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Abstract

We study n-qubit operation rules on (n+1)-sphere with the target to help developing a

(photon or other technique) based programmable quantum computer. In the meanwhile,

we derive the scaling limits (called reflecting Gaussian random fields on a (n+1)-sphere)

for n-qubit quantum computer based queueing systems under two different heavy traffic

regimes. The queueing systems are with multiple classes of users and batch quantum

random walks over the (n + 1)-sphere as arrival inputs. In the first regime, the qubit

number n is fixed and the scaling is in terms of both time and space. Under this regime,

performance modeling during deriving the scaling limit in terms of balancing the arrival

and service rates under first-in first-out and work conserving service policy is conducted.

In the second regime, besides the time and space scaling parameters, the qubit number

n itself is also considered as a varying scaling parameter with the additional aim to find

a suitable number of qubits for the design of a quantum computer. This regime is in

contrast to the well-known Halfin-Whitt regime.

Key words: Reflecting Gaussian random field on (n+1)-sphere, n-qubit quantum com-

puter, queueing system, quantum random walk, heavy traffic, Halfin-Whitt regime.

1 Introduction

As pointed out by U.S. Los Angeles based Six Industrial Revolution Forum (SIR Forum [20]),

quantum computer based quantum computing will be the core technology in the future indus-

trial revolution. It will provide the required super-computing power for the quickly developing

information communication system, big data service, digital economy, blockchain, and even

the future Internet of quantum blockchains (see, e.g., Arule et al. [1], Dai [6, 7], Deutsch [11],

Feynman [12], Harrow and Montannaro [10], Luo et al. [16], Nielsen and Chuang [18], Rajan

and Visser [19], Zhong et al. [22]).

However, to make a quantum computer programable for the purpose to interact with

real-world applications, it should have buffer storage and data read/write capability in ad-

dition to its processing capability (see, e.g., the illustration in Figure 4), which falls into the

1The project is funded by National Natural Science Foundation of China with Grant No. 11771006, Grant

No. 10971249, and Grant No. 11371010.
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Figure 1: A quantum buffer queueing storage, quantum computer central processing unit (CPU) with n-

qubit operations |Υ〉(Φ,Ψ) over unit (n+1)-sphere as introduced in (2.7), and quantum channel measurement

interactive system with channel function G(Φ,Ψ) derived in (2.10).

research scope concerning a quantum queueing system for its internal qubit data flow mod-

eling, management, and related performance analysis (see, e.g., Dai [6, 7], Gawron et al. [9],

and Mandayam et al. [17]). Nevertheless, since this area is just getting started, a broad

view concerning the system framework and research methodology needs to be put forward.

Therefore, in this paper, we make such an attempt.

More precisely, we study n-qubit operation rules on (n + 1)-sphere concerning addition

(+), substraction (-), multiplication (∗), and division (/) with the target to help developing

a (photon or other technique) based programmable quantum computer. In the meanwhile,

we derive the scaling limits (called reflecting Gaussian random fields (RGRFs) on a (n+ 1)-

sphere (denoted by Sn+1)) for n-qubit quantum computer based queueing systems under two

different heavy traffic regimes. The queueing systems are with multiple classes of users and

batch quantum random walks over the (n+1)-sphere as arrival inputs. In the first heavy traffic

regime that corresponds to the way used in Dai [4, 5] and Dai and Dai [3], the qubit number

n is fixed and the scaling is with respect to both time and space. Under this regime, we

are interested in the performance modeling through deriving RGRF in terms of reasonably

balancing the arrival and service rates under first-in first-out and work conserving service
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policy. In the second heavy traffic regime, besides the time and space scaling parameters, the

qubit number n itself is also considered as a varying scaling parameter with the additional

aim to find a suitable number of qubits for the design of a quantum computer. The second

regime is in contrast to the well-known Halfin-Whitt regime in [13] where the number of

servers is considered as a scaling parameter.

Note that, as an illustration of quantum random walk, a single qubit with n = 1 is used

to denote a particle spinning up and down at the same time. In this case, a pure qubit state

|Ψ〉 can be denoted by any point on the 2-sphere S2 (called Bloch sphere, the surface of a

ball) with corresponding angles θ and φ as shown in the upper-left graph of Figure 2, i.e.,

x

Figure 2: Single qubit representation, quantum random walk on S2, and converging sets.

|Ψ〉 = ψ0|0〉 + ψ1|1〉 with ψ0 = cos (θ/2) and β = eiφsin(θ/2). Thus, the red and brown

curves in the lower-right graph of Figure 2 can be used to represent two sample paths of

a single-qubit quantum random walk over S2 and readers are referred to Kempe [14] and

Košı́k [15] for the concept concerning a quantum random walk.

The derived scaling limits over a set M where M = Sn+1 or M = S∞ (the limit of Sn+1

as n tends to infinity) can be presented in the following definition.

Definition 1.1 A (1 + n)-parameter time-space random field Ṽ (t, x) ∈ R+ with (t, x) ∈
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[0,∞) ×M is called a RGRF over a set M if it has the form

Ṽ (t, x) = µ(t, x) + Ũ(t, x) + Ĩ(t, x), (1.1)

where, µ(t, x), Ũ(t, x), and Ĩ(t, x) ∈ D[0,∞) for each given x ∈ M. Furthermore, Ĩ(t, x) is

nondecreasing in t ∈ [0,∞) for each fixed x ∈ M and it can increase only at a time t when

Ṽ (t, x) = 0, i.e.,

∫ ∞

0
Ṽ (t, x)dĨ(t, x) = 0 for each fixed x ∈ M. (1.2)

Note that, in the definition, D[0,∞) denotes the well-known single-dimensional Skorohod

space of all right-continuous functions with left-limits (see, e.g., Ethier and Kurtz [8]).

The comparisons between our current research and the existing ones on quantum queueing

systems can be summarized as follows. In the study of Gawron et al. [9], the authors present

a quantum queueing model via the method of discrete time Markov chain. Nevertheless,

in our current study, our queueing model is related to batch quantum random walks with

multiclass service requirements and hence general doubly stochastic renewal reward random

fields (DSRRRFs) over Sn are involved. Thus, different heavy traffic regimes are introduced to

our discussion. In the study of Dai [6, 7], the quantum computers are assumed to have already

been built and we try to use them to propose a further quantum computer based network

(or a quantum computer based quantum-cloud computing system). However, since quantum

computers are still under developments, thus as an initiative presented in this paper, we

turn to more deep study concerning how to design and build quantum computers themselves,

which includes establishing our new n-qubit operation rules on (n+ 1)-sphere. In the study

of Mandayam et al. [17], the authors derive the classic capacity of additive quantum queue-

channels, which has different system formulation and purpose from our current research.

Finally, the rest of the paper is organized as follows. In Section 2, we propose our n-qubit

operation rules through stating a proposition with illustration and examples. In Section 3,

we establish our performance models though queueing scaling limits by proving heavy traffic

limit theorems. In Section 4 (Appendix of our crrent paper), we justify our designed n-qubit

operation rules by proving our stated proposition in Section 2. In Section 5, we conclude the

current research with remarks.

2 n-Qubit Operations on (n+ 1)-Sphere

As claimed in the introduction of this paper, a programmable quantum computer should

consist of buffer queueing storage unit, central processing unit (CPU), and quantum channel

measurement capability as explained in Figure 4. In this section, we study n-qubit operations

addition (+), substraction (-), multiplication (∗), and division (/) within the designed CPU as

shown in Figure 4. Illustration with examples and the channel measurement formula G(Φ,Ψ)

(proposed in Figure 4) are also presented.
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2.1 The Operations

In a quantum computer system, the basic information unit is a n-qubit with n ∈ {1, 2, ...}
and can be expressed through the conventional complex column-vector oriented ket-notation.

More precisely, a state |Ψ〉 of n-qubit register is represented by

|Ψ〉 =
∑

jl∈{0,1}, l∈{1,...,n}

ψj1...jn|j1...jn〉, (2.1)

where, |j1...jn〉 for each jl ∈ {0, 1} and l ∈ {1, ..., n}} is called an eigenstate and there are total

number 2n of those eigenstates. The basis of bit strings {j1...jn : jl ∈ {0, 1}, l ∈ {1, ..., n}}
is the computational basis with the associated complex coefficients represented by {ψj1...jn}.
The summation of the squares of the coefficients’ absolute values in (2.1) must satisfy

∑

jl∈{0,1}, l∈{1,...,n}

|ψj1...jn|2 = 1. (2.2)

For a bit string j1...jn, the value |ψj1...jn|2 denotes the probability of the system that is found

in the (j1...jn)
th state after a measurement. Nevertheless, since a complex number encodes

not just a magnitude but also a direction in the complex plane, the phase difference between

any two coefficients is a valuable parameter and represents a key difference between quantum

computing and probabilistic traditional computing. Under this computational basis, a state

|Ψ〉 of n-qubit register can be represented by its coefficients {ψj1...jn}. More precisely, for

each index j1 · · · jn in (2.1) with associated integer jl ∈ {0, 1} and each number l ∈ {1, ..., n},
we re-index it through an index h expressed by

h = 2n−1jn + 2n−2jn−1 + ...+ 2j2 + j1. (2.3)

Then, we can rearrange the coefficients {ψj1...jn} through the index h as {ψh+1}, where,

h ∈ {h0, h1, ..., h2n−1} = {0, 1, ..., 2n − 1}.

Hence, we can present all the coefficients {ψh+1} in terms of a corresponding spherical coor-

dinate θ = (θ1, · · ·, θ2n) as follows,






















































ψ1 = cos(θ1),

ψ2 = sin(θ1) cos(θ2),

ψ3 = sin(θ1) sin(θ2) cos(θ3),

·
·
·

ψ2n−1 = sin(θ1) sin(θ2) · · · sin(θ2n−2) cos(θ2n−1),

ψ2n = eiθ2n sin(θ1) sin(θ2) · · · sin(θ2n−1),

(2.4)

where, θi ∈ [0, π/2] for each i ∈ {1, ..., 2n − 1} and θ2n = ϕ ∈ [0, 2π].
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To a n-qubit quantum computer, we are interested in the synchronized n-qubit quan-

tum computations used in its internal operations concerning addition (+), substraction (-),

multiplication (∗), and division (/), which are corresponding to those used in a conventional

single-digit computer. In doing so, let |Φ〉 and |Ψ〉 be two n-qubit vectors that satisfy the

constraint in (2.2) and have the expressions in (2.4) with associated spherical coordinates

θΦ = (θΦ1 , ..., θ
Φ
2n) and θΨ = (θΨ1 , ..., θ

Ψ
2n) (2.5)

respectively. Then, we have the following n-qubit quantum operational rules in terms of

addition (+), substraction (-), multiplication (∗), and division (/). However, all the opera-

tional results should satisfy the constraint in (2.2), i.e., all the related n-qubit quantum wave

functions should keep to locate on the unit (n+1)-sphere (denoted by Sn+1 and see Figure 3

for an example over S2 corresponding to n = 1). More precisely, we have that

φ

|
|Φ

Figure 3: Single qubit representation on S2



















|Φ〉+ |Ψ〉 =
∑

jl∈{0,1}, l∈{1,...,n}
(φj1...jn + ψj1...jn) |j1...jn〉,

|Φ〉 − |Ψ〉 =
∑

jl∈{0,1}, l∈{1,...,n}
(φj1...jn − ψj1...jn) |j1...jn〉,

|Φ〉 ∗ |Ψ〉 =
∑

jl∈{0,1}, l∈{1,...,n}
(φj1...jn ∗ ψj1...jn) |j1...jn〉,

|Φ〉/|Ψ〉 =
∑

jl∈{0,1}, l∈{1,...,n}
(φj1...jn/ψj1...jn) |j1...jn〉.

(2.6)
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Note that, the n-qubit quantum wave functions introduced in (2.6) may not be on Sn+1.

Therefore, to justify them meaningful in terms of addition (+), substraction (-), multiplication

(∗), and division (/) over Sn+1, we have the following theorem.

Proposition 2.1 The statement of this proposition consists of the following two parts:

1. (Part I.) For a n-qubit quantum wave function |Ψ〉 whose coefficients are given by (2.4),

it satisfies the constraint in (2.2).

2. (Part II.) If |Φ〉 and |Ψ〉 are two n-qubit vectors that satisfy the constraint in (2.2) and

have the expressions in (2.4) with associated spherical coordinates in (2.5). Then, there

are unique maps from the n-qubit quantum wave functions defined in (2.6) to those

|Υ〉(Φ,Ψ) on Sn+1, i.e.,

|Υ〉(Φ,Ψ) ∈
{

|Υ〉Φ+Ψ, |Υ〉Φ−Ψ, |Υ〉Φ∗Ψ, |Υ〉Φ/Ψ

}

, (2.7)

such that those wave functions on Sn+1 satisfy the constraint in (2.2) with the corre-

sponding spherical coordinates given by































θΦ+Ψ
Υ =

(

θΦ
1
+θΨ

1

2 , ...,
θΦ
2n

+θΨ
2n

2

)

,

θΦ−Ψ
Υ =

(

θΦ
1
−θΨ

1

2 , ...,
θΦ
2n

−θΨ
2n

2

)

,

θΦ∗Ψ
Υ =

(

θΦ1 + θΨ1 , ..., θ
Φ
2n + θΨ2n

)

,

θ
Φ/Ψ
Υ =

(

θΦ1 − θΨ1 , ..., θ
Φ
2n − θΨ2n

)

.

(2.8)

The proof of this proposition is provided in Appendix (i.e., Section 4) of this paper.

Instead, in the following subsection, we first give some illustration and examples concerning

the usage of our newly introduced n-qubit operations as stated in the proposition.

2.2 Illustration and Examples

Consider two general n-qubit vectors |Φ̂〉 and |Ψ̂〉 without the constraint in (2.2), such as,

|Φ̂〉 = (0, 0, ..., 0, 0, 1, 1) and |Ψ̂〉 = (1, 0, ..., 0, 1, 0, 1). Let |Φ〉 and |Ψ〉 be their correspond-

ing normalized n-qubit vectors that satisfy the constraint in (2.2) and have the expressions

in (2.4) with associated spherical coordinates θΦ = (θΦ1 , ..., θ
Φ
2n) and θΨ = (θΨ1 , ..., θ

Ψ
2n) re-

spectively. Furthermore, their associated normalized constants are respectively denoted by

‖|Φ̂〉‖ and ‖|Ψ̂〉‖. For examples, ‖|Φ̂〉‖ =
√
2 if |Φ̂〉 = (0, 0, ..., 0, 0, 1, 1) and ‖|Ψ̂〉‖ =

√
3 if

|Ψ̂〉 = (1, 0, ..., 0, 1, 0, 1). In our designed n-qubit quantum computer, we are interested in the

synchronized n-qubit quantum computation operations concerning addition (+), substrac-

tion (-), multiplication (∗), and division (/) in a certain way. For example, if we consider

7



the addition (+) operation between |Φ̂〉 and |Ψ̂〉 (i.e., to use a synchronized n-qubit quan-

tum computation method to compute |Φ̂〉+ |Ψ̂〉), the normalized constant of the summation

|Φ̂〉+ |Ψ̂〉 is given by

∥

∥

∥|Φ̂〉+ |Ψ̂〉
∥

∥

∥ =

√

∥

∥

∥|Φ̂〉
∥

∥

∥

2
+
∥

∥

∥|Ψ̂〉
∥

∥

∥

2
(2.9)

since all the components of |Φ̂〉 and |Ψ̂〉 are nonnegative. With this known normalized con-

stant, we can develop a device to detect and determine the 2n-dimensional angle vector (i.e.,

phase vector) θΦ+Ψ
Υ as derived in (2.8) simultaneously. Then, we can map the corresponding

|Υ〉(Φ,Ψ) on Sn+1 back to the targeted vector |Φ̂〉+ |Ψ̂〉 through the obtained phase vector

and the known normalized constant.

It is worth to point out that, by combining the multi-input multi-output (MIMO) orbit

angular momentum (OAM) and random phase techniques (see, e.g., Dai [5]), a quantum

channel model is designed in Dai [7]. This channel model can be used to interact with the

recently developed Jiuzhang computer core (see, e.g., Figure 4). However, a challenging

S|Ф

Dai’s Quantum Channel (IEEE 2018 and MCMDS 2019)

|Ψ

Wanyang Dai (Keynote):  IEEE 2nd , May 8, 2021

Figure 4: An example of the interaction between the quantum channel model in Dai [7] and a photon based

quantum computer core, where the inner photon detecting and measurement part is adapted from Zhong et

al. [22].

issue to the Jiuzhang computer developed in Zhong et al. [22] is how to evolve itself to a

programmable quantum computer for business usages. Therefore, due to this motivation,

we first upgrade our quantum channel model designed in Dai [7] to the one having more

functionalities concerning n-qubit operations over Sn+1 with the target to implement a photon

or other technique based programmable quantum computer.
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Finally, concerning the quantum measurement channel as designed in Figure 4, we can

set up a relationship between the original n-qubit |Φ〉 and the measured n-qubit |Ψ〉 through
the measurement formula derived in Dai [7], i.e.,

|Ψ〉 = |Φ〉G(Φ,Ψ) with G(Φ,Ψ) = H†(φ)
(

H(φ)H†(φ)
)−1

H(ψ), (2.10)

where, H(φ) and its conjugate complex function H†(φ) are given by

H(φ) = (φh0
, ..., φh2n−1

)′, H†(φ) = (φ†h0
, ..., φ†h2n−1

), (2.11)

for all index h ∈ {h0, h1, ..., h2n−1} = {0, 1, ..., 2n − 1} as introduced in (2.3). Similarly, H(ψ)

and H†(ψ) can also be expressed in this way. However, from the original n-qubit |Φ〉 to

the measured n-qubit |Ψ〉 as displayed in Figure 4, it takes time and we call this time as

processing time (or service time). Due to this time delay, the incoming n-qubit data may

not be immediately processed and hence they will be stored in queueing buffers as designed

in Figure 4. Therefore, in the subsequent discussion of this paper, we will focus on studying

the queueing dynamics and conducting its associated performance modeling.

3 Queueing Scaling Limits

In this section, we study the performance modeling concerning the internal data flow dy-

namics through deriving the scaling limits (i.e., RGRFs on a (n + 1)-sphere) for n-qubit

quantum computer based queueing systems under two different heavy traffic regimes. In

Subsection 3.1, we introduce the required preliminaries and present our performance mea-

sures. In Subsection 3.2, we state our heavy traffic limit theorems. In Subsection 3.3, we

prove these limit theorems.

3.1 Preliminaries and Performance Measures

In this subsection, we suppose that the quantum computer serves J queues in parallel (indexed

by j ∈ J ≡ {1, ..., J} and corresponding to J users) as shown in Figure 4. Each user’s data

arrival stream is formed in quantum data packets. The size of each n-qubit data packet is

supposed to be a random number ζ ∈ {1, 2, ...}. In other words, each quantum data packet

can be denoted by a sequence of n-qubits {|Φ1〉, ..., |Φζ〉}, where, |Φi〉 for each i ∈ {1, 2, ..., ζ}
denotes a n-qubit and satisfies the constraint in (2.2). Therefore, associated with the queues,

there is a J-dimensional data arrival process

A = {A(t,X) = (A1(t,X), ..., AJ (t,X))′, t ≥ 0,X ⊂ Sn+1}, (3.1)

where, Aj(t,X) with j ∈ J is the number of n-qubit based data packets that arrive at the jth

queue during (0, t] over a subset X of Sn+1. Note that, here and elsewhere in the paper, the

prime denotes the transpose of a vector or a matrix. Then, we can state the formal definition

of the DSRRRF introduced in Introduction of this paper as follows.

9



Definition 3.1 A random field Aj(·, ·) with j ∈ J ≡ {1, ..., J} on Sn+1 is called a DSRRRF

over Sn+1 if Aj(·,X) is the counting process corresponding to a renewal reward process with

arrival rate λj(X) and mean reward mj associated with finite squared coefficients of variations

α2
j (X) and ζ2j .

In addition, we let {uj(k,X), k ∈ {1, 2, ...}} with X ∈ Sn+1 be the sequence of times be-

tween the arrivals of the (k − 1)th and the kth reward batches of packets at the jth queue.

The corresponding batch reward is denoted by wj(k,X) and all the packets arrived with it

are indexed in certain successive order. Then, we can define the renewal counting process

associated with the inter-arrival time sequence {uj(k,X), k ∈ {1, 2, ...}} for each j ∈ J by

Nj(t,X) = sup

{

m ≥ 0 :

m
∑

k=1

uj(k,X) ≤ t

}

. (3.2)

Hence, we can present the DSRRP Aj(·, ·) via

Aj(t,X) =

Nj(t,X)
∑

k=1

wj(k,X). (3.3)

Each n-qubit based packet will first get service in the quantum computer and then leave it,

where the computer is assumed to operates under a non-idling work-conserving policy (i.e., if

there is any customer in the system, the computer will not stop working). Furthermore, we let

{vj(k,X), k = 1, 2, ...} with X ∈ Sn+1 be the sequence of successive arrived packet lengths

at queue j, which is assumed to be a sequence of strictly positive i.i.d. random variables

with average packet length 1/µj ∈ (0,∞) and squared coefficient of variation β2j ∈ (0,∞). In

addition, we assume that all inter-arrival and service time processes are mutually independent.

For each j ∈ J and each nonnegative constant h, we use Sj(·, ·) to denote the renewal counting
process associated with {vj(k,X), k = 1, 2, ...}, i.e.,

Sj(h,X) = sup

{

m ≥ 0 :

m
∑

k=1

vj(k,X) ≤ h

}

(3.4)

and its corresponding vector form will be denoted by S(·, ·).
Let Qj(t,X) be the jth queue length with j ∈ J at each time t ∈ [0,∞) and Dj(t,X) be

the number of packet departures from the jth queue in (0, t]. Then, the queueing dynamics

governing the evolving of data in and data out in the quantum computer can be modeled by

Qj(t,X) = Qj(0,X) +Aj(t,X) −Dj(t,X), (3.5)

where, each queue is supposed to have an infinite storage capacity to buffer n-qubit based data

packets arrived for a given user. Furthermore, let Bj(t,X) denote the cumulative amount of

busy time devoted to user j by t and Λj(X) be the corresponding service rate allocated to

user j. Then, we know that

Dj(t,X) = Sj(Bj(t,X),X). (3.6)

10



In addition, we use V (t,X) and Wj(t,X) to denote the (expected) total workload over X in

the quantum computer at time t and the one corresponding to user j ∈ J at time t, i.e.,

V (t) =
∑

j=1

Wj(t,X), Wj(t,X) =
Qj(t,X)

µj
. (3.7)

Finally, the corresponding vector forms of the previously related random fields will be denoted

byQ(·, ·), D(·, ·), B(·, ·), andW (·, ·) for later references. Note that, the total workload random

field V (·, ·) will be used as our performance measure in the subsequent study of this paper.

3.2 Heavy Traffic Limit Theorems

In this subsection, we present our limit theorems for our queueing systems under two different

heavy traffic regimes in the following two subsections. In the first regime that corresponds

to the way used in Dai [4, 5] and Dai and Dai [3], the qubit number n is given and fixed. In

the second regime, the qubit number n is considered as a varying scaling parameter, which

is in contrast to the well-known Halfin-Whitt regime in [13] where the number of servers is

considered as a scaling parameter.

3.2.1 The Case Corresponding to Fixed Qubit Number

In this subsubsection, we consider the case that the qubit number n is given and fixed in

our quantum computer based server. Therefore, in this case, we are interested in conducting

the performance modeling in terms of the relationship between input data rates and service

rates. In doing so, for a point x ∈ Sn+1, let
{

Xk : Xk ⊂ Sn+1, k ∈ R
}

with R ≡ {1, 2, ...}

be a decreasing subset sequence of Sn such that

∞
⋂

k=1

Xk = X = {x}.

An example with n = 1 concerning the relationship between x and Xk is shown in the

green and brown circular areas over S2 in Figure 2. Furthermore, we use dk = |Xk| to
denote the surface area size of Xk. Then, we can define two sequences of diffusion-scaled

processes {V̂ rk(·, ·) : r, k ∈ R} and {Q̂rk(·, ·) : r, k ∈ R} corresponding to a sequence of

arrival rates {λrk(Xk) = (λrk1 (Xk), ..., λrkJ (Xk))′ : r, k ∈ R} and a sequence of service rates

{Λrk(Xk) = (Λrk
1 (Xk), ...,Λrk

J (Xk))′ : r, k ∈ R}, i.e.,

V̂ rk(t,Xk) ≡ 1√
r
V rk(rt,Xk), Q̂rk

j (t,Xk) ≡ 1√
r
Qrk

j (rt,Xk) (3.8)
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for each t ≥ 0. In addition, let

µrk(Xk) =

J
∑

j=1

1

µj

(

mjλ
rk
j (Xk)− Λrk

j (Xk)
)

. (3.9)

Then, we can impose the following so-called heavy traffic condition in terms of both time and

area-size scalings by evolving the way used in Dai [4, 5] and Dai and Dai [3],











































































λrkj (Xk) → λkj (X
k) as r → ∞ for a fixed k ∈ R,

αrk
j (Xk) → αk

j (X
k) as r → ∞ for a fixed k ∈ R,

Λrk
j (Xk) → Λk

j (X
k) as r → ∞ for a fixed k ∈ R,√

rµrk(Xk) → θk(Xk) as r → ∞ for a fixed k ∈ R,
θk(Xk) → θ(x) as k → ∞,

λkj (X
k) → λj(x) as k → ∞,

αk
j (X

k) → αj(x) as k → ∞,

Λk
j (X

k) → Λj(x) as k → ∞,

Xk → x as k → ∞,

dk → 0 as k → ∞,

(3.10)

where, the limit θk(Xk) for each given k ∈ R is a constant, and the further limit θ(x) is also

a constant for each fixed x ∈ Sn+1 (but not depending on k). Furthermore, we suppose that

(Q̂rk
1 (0,Xk), ..., Q̂rk

J (0,Xk)) ⇒ (Q̃k
1(0,X

k), ..., Q̃k
J (0,X

k)) as r → ∞ for a k,(3.11)

(Q̃k
1(0,X

k), ..., Q̃k
J (0,X

k)) ⇒ (Q̃1(0, x), ..., Q̃J (0, x)) as k → ∞, (3.12)

where, the notation “⇒” denotes the convergence in distribution and Q̃j(0, x) is a Gaussian

random variable at x ∈ Sn+1. Then, we can present our first main theorem as follows.

Theorem 3.1 Under the heavy traffic condition presented in (3.10), the following conver-

gence in distribution is true, i.e.,

V̂ rk(·, ·) ⇒ V̂ (·, ·) (3.13)

as r → ∞ first and k → ∞ second, where V̂ (·, ·) is a RGRF over M = Sn+1 as stated in

Definition 1.1 with µ(t, x) = θt.

3.2.2 The Case Corresponding to Variable Qubit Number

In this subsubsection, we consider the case that the qubit number n is a varying scaling

parameter, which is in contrast to the well-known Halfin-Whitt regime. In this case, besides

conducting the performance modeling in terms of the relationship between input data rates

and service rates, we also need to study their relationship with the qubit number n with

the aim to determine a suitable parameter n corresponding to given input and service rates.

12



In doing so, the scaling parameter k in Subsection 3.2.1 is taken to be the qubit number n

(i.e., k = n). Furthermore, for a point x ∈ S∞, let {Xn : Xn ⊂ Sn+1, n ∈ R} be a subset

sequence such that Xn → x as n → ∞. Then, we can present our second main theorem as

follows.

Theorem 3.2 Under the heavy traffic condition presented in (3.10), the following conver-

gence in distribution is true, i.e.,

V̂ rn(·, ·) ⇒ V̂ (·, ·) (3.14)

as r → ∞ first and n → ∞ second, where V̂ (·, ·) is a RGRF over M = S∞ as stated in

Definition 1.1 with µ(t, x) = θt.

3.3 Proofs of Heavy Traffic Limit Theorems

First of all, we remark that the proof of Theorem 3.2 is essentially the same as the one of

Theorem 3.1. Thus, we here only provide a proof for Theorem 3.1. In doing so, it follows

from the expressions in (3.5), (3.7), and (3.8) that

V̂ rk(t,Xk) = V̂ rk(0,Xk) + Û rk(t,Xk) +
√
rµrk(Xk)t+

√
rΛrk(Xk)B̄rk(t,Xk), (3.15)

where, Λrk = (Λrk
1 (Xk)/µ1 , ...,Λ

rk
J (Xk)/µJ ), and

V̂ rk(0,Xk) =

J
∑

j=1

1

µj
Q̂rk

j (0,Xk),

Q̂rk
j (0,Xk) =

1√
r
Qrk

j (0,Xk),

Û rk(t,Xk) =
J
∑

j=1

1

µj
Û rk
j (t,Xk),

Û rk
j (t,Xk) = Ârk

j (rt,Xk)− Ŝrk
j (B̄rk

j (t,Xk),Xk),

Ârk
j (t,Xk) =

1√
r

(

Ark
j (rt,Xk)−

(

rmjλ
rk
j (Xk)

)

t

)

,

Ŝrk
j (t,Xk) =

1√
r

(

Srk
j (rt,Xk)−

(

rΛrk
j (Xk)

)

t

)

,

B̄rk(t,Xk) =

(

B̄rk
1 (t,Xk) , ..., B̄rk

J (t,Xk)

)′

,

B̄rk
j (t,Xk) =

1

r
Brk

j (rt,Xk).

Let ei = (0, ..., 0, 1, 0, ..., 0)′ denote the J-dimensional unit vector whose ith component is the

unity and others are all zero. Then, it follows from (3.15) that

eiV̂
rk(t,Xk) = eiV̂

rk(0,Xk) + eiÛ
rk(t,Xk) (3.16)

+ei
√
rµrk(Xk)t+

√
reiΛ

rk(Xk)B̄rk(t,Xk).

13



Furthermore, let Ξr be a constant given by Ξr = (e′(EΛr)−1Ee)−1, where, E = diag(1, ..., 1)

is the J × J diagonal matrix with the unity in the main diagonal and e is the 1 × J matrix

given by e = (1, ..., 1)′ . Then, it follows from (3.16) that

V̂ rk(t,Xk) = V̂ rk(0,Xk) + Û rk(t,Xk) +
√
rµrk(Xk)t+ Îrk(t,Xk) (3.17)

with

Îrk(t,Xk) = Ξr√r



t−
J
∑

j=1

B̄rk
j (t,Xk)



 . (3.18)

Note that, for each r, k ∈ R, due to the non-idling work-conserving policy, we know that
∫ ∞

0
V̂ rk(t,Xk)dÎrk(t,Xk) = 0. (3.19)

In addition, similar to the vector expression for B̄rk, we use Ârk, Q̂rk, V̂ rk, Û rk, and Ŝrk

to denote the vector counterparts of the concerned processes. Then, due to the functional

central limit theorem for triply stochastic renewal reward processes (see the discussion in

Dai [6]) or simply for renewal reward processes (see, e.g., Whitt [21]), we know that

Ârk(t,Xk) ⇒ Ãk(t,Xk) and Ŝrk(t,Xk) ⇒ S̃k(t,Xk) as r → ∞ (3.20)

for each fixed k ∈ R, where the limits Ãk and S̃k are Brownian motions depending on the

area Xk ⊂ Sn through their associated arrival and service rates. More precisely, the means

of Ãk and S̃k are both zero. Their covariance matrices for the fixed k are respectively given

by

ΓAk

= diag

(

m2
1

(

λk1(X
k)ζ21 + λ1(X

k)α2
1(X

k)
)

, ..., (3.21)

m2
J

(

λkJ(X
k)ζ2J + λJ(X

k)α2
J (X

k)
)

)

,

ΓSk

= diag

(

Λk
1(X

k)β21 , ...,Λ
k
J (X

k)β2J

)

, (3.22)

where, “diag” means diagonal matrix. Moreover, by (3.20)-(3.22), we can conclude that

Ãk(t,Xk) ⇒ Ã(t, x) and S̃k(t,Xk) ⇒ S̃(t, x) as k → ∞, (3.23)

where, the limits Ã and S̃ are Brownian motions depending on x ∈ Sn+1 through their

associated arrival and service rates. More precisely, the means of Ã and S̃ are both zero.

Their covariance matrices are respectively given by

ΓA = diag

(

m2
1

(

λ1(x)ζ
2
1 + λ1(x)α

2
1(x)

)

, ...,m2
J

(

λJ(x)ζ
2
J + λJ(x)α

2
J (x)

)

)

, (3.24)

ΓS = diag

(

Λ1(x)β
2
1 , ...,ΛJ (x)β

2
J

)

. (3.25)
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To further conduct our proof, we define the associated fluid scaling process F̄ rk for each

functional F̂ rk ∈ {Q̂rk, V̂ rk, Û r, Ŝr, Îrk} by

F̄ rk(t,Xk) =
1√
r
F̂ rk(rt,Xk). (3.26)

Then, it follows from (3.17) that

V̄ rk(t,Xk) = V̄ rk(0,Xk) + Ū rk(t,Xk) + µrk(Xk)t+ Īrk(t,Xk). (3.27)

Hence, by the property in (3.19), it follows from (3.27) and the Skorohod mapping (see, e.g.,

Dai [4, 5] and Dai and Dai [3]) that

Īrk(t,Xk) = sup
0≤s≤t

(

V̄ rk(0,Xk) + Ū rk(s,Xk) + µrk(Xk)s
)−
, (3.28)

where, for a real number a, (a)− = −a if a ≤ 0 and (a)− = 0 otherwise. Note that, since
∣

∣

∣
B̄rk

j (t2,X
k)− B̄rk

j (t1,X
k)
∣

∣

∣
≤
∣

∣

∣
t2 − t1

∣

∣

∣
(3.29)

for any t1, t2 ∈ [0,∞) and each j ∈ J , B̄rk
j (t,Xk) is Lipschitz continuous. Thus, it follows

from (3.18) that Īrk(t,Xk) is also Lipschitz continuous. Therefore, by the heavy traffic

condition in (3.10), the weak convergence in (3.11) and (3.20), and the property in (3.29),

it follows from the Skorohod representation theorem (see, e.g., Ethier and Kurtz[8]) and the

discussion in Dai [4, 5] and Dai and Dai [3]) that

Īrk(t,Xk) → 0 u.o.c. a.s. as r → ∞ for each given k ∈ R, (3.30)

where, u.o.c. means “uniform convergence on compact set of [0,∞)”. Hence, we know that

B̄rk
j (t,Xk) → t u.o.c. a.s. as r → ∞ for each given k ∈ R. (3.31)

Then, by (3.11)-(3.12), (3.10), (3.20)-(3.22), (3.30)-(3.31), the continuous mapping theo-

rem (see, e.g., Billingsley [2]), the Skorohod representation theorem (see, e.g., Ethier and

Kurtz[8]), and the way developed in Dai [4, 5] and Dai and Dai [3]), we know that

V̂ rk(0,Xk) + Û rk(t,Xk) +
√
rµrk(Xk)t → Ṽ k(0,Xk) + Ũk(t,Xk) + θkt (3.32)

u.o.c. a.s. as r → ∞ for each given k ∈ R, where,

Ṽ k(0,Xk) =

J
∑

j=1

1

µj
Q̃k

j (0,X
k),

Ũk(t,Xk) = Ãk(t,Xk)− S̃k(t,Xk).

Furthermore, by (3.32) and the continuous mapping theorem, we know that

Îrk(t,Xk) → Ĩk(t,Xk) = sup
0≤s≤t

(

Ṽ k(0,Xk) + Ũk(s,Xk) + θk(Xk)s
)−

(3.33)
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u.o.c. a.s. as r → ∞ for each given k ∈ R, which implies that

V̂ rk(t,Xk) → Ṽ k(t,Xk) = Ṽ k(0,Xk) + Ũk(t,Xk) + θk(Xk)t+ Ĩk(t,Xk). (3.34)

In addition, by (3.19), (3.33), and the continuous mapping theorem, we have that

0 =

∫ ∞

0
V̂ rk(t,Xk)dÎrk(t,Xk) →

∫ ∞

0
Ṽ k(t,Xk)dĨk(t,Xk) (3.35)

u.o.c. a.s. as r → ∞ for each given k ∈ R.

Hence, it follows from the similar discussion in proving the claims in (3.34)-(3.35) that

Ĩk(t,Xk) → Ĩ(t, x) = sup
0≤s≤t

(

Ṽ (0, x) + Ũ(s, x) + θ(x)s
)−
, (3.36)

Ṽ k(t,Xk) → Ṽ (t, x) = Ṽ (0, x) + Ũ(t, x) + θ(x)t+ Ĩ(t, x). (3.37)

u.o.c. a.s. as k → ∞. Moreover, we have that

0 =

∫ ∞

0
V̂ k(t,Xk)dÎk(t,Xk) →

∫ ∞

0
Ṽ (t, x)dĨ(t, x) (3.38)

u.o.c. a.s. as k → ∞.

Finally, by applying the Skorohod representation theorem back to (3.36)-(3.38), we know

that the claim in Theorem 3.1 is true. �

4 Appendix: Proof of Proposition 2.1

The proof of Proposition 2.1 consists of the following two parts that correspond to the

two counterparts in the statement of the theorem.

4.1 Proof of Part I.

In this part of proof, we prove the claim that a n-qubit quantum wave function |Ψ〉 satisfies
the constraint in (2.2) if its coefficients are given by (2.4). In fact, for the example shown

in Figure 3 with n = 1, the single-qubit quantum wave function |Ψ〉 = ψ0|0〉 + ψ1|1〉 with

ψ0 = cos (θ1) and ψ1 = eiϕsin(θ1) and satisfies |ψ0|2 + |ψ1|2 = 1. Furthermore, if n = 2, the

coefficients of the corresponding 2-qubit quantum wave function in (2.1), which is given by

|Ψ〉 = ψ0|00〉 + ψ1|01〉+ ψ2|10〉 + ψ3|11〉,

also satisfy the relationship in (2.2) due to the following computation,

|ψ0|2 + |ψ1|2 + |ψ2|2 + |ψ3|2

= |cos(θ1)|2 + |sin(θ1) cos(θ2)|2 + |sin(θ1) sin(θ2) cos(θ3)|2 +
∣

∣eiϕ sin(θ1) sin(θ2) sin(θ3)
∣

∣

2

= |cos(θ1)|2 + |sin(θ1)|2 |cos(θ2)|2 + |sin(θ1)|2 |sin(θ2)|2
(

| cos(θ3)|2 + | sin(θ3)|2
)

= |cos(θ1)|2 + |sin(θ1)|2
(

| cos(θ2)|2 + | sin(θ2)|2
)

= 1.
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By the similar way, we can show that the constraint in (2.2) is true for the given expressions

in (2.4) corresponding to each n ∈ {1, 2, ...}.

4.2 Proof of Part II

In this part of proof, we prove the claims concerning the n-qubit quantum operations to be

true. The proof consists of four steps corresponding to the four operations of addition (+),

substraction (-), multiplication (∗), and division (/) over Sn+1.

Step I. For the addition (+) operation, the corresponding coefficients of |Υ〉(Φ,Ψ) =

|Υ〉Φ+Ψ in (2.7) can be calculated as follows. For k = 1, we have that

υ1(φ1, ψ1) =
φ1 + ψ1

2 cos
(

θΦ
1
−θΨ

1

2

) =
cos
(

θΦ1
)

+ cos
(

θΨ1
)

2 cos
(

θΦ
1
−θΨ

1

2

) = cos

(

θΦ1 + θΨ1
2

)

. (4.1)

For k = 2, we have that

υ2(φ2, ψ2) =
(φ2 + ψ2) + sin(θΦ1 ) cos(θ

Ψ
2 ) + sin(θΨ1 ) cos(θ

Φ
2 )

22 cos
(

θΦ
1
−θΨ

1

2

)

cos
(

θΦ
2
−θΨ

2

2

) (4.2)

=

(

sin(θΦ1 ) + sin(θΨ1 )
) (

cos(θΦ2 ) + cos(θΨ2 )
)

22 cos
(

θΦ
1
−θΨ

1

2

)

cos
(

θΦ
2
−θΨ

2

2

)

= sin

(

θΦ1 + θΨ1
2

)

cos

(

θΦ1 + θΨ1
2

)

.

In general, for an integer k ∈ {2, 3, ..., 2n − 1}, we have that

υk(φk, ψk) =
1

2k
∏k

j=1 cos

(

θΦj −θΨj
2

) (4.3)

(

(φk + ψk) +
(

k−1
∏

j=1

(

sin(θΦj ) + sin(θΨj )
) (

cos(θΦk ) + cos(θΨk )
)

)

−
(

k−1
∏

j=1

sin(θΦj ) cos(θ
Φ
k ) +

k−1
∏

j=1

sin(θΨj ) cos(θ
Ψ
k )
)

)

=

∏k−1
j=1

(

sin(θΦj ) + sin(θΨj )
)

(

cos(θΦk ) + cos(θΨk )
)

2k
∏k

j=1 cos

(

θΦ
j
−θΨ

j

2

)

=

k−1
∏

j=1

sin

(

θΦj + θΨj
2

)

cos

(

θΦk + θΨk
2

)

.
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Finally, for k = 2n, we have that

υ2n(φ2n , ψ2n) =
1

22n−1e(i(θ
Φ

2n
+θΨ

2n)/2)
∏2n−1

j=1 cos

(

θΦj −θΨj
2

) (4.4)

(

(φ2n + ψ2n) + ei(θ
Φ

2n
+θΨ

2n)
2n−1
∏

j=1

(

sin(θΦj ) + sin(θΨj )
)

−
(

eiθ
Φ

2n

2n−1
∏

j=1

sin(θΦj ) + eiθ
Ψ

2n

2n−1
∏

j=1

sin(θΨj )
)

)

=
ei(θ

Φ

2n
+θΨ

2n)
∏2n−1

j=1

(

sin(θΦj ) + sin(θΨj )
)

22n−1e(i(θ
Φ

2n
+θΨ

2n)/2)
∏2n−1

j=1 cos

(

θΦ
j
−θΨ

j

2

)

= e(i(θ
Φ

2n
+θΨ

2n)/2)
2n−1
∏

j=1

sin

(

θΦj + θΨj
2

)

.

Thus, |Υ〉(Φ,Ψ) = |Υ〉Φ+Ψ in (2.7) with the coefficients in (4.1)-(4.4) satisfies the constraint

in (2.2) and has the spherical coordinate θΦ+Ψ
Υ as in (2.8).

Step II. For the substraction (-) operation, the corresponding coefficients of |Υ〉(Φ,Ψ) =

|Υ〉Φ−Ψ in (2.7) can be calculated as follows. For k = 1, we have that

υ1(φ1, ψ1) =
φ1 − ψ1 + 2cos

(

θΨ1
)

2 cos
(

θΦ
1
+θΨ

1

2

) =
cos
(

θΦ1
)

+ cos
(

θΨ1
)

2 cos
(

θΦ
1
+θΨ

1

2

) = cos

(

θΦ1 − θΨ1
2

)

. (4.5)

For k = 2, we have that

υ2(φ2, ψ2) =
(φ2 − ψ2) + sin(θΦ1 ) cos(θ

Ψ
2 )− sin(θΨ1 ) cos(θ

Φ
2 )

22 cos
(

θΦ
1
−θΨ

1

2

)

cos
(

θΦ
2
+θΨ

2

2

) (4.6)

=

(

sin(θΦ1 )− sin(θΨ1 )
) (

cos(θΦ2 ) + cos(θΨ2 )
)

22 cos
(

θΦ
1
−θΨ

1

2

)

cos
(

θΦ
2
+θΨ

2

2

)

= sin

(

θΦ1 − θΨ1
2

)

cos

(

θΦ1 − θΨ1
2

)

.

In general, for an integer k ∈ {2, 3, ..., 2n − 1}, we have that

υk(φk, ψk) =
1

2k
∏k−1

j=1 cos

(

θΦj −θΨj
2

)

cos
(

θΦ
k
+θΨ

k

2

)

(4.7)

(

(φk − ψk) +
(

k−1
∏

j=1

(

sin(θΦj )− sin(θΨj )
) (

cos(θΦk ) + cos(θΨk )
)

)
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−
(

k−1
∏

j=1

sin(θΦj ) cos(θ
Φ
k )−

k−1
∏

j=1

sin(θΨj ) cos(θ
Ψ
k )
)

)

=

∏k−1
j=1

(

sin(θΦj )− sin(θΨj )
)

(

cos(θΦk ) + cos(θΨk )
)

2k
∏k−1

j=1 cos

(

θΦj −θΨj
2

)

cos
(

θΦ
k
+θΨ

k

2

)

=

k−1
∏

j=1

sin

(

θΦj − θΨj
2

)

cos

(

θΦk − θΨk
2

)

.

Finally, for k = 2n, we have that

υ2n(φ2n , ψ2n) =
1

22n−1e(i(θ
Φ

2n
−θΨ

2n)/2)
∏2n−1

j=1 cos

(

θΦj −θΨj
2

) (4.8)

(

(φ2n + ψ2n) + ei(θ
Φ

2n
−θΨ

2n)
2n−1
∏

j=1

(

sin(θΦj )− sin(θΨj )
)

−
(

eiθ
Φ

2n

2n−1
∏

j=1

sin(θΦj )− eiθ
Ψ

2n

2n−1
∏

j=1

sin(θΨj )
)

)

=
ei(θ

Φ

2n
−θΨ

2n)
∏2n−1

j=1

(

sin(θΦj )− sin(θΨj )
)

22n−1e(i(θ
Φ

2n
−θΨ

2n)/2)
∏2n−1

j=1 cos

(

θΦ
j
−θΨ

j

2

)

= e(i(θ
Φ

2n
−θΨ

2n)/2)
2n−1
∏

j=1

sin

(

θΦj − θΨj
2

)

.

Thus, |Υ〉(Φ,Ψ) = |Υ〉Φ−Ψ in (2.7) with the coefficients in (4.5)-(4.8) satisfies the constraint

in (2.2) and has the spherical coordinate θΦ−Ψ
Υ as in (2.8).

Step III. For the multiplication (∗) operation, the corresponding coefficients of |Υ〉(Φ,Ψ) =

|Υ〉Φ∗Ψ in (2.7) can be calculated as follows. For k = 1, we have that

υ1(φ1, ψ1) = 2φ1 ∗ ψ1 − cos
(

θΦ1 − θΨ1
)

= cos
(

θΦ1 + θΨ1
)

. (4.9)

For k = 2, we have that

υ2(φ2, ψ2) =
22 cos(θΦ1 ) ∗ φ2 ∗ ψ2

sin(θΦ1 )
−
(

sin(θΦ1 + θΨ1 ) cos(θ
Φ
2 − θΨ2 ) (4.10)

− sin(θΦ1 − θΨ1 ) cos(θ
Φ
2 − θΨ2 )− sin(θΦ1 − θΨ1 ) cos(θ

Φ
2 + θΨ2 )

)

=
(

sin(θΦ1 + θΨ1 )− sin(θΦ1 − θΨ1 )
)(

cos(θΦ2 − θΨ2 ) + cos(θΦ2 + θΨ2 )
)

−
(

sin(θΦ1 + θΨ1 ) cos(θ
Φ
2 − θΨ2 )− sin(θΦ1 − θΨ1 ) cos(θ

Φ
2 − θΨ2 )
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− sin(θΦ1 − θΨ1 ) cos(θ
Φ
2 + θΨ2 )

)

= sin(θΦ1 + θΨ1 ) cos(θ
Φ
2 + θΨ2 ).

In general, for an integer k ∈ {2, 3, ..., 2n − 1}, we have that

υk(φk, ψk) =
2k
(

∏k−1
j=1 cos(θ

Φ
j )
)

∗ φk ∗ ψk

∏k−1
j=1 sin(θ

Φ
j )

(4.11)

−
(

k−1
∏

j=1

(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)(

cos(θΦk − θΨk ) + cos(θΦk + θΨk )
)

−
k−1
∏

j=1

sin(θΦj + θΨj ) cos(θ
Φ
k + θΨk )

)

)

=

k−1
∏

j=1

(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)(

cos(θΦk − θΨk ) + cos(θΦk + θΨk )
)

−
(

k−1
∏

j=1

(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)(

cos(θΦk − θΨk ) + cos(θΦk + θΨk )
)

−
k−1
∏

j=1

sin(θΦj + θΨj ) cos(θ
Φ
k + θΨk )

)

)

=

k−1
∏

j=1

sin(θΦj + θΨj ) cos(θ
Φ
k + θΨk ).

Finally, for k = 2n, we have that

υ2n(φ2n , ψ2n) =
22

n−1
∏2n−1

j=1 cos(θΦj ) ∗ φ2n ∗ ψ2n

∏2n−1
j=1 sin(θΦj )

(4.12)

−ei((θΦ2n+θΨ
2n

))

(

2n−1
∏

j=1

(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

−
2n−1
∏

j=1

sin(θΦj + θΨj )

)

)

= ei((θ
Φ

2n
+θΨ

2n
))

(

2n−1
∏

j=1

(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

−
( 2n−1
∏

j=1

(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

−
2n−1
∏

j=1

sin(θΦj + θΨj )

)

)

= e(i(θ
Φ

2n
+θΨ

2n
))

2n−1
∏

j=1

sin
(

θΦj + θΨj
)

.
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Thus, |Υ〉(Φ,Ψ) = |Υ〉Φ∗Ψ in (2.7) with the coefficients in (4.9)-(4.12) satisfies the constraint

in (2.2) and has the spherical coordinate θΦ∗Ψ
Υ as in (2.8).

Step IV. For the division (/) operation, the corresponding coefficients of |Υ〉(Φ,Ψ) =

|Υ〉Φ/Ψ in (2.7) can be calculated as follows. For k = 1, we have that

υ1(φ1, ψ1) = 2(φ1/ψ1) cos
2(θΨ1 )− cos

(

θΦ1 + θΨ1
)

= cos
(

θΦ1 − θΨ1
)

. (4.13)

For k = 2, we have that

υ2(φ2, ψ2) = −22 cos(θΦ1 ) ∗ (φ2/ψ2) ∗ sin2(θΨ1 ) cos2(θΨ2 )
sin(θΦ1 )

(4.14)

+
(

sin(θΦ1 + θΨ1 ) cos(θ
Φ
2 − θΨ2 ) + sin(θΦ1 + θΨ1 ) cos(θ

Φ
2 + θΨ2 )

− sin(θΦ1 − θΨ1 ) cos(θ
Φ
2 − θΨ2 )

)

= −
(

sin(θΦ1 + θΨ1 )− sin(θΦ1 − θΨ1 )
)(

cos(θΦ2 − θΨ2 ) + cos(θΦ2 + θΨ2 )
)

+
(

sin(θΦ1 + θΨ1 ) cos(θ
Φ
2 − θΨ2 ) + sin(θΦ1 + θΨ1 ) cos(θ

Φ
2 + θΨ2 )

− sin(θΦ1 − θΨ1 ) cos(θ
Φ
2 − θΨ2 )

)

= sin(θΦ1 − θΨ1 ) cos(θ
Φ
2 − θΨ2 ).

In general, for an integer k ∈ {2, 3, ..., 2n − 1}, we have that

υk(φk, ψk) = −
(−1)k−12k

(

∏k−1
j=1 cos(θ

Φ
j )
)

∗ (φk/ψk) ∗
∏k−1

j=1 sin
2(θΨj ) cos

2(θΨk )
∏k−1

j=1 sin(θ
Φ
j )

(4.15)

−
(

k−1
∏

j=1

(

−
(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

)(

cos(θΦk − θΨk ) + cos(θΦk + θΨk )
)

−
k−1
∏

j=1

sin(θΦj − θΨj ) cos(θ
Φ
k − θΨk )

)

)

=

k−1
∏

j=1

(

−
(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

)(

cos(θΦk − θΨk ) + cos(θΦk + θΨk )
)

−
(

k−1
∏

j=1

(

−
(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

)(

cos(θΦk − θΨk ) + cos(θΦk + θΨk )
)

−
k−1
∏

j=1

sin(θΦj − θΨj ) cos(θ
Φ
k − θΨk )

)

)

=
k−1
∏

j=1

sin(θΦj − θΨj ) cos(θ
Φ
k − θΨk ).
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Finally, for k = 2n, we have that

υ2n(φ2n , ψ2n) =
(−2)2

n−1
∏2n−1

j=1 cos(θΦj ) ∗ φ2n ∗ ψ2n ∗∏2n−1
j=1 sin2(θΨj ) cos

2(θΨ2n)
∏2n−1

j=1 sin(θΦj )
(4.16)

−ei((θΦ2n−θΨ
2n

))

(

2n−1
∏

j=1

(

−
(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

)

−
2n−1
∏

j=1

sin(θΦj − θΨj )

)

)

= ei((θ
Φ

2n
−θΨ

2n
))

(

2n−1
∏

j=1

(

−
(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

)

−
2n−1
∏

j=1

(

−
(

sin(θΦj + θΨj )− sin(θΦj − θΨj )
)

)

+

2n−1
∏

j=1

sin(θΦj − θΨj )

)

= e(i(θ
Φ

2n
−θΨ

2n
))

2n−1
∏

j=1

sin
(

θΦj − θΨj
)

.

Thus, |Υ〉(Φ,Ψ) = |Υ〉Φ/Ψ in (2.7) with the coefficients in (4.13)-(4.16) satisfies the constraint

in (2.2) and has the spherical coordinate θ
Φ/Ψ
Υ as in (2.8).

Finally, by following from the proofs in Part I and Part II with four proving steps, we

can reach a proof for Proposition 2.1. �

5 Conclusion

In this paper, we study n-qubit operation rules on (n + 1)-sphere with the target to help

developing a (photon or other technique) based programmable quantum computer. In the

meanwhile, we derive the scaling limits (referred to as RGRFs on the sphere Sn+1) for n-

qubit quantum computer based queueing systems under two different heavy traffic regimes.

The queueing systems are with multiple classes of users and batch quantum random walks

over the sphere as arrival inputs. In the first regime, the qubit number n is fixed and the

scaling is in terms of both time and space. Under this regime, performance modeling during

deriving the scaling limit RGRF in terms of reasonably balancing the arrival and service rates

under first-in first-out and work conserving service policy is conducted. In the second regime,

besides the time and space scaling parameters, the qubit number n itself is also considered

as a varying scaling parameter with the additional aim to find a suitable number of qubits

for the design of a quantum computer. The second heavy traffic regime is in contrast to

the well-known Halfin-Whitt regime where the number of servers is considered as a scaling

parameter.
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