitary walks exist. For instance, optimizing
coin sequences in multi-step walks [23, 24] and applying dynamical noise on coin operations
[25] can maximize the coin-walker entanglement entropy in the long-time limit.

Since entanglement is fragile and quantum devices can not be fully isolated from their
surroundings, it is important to know how much entanglement a system can have when
decoherence is present. One way of introducing decoherence into a quantum walk is by
generalizing the evolution operator to a non-unitary one, which is equivalent to having
a non-Hermitian effective Hamiltonian. For instance, in quantum walks with randomly
occurring projective measurements, decoherence can lead to the decay and vanishing of
quantum correlations and entanglement between the coin and walker [26]. However, the
current understanding of the relationship between entanglement and decoherence in non-
Hermitian systems is quite model-dependent [27, 28, 29], and there is no immediate indica-
tion whether entanglement can be maintained or not in a given system with decoherence.
Indeed, we find here that hybrid entanglement can persist in a quantum walk even when
the evolution is not unitary.

In this work we study this relationship between entanglement and non-unitarity in a
class of quantum walks in a parameter space that is divided into two regions: one that fea-
tures eigenstates that possess a joint parity and time-reversal symmetry or PT-symmetry
[30, 31], and another where this symmetry is spontaneously broken. In particular, the
model [32] is a two-step quantum walk that accounts for photonic gain, loss, and general
coin rotations in optical setups [11, 12, 13] that have been used to investigate the deep
connections between PT-symmetry and topological phases of matter (Section 2). Moti-
vated by the fact that entanglement has been successfully used to probe various quantum
phase transitions [33, 34, 35], we do the same by demonstrating that the long-time entan-
glement entropy can effectively identify the PT-symmetry phases of the model (Section
3). Moreover, since level crossings in this type of PT-symmetry breaking are associated
with topological phase transitions [36, 37], we also show that the characteristics of the
entanglement entropy are distinct in the different topological phases of the model (Sec-
tion 4).

Our most significant and compelling findings are summarized in phase diagrams (Fig-
ure 4) that show how entanglement can distinguish the different PT-symmetry phases of
the model, and graphs (Figure 6) that shows how an entanglement gap forms between
topological phases of the model as the gain-loss strength and degree of non-unitarity is
increased.

2 Non-unitary quantum walk model
We consider a spatially homogeneous two-step quantum walk so that a Fourier basis {∣k⟩}
labeled by wavevectors k in a Brillouin zone (BZ) such that

∣ψ(t)⟩ ≡
1

√
π
∫

BZ
∣k⟩⊗ ∣ψ̃k(t)⟩dk, BZ ∈ [−π/2, π/2), (3)

and the step operator U is partially diagonalized:

U =
1

π
∫

BZ
∣k⟩⟨k∣⊗ Ũ(k)dk. (4)
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Figure 1: In the unbroken symmetry phase of the model, the effective band structure is gapped
and real. In the broken PT-symmetry phase, the energy eigenvalues are purely imaginary over
segments of wavevector space (shaded regions). At the exceptional points, level crossings at
energies equal to 0 or π occur. The solid and dashed lines indicate real and imaginary parts of
the effective energies, respectively.

The evolution operator Ũ(k), which acts only on the qubit coin space, has the specific
form

Ũ(k) = S̃(k)G̃(γ)Φ̃(φ)C̃(θ2)S̃(k)G̃(−γ)Φ̃(φ)C̃(θ1), (5)

where S̃(k) = eikσ3 is the Fourier transform of the shift operator S (Eq. 2), G̃(γ) = eγσ3

is a gain-loss operator, Φ̃(φ) = eiφσ3 is a phase-shift operator, C̃(θj) = eiθjσ1 is a coin
rotation operator, and the σj ’s are Pauli operators. The model parameters θj , φ, and
γ are real so that the evolution is unitary when the gain-loss parameter is eγ = ±1 and
non-unitary otherwise. The phase shift angle φ translates the origin of wavevector space
and hereafter we make the replacements k + φ → k and Φ̃(φ) → 1k for simplicity. In pho-
tonic experimental realizations of this and similar quantum walks, the shift operators are
typically implemented by beam displacers, the gain-loss operators by partially polarizing
beam splitters, and the phase-shift and generic coin rotation operators by wave plates
[11, 12, 36].

The symmetry of this quantum walk under a joint parity-time-reversal PT trans-
formation has been established in detail [32]. In summary, this symmetry is mani-
fested by the fact that the evolution operator in a symmetry time frame Ũsym(k) ≡

C̃(θ1/2)Ũ(k)C̃(−θ1/2) [38] is transformed into its inverse under complex conjugation:

PT Ũsym(k)PT −1 = [Ũsym(k)]∗ = Ũ−1
sym(k). (6)

This symmetry leads to important topological consequences on the effective band structure
of the model (Figure 1). The non-Hermitian effective Hamiltonian H̃(k) defined through
Ũ(k) = e−iH̃(k) has two bands [32]

ε±(k) = ± cos−1[cos θ1 cos θ2 cos(2k) − sin θ1 sin θ2 cosh(2γ)], (7)

and the unbroken PT-symmetry and broken PT-symmetry phases are readily identified
by the appearance of imaginary eigenvalues in the latter [31]. At the exceptional point
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Figure 2: Numerically exact calculations of the time evolution of the entanglement entropy
reveal contrasting behaviors in different phases of the non-unitary quantum walk. In the
unbroken PT-symmetry phase (eγ = 1.0 and eγ = 1.3) the entanglement entropy rapidly reaches
a generally non-vanishing asymptotic value, which can be obtained by a stationary phase
approach (dashed line). At the exceptional point (eγ = eγep) and in the broken PT-symmetry
phase (eγ = 1.6) the entanglement entropy eventually decays to zero. The double logarithmic
plot on the right graphs the same data, but highlights the long-time decay (dashed lines) of
the entanglement entropy in the broken PT-symmetry phase in Equation (10) and exceptional
point in Equation (11).

separating the two phases, a degeneracy occurs at either ε = 0 or at ε = π. In addition to
the eigenvalues becoming degenerate at this coalescence point, the eigenstates of the two
bands actually become proportional to each other so that the mode evolution operator Ũ
here fails to be diagonalizable.

3 Entanglement entropy for PT-symmetry phase
diagram
In order to study the dynamics of hybrid entanglement in the model, we need to con-
struct density operators at each time step of the quantum walk. However, the evolution
is non-unitary and the conventional quantum mechanical operator ∣ψ(t)⟩⟨ψ(t)∣ can not
be interpreted as a statistical density operator. To remedy this problem, we adopt the
approach of normalizing the state ket at every time step to get a properly normalized and
Hermitian density operator

ρN(t) =
∣ψ(t)⟩⟨ψ(t)∣

tr ∣ψ(t)⟩⟨ψ(t)∣
. (8)

This instantaneously normalized density operator ρN(t) has been used to study entan-
glement in other non-Hermitian qudit models [39, 40] and fermionic chains [41], where it
guarantees that reduced density operator spectra correspond to probabilities. Its use is
further justified here because the raw intensity ⟨ψ(t)∣ψ(t)⟩ reproduces the observed ampli-
fied photon counts in the broken PT-symmetry phase of the corresponding experimental
system [11, 12, 42]. Although there are other means of constructing density operators
given a non-unitary evolution, such as a metric formulation of inner products that satis-
fies a number of quantum information no-go theorems [43, 44], we have found that this
approach leads to a non-Hermitian reduced state with negative and sometimes complex
entanglement entropy [45, 41, 46] in an extensive region of our parameter space.

For concreteness, we consider unentangled initial conditions that are localized at the
origin ∣ψ(0)⟩ = ∣0⟩ ⊗ [cosα/2 ∣L⟩ + eiβ sinα/2 ∣R⟩] (or ∣ψ̃k(0)⟩ = cosα/2 ∣L⟩ + eiβ sinα/2 ∣R⟩
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Figure 3: There is persistent entanglement entropy S∞ in the unbroken PT-symmetry phase for
arbitrary localized initial states ∣0⟩⊗ cosα/2 ∣L⟩+ eiβ sinα/2 ∣R⟩. The PT0 and PT1 parameter
regions are shown on the phase diagrams in Figures 4 and 5.

for all k), with α and β polar and equatorial angles, respectively, on a Bloch sphere.
The reduced density operator on the coin space is then obtained as usual by partially
tracing over the walker degrees of freedom ρc(t) = trw ∣ψN(t)⟩⟨ψN(t)∣ and the von Neumann
entanglement entropy is S(t) = − tr[ρc(t) lnρc(t)].

Since the evolution operator is partially diagonal in Fourier space, the numerical eval-
uation of the partial trace

ρc(t) =
1

trρc(t)
∑
σ,σ′

[∫
BZ

⟨σ∣ψ̃k(t)⟩⟨ψ̃k(t)∣σ
′
⟩dk]∣σ⟩⟨σ′∣, (9)

is simple because the time-dependent kets ∣ψ̃k(t)⟩ = [Ũ(k)]t∣ψ̃k(0)⟩ can be solved in closed
form by projection methods [18]. Furthermore, since the effective energies are either real or
imaginary, the time dependence e−i2ε±(k)t of the terms in the integrand in Equation 9 allows
one to obtain the long-time behavior of the entanglement entropy S(t → ∞) = S∞ by a
stationary phase approximation (real energies) or a steepest descent approach (imaginary
energies).

We use these results to analyze the dynamics of the hybrid entanglement between the
coin and walker and find that we can easily distinguish between the PT phases of this
non-unitary quantum walk (Figure 2). In the unbroken PT-symmetry phase, all of the
eigenenergies are real so that the energy eigenstates evolve with phase angles that increase
in time. Thus, a stationary phase analysis reveals that oscillations about the asymptotic
stationary state eventually cancel out as the walk progresses and S∞ is generally non-zero
(Figure 3).

The asymptotic entanglement entropy displays contrasting behavior when, instead, the
PT-symmetry of the model is spontaneously broken by its energy eigenstates. In this case,
hybrid entanglement that is produced in the first few steps of the walk decays to zero as
the non-unitary walk progresses. Modes with imaginary effective energies have amplitudes
that increase exponentially in time, so that an asymptotic analysis by a steepest descent
method can be applied. In the infinite time limit t→∞ a product state is reached, which
consists of the dominant walker mode with largest imaginary energy and a parameter-
dependent coin state. Now, in the asymptotic expansions of the reduced density matrix
elements resulting from the steepest descent method, the sub-leading term is t−1 smaller

5



■■

- π

2
- π

4
0 π

4
π

2

- π

2

- π

4

0

- π

7

π

4

π

2

θ1

θ
2

e
γ = 1.3, α = π/2, β = 0

■■ ■■■■ ■■

0 0.5 1 1.5 2

- π

2

- π

4

0

- π

7

π

4

π

2

e
γ

θ
2

θ1 = π/4, α = π/2, β = 0

entropy
∞

ln 2

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

S
Entanglement

PT0

PT0 PTB PTB

PT1PT1

(b)(a)

Figure 4: In the non-unitary quantum walk model considered here, the asymptotic entangle-
ment entropy S∞ vanishes in the broken PT-symmetry phase (PTB) and generally has non-zero
values in the unbroken PT-symmetry phase (PT0 and PT1). The colored dots in these phase
diagrams correspond to parameter values that were used to calculate the time-dependence of
entanglement entropy in Figure 2.

than the leading term. Thus, we find that the entanglement spectrum (the eigenvalues of
the reduced density operator) also approaches that of a pure state as t−1 (Figure 2) in the
broken PT-symmetry phase:

S(t≫ 1) ∼ −[1 − x(t)] ln[1 − x(t)] − x(t) lnx(t), with x(t)∝ t−1. (10)

At the exceptional point, a singular contribution to the density matrix elements comes
from the level crossing at k∗ = 0 when ε = 0 (or k∗ = π/2 when ε = π), which dominates the
long-time entanglement dynamics and leads to the eventual vanishing of entanglement.
Since the evolution operator at the coalescence point Ũ(k∗) is not diagonalizable, a Jordan
decomposition instead gives the time-dependence of the reduced density matrix elements
as algebraically reaching their asymptotic values in time. The resulting entanglement
entropy vanishes as

S(t≫ 1) ∼ −[1 − x(t)] ln[1 − x(t)] − x(t) lnx(t), with x(t) = c1t−1 + c2t−2, (11)

for constant, but parameter-dependent, cj . We find that the decay to zero entanglement
is much slower at the exceptional point than in the broken PT-symmetry phase (Figure
2). For both cases, modes with real energies contribute to oscillating transient behavior.
The reason for the slower decay at the exceptional point is that these transients are only
suppressed polynomially in time by the singular contribution at the coalescence point.
Meanwhile, in the broken PT-symmetry phase these transients are instead suppressed
exponentially in time by a range of absorbing modes with imaginary energies.

These observations are summarized in phase diagrams (Figure 4) that delineate the
unbroken and broken PT-symmetry phases of the model, where the asymptotic entangle-
ment entropy S∞ is used as an indicator for the phase transition [34]. We find that critical
lines consisting of exceptional points clearly separate the unbroken PT-symmetry phases
(PT0 and PT1) with non-zero entanglement entropy from the broken PT-symmetry phase
(PTB) with vanishing entanglement entropy.
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Figure 5: The boundaries and differing features of the non-vanishing entanglement entropy
seen in the PT-symmetry phase diagram (Figure 4) are also mirrored in the topological phase
diagram of the model. A comparison reveals that the topological phase with winding number
ν = 1 (PT1) systematically has more entanglement than the topological phase with ν = 0 (PT0).
In the broken PT-symmetry phase (PTB), we plotted the real Zak phase modulo 2π, and the
color gradients indicate that ν is not quantized there.

4 Entanglement entropy can differentiate topolog-
ical phases
Inspection of the phase diagrams (Figure 4) suggest that the unbroken PT-symmetry phase
of the model may be divided further into two regions. About the multicritical points where
two lines of exceptional points intersect, we see regions with slowly-varying asymptotic
entanglement entropy (PT1) that can be distinguished from regions with systematically
lower entanglement and larger gradients in the parameter space of the model (PT0).

In recent photonic experiments involving a similar split-step unitary quantum walk
[35], the entanglement entropy was found to be constant in the non-trivial topological
phase (non-zero winding number) of the system and decreased across a topological phase
transition into the trivial topological phase (zero winding number). We observe the same
behavior along the unitary plane eγ = 1 (Figure 4b), which suggests that the entanglement
entropy may also be used to identify bulk topological phases in this non-unitary quantum
walk.

However, the non-unitary character of the model prompts us to use a complex gen-
eralization of the Berry phase [47, 48] for topological classification in the corresponding
non-Hermitian Bloch system. That is, we define a generalized Zak phase [49] associated
with the band j as the Brillouin zone is traversed:

Θj ≡ ∫

π/2

−π/2
⟨ulj ∣i∂k∣u

r
j⟩dk, (12)

where ∣urj⟩ and ∣ulj⟩ are, respectively, the right and left eigenkets of the effective Hamil-
tonian H̃(k) [50, 51, 52]. These eigenkets form a biorthogonal basis that satisfies the
biorthonormality ⟨ulj(k)∣u

r
j′(k

′)⟩ = δjj′δkk′ and completeness ∑j ∣urj(k)⟩⟨u
l
j(k)∣ = 1k re-

lations [53]. A complete classification of the topological phases of this model has been
presented previously [12, 36], and it turns out that the real parts of the complex Zak phases
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Figure 6: (a) Along the unitary plane eγ = 1, the unbroken PT-symmetry phases PTν with
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are associated with integer winding numbers in the unbroken PT-symmetry phases:

νj ≡
1

π
Re Θj . (13)

In these topological phases the winding number is independent of band index (ν ≡ νj),
but not so in the broken PT-symmetry phase. These results are summarized in the phase
diagram Figure 5, where the quantization of the winding number ν across the unbroken
PT-symmetry regions PTν are seen. As observed in this and other non-unitary quantum
walks with PT-symmetry breaking [12, 36, 37], the quantized winding numbers are robust
and unchanged as the system is driven away from unitarity, but only up to a certain
threshold. When the strength of the gain-loss mechanism is increased beyond this limit
and the exceptional points are crossed, there is a sudden loss of entanglement.

Furthermore, we find that the phases in this topological phase diagram are indeed
identified by features of the asymptotic entanglement illustrated in Figure 6: zero entan-
glement in the non-topological region (PTB), greater sensitivity to model parameters and
overall lower entanglement in the ν = 0 topological phase (PT0), and slowly-varying and
higher entanglement in the ν = 1 topological phase (PT1). The distinct behavior of the
entanglement entropy in the PT0 and PT1 phases originate from the pole structure of the
contour integral representation of the Zak phase (12). At the exceptional points, poles of
the analytically continued integrand fall on the contour, which leads to the entanglement
entropy having different functional dependence on system parameters on either side of the
phase transition [35].

5 Summary and outlook
We have demonstrated that the dynamics and asymptotic value of the coin-walker en-
tanglement entropy can effectively differentiate the PT-symmetry and topological phases
in a non-unitary quantum walk. Since this entanglement is determined by the reduced
state, our result implies that these phases can be identified experimentally by measuring
fluctuations [54] or performing full state tomography on just the qubit coin space. Doing
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so can complement current strategies that perform phase characterization and detection
by measurements on the walker space [11, 12, 13, 14].

Another idea that could be pursued would be the possibility of engineering non-unitary
evolutions or effective Hamiltonians to improve entanglement yields, for instance in the
broken PT-symmetry phase. We have seen in the model here that entanglement vanished
in asymptotic product states caused by the dominating contribution of a single mode with
imaginary energy. Perhaps some entanglement may be sustained in non-unitary quantum
walks with sufficiently flat imaginary bands, or one with several peaks in the imaginary
band structure.

This work also raises additional interesting questions on the interactions between en-
tanglement, non-unitarity, PT-symmetry, and topology. For example, noting that PT-
symmetry exceptional points do not necessarily coincide with topological phase transi-
tions [55], it would be worthwhile to study if the different characteristics of the persistent
entanglement entropy we found are associated with PT-symmetry protection, topological
order, or both. Also, the slow decay of entanglement at the exceptional point reminds
us of critical behavior, and another possibly fruitful direction of study would be to inves-
tigate how the asymptotic entanglement entropy vanishes in more detail. PT-symmetry
breaking is associated with a rather unique critical point [56] and it may be possible to
discover new universal dynamical scaling behavior in the entropy.
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