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Abstract

Recently Sato et al. proposed an public verifiable blind quantum com-
putation (BQC) protocol by inserting a third-party arbiter. However, it
isn’t true public verifiable in a sense, because the arbiter is determined
in advance and participates in the whole process. In this paper, a public
verifiable protocol for measurement-only BQC is proposed. The fidelity
between arbitrary states and the graph states of 2-colorable graphs is
estimated by measuring the entanglement witnesses of the graph states,
so as to verify the correctness of the prepared graph states. Compared
with the previous protocol, our protocol is public verifiable in the true
sense by allowing other random clients to execute the public verification.
It also has greater advantages in the efficiency, where the number of local
measurements is O(n3 logn) and graph states’ copies is O(n2 logn).

Keywords: Blind quantum computation, Public verifiability, Graph state,
Entanglement witness
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1 Introduction

Blind quantum computation (BQC) allows any client (known as Alice) with
weak quantum ability to delegate her computing tasks to a quantum server
(known as Bob) without leaking her privacy. BQC is divided into two
categories: circuit-based BQC (CBQC)[1–5] and measurement-based BQC
(MBQC)[6–17]. CBQC realizes blindness through quantum circuits, where the
client needs to have the ability to operate some quantum gates. In MBQC,
the client only needs to prepare and measure quantum states. Recently, Mori-
mae and Fuji[7] proposed a new type of BQC, called measurement-only BQC
(MOBQC), where the server prepare the resource state, while the client just
should perform single-qubit measurements.

As more and more BQC protocols are proposed, the verifiability of BQC
has attracted much attention. In a verifiable BQC protocol, each party can ver-
ify whether other party is honest. Although Broadbent et al.[6] have explored
the possibility of verifiability in their protocol, it’s not complete. Based on the
former, Fitzsimons et al.[8] proposed a relatively complete verifiable version.
In this protocol, the verifier encodes the computation task (including the ver-
ification mechanism) into a series of single qubits, and then executes BQC.
According to the results, it can be verified whether the computation has been
correctly executed. In addition, several BQC protocols[2, 8, 9] verifies the cor-
rectness of the input of BQC by checking the trap qubits randomly hidden in
the input state. For MOBQC[7], it’s proposed to verify graph states[10–14].
Stabilizer testing[14] is a verification technology of the graph state without set-
ting traps. The server generates graph states and send them to the client, and
the latter then directly measure stabilizers on the sent graph states to verifies
the correctness. However, these verifiable MOBQC protocols [10, 12–14] using
stabilizer test are of high resource consumption, which is an obstacle to the
development of scalable quantum computation. In 2021, Xu et al.[15] proposed
a verifiable BQC protocol based on entanglement witnesses, which effectively
reduces the resource consumption of verification by measuring entanglement
witnesses[18] that can detect the graph states.

The above verifiable protocols only allow Alice to verify Bob’s honesty,
which is called private verifiability. However, private verifiability has the fol-
lowing problems: Alice can detect any dishonest behavior of Bob, but the
detection results can not make any third party trusted; even if Bob is honest,
he can be framed by Alice. In 2016, on the basis of unconditionally verifiable
BQC protocol[8], Kentaro[16] proposed the concept of public verifiability and
provided a corresponding protocol based on classical cryptography. In 2019,
Sato et al.[17] chose to insert a trusted third party as the arbiter to build an
arbitrable BQC protocol which realizes public verifiability in a sense. How-
ever, the public verifiability depends on the arbiter, which is determined in
advance and participates in the whole process, thus the protocol isn’t true
public verifiable in a sense.

In this paper, inspired by the verifiable mechanism based on entanglement
witnesses, we propose a public verifiable MOBQC protocol. The third-party
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verifier is randomly selected from other clients rather than a specific arbiter,
so as to achieve public verifiability in the true sense. In addition, 2-colorable
graphs and entanglement witnesses are introduced to reduce resource con-
sumption. Compared with the number of local measurements (O(n2n+5)) and
of copies of the resource states (O(n2n+52n)) of Sato et al.[17], our protocol
have obvious advantages (O(n3 log n) and O(n2 log n) respectively). We also
consider the communication error and give some error mitigation schemes.

The rest of this paper is organized as follows: In Sect. 2, we briefly introduce
2-colorable graph states, entanglement witnesses, and MOBQC. The proto-
col is presented in Sect. 3 and analyzed in Sect. 4. Error propagation and
mitigation is analyzed in Sect. 5. The paper concludes with Sect. 6.

2 Preliminaries

In this section, we briefly introduce 2-colorable graph states and the entangle-
ment witnesses of them, and then review the basic steps of measurement-only
BQC.

2.1 2-colorable graph state

Given an undirected simple graph G with n vertices i ∈ V and several edges
(i, j) ∈ E = V × V , if all vertices of it can be divided into at least m disjoint
subsets S1, S2, · · · , Sm, where there is no edge between any pair of vertices in
any Sj , j = 1, 2, · · · ,m, then we call G an m-colorable graph. We use n qubits
to represent vertices ofG, and the graph state |G⟩ corresponding toG is defined

as |G⟩ =
(∏

(i,j)∈E Uij

)
|+⟩⊗n

, where |+⟩ = 1√
2
(|0⟩+ |1⟩) is the initial state

of each vertex and Uij is the controlled-Z gate |0⟩ ⟨0|⊗I+|1⟩ ⟨1|⊗Z performed
on vertices i and j, where I is identity operator and Z is Pauli operator σz.
On the other hand, there are n stabilizer gi = Xi

∏
k∈N(i) Zk of |G⟩, i.e.,

gi |G⟩ = |G⟩, where i = 1, 2, · · · , n, N (i) is the adjacency points set of vertex
i and Xi, Zj are the Pauli operators σx, σz performed on i, j respectively.

In this paper, we only consider 2-colorable graph states which are widely
used as resource states of BQC, such as brickwork state[6] and Raussendorf-
Harrington-Goyal (RHG) state[19], of which the preparation and verification
are of research value. An example of a 2-colorable graph is shown in Figure 1.

Fig. 1 A 2-colorable graph as an example, where red vertices belong to S1 and green
vertices belong to S2.
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2.2 Entanglement witness

An entanglement witness W is an observable measurement which satisfies: (1)
For all separable states ϱs, tr (Wϱs) ≥ 0; (2) At least one entangled state ϱe
satisfies tr (Wϱe) < 0, where tr (·) represents matrix trace; then we say that ϱe
is detected by W . For an n-qubit graph state and some states close to it, based
on the colorability of the graph, some witnesses with constant measurement
times are proposed. The following W (2) is a witness of a 2-colorable graph
state |G⟩[18]:

W (2) = 3I − 2

[∏
i∈S1

gi + I

2
+
∏
i∈S2

gi + I

2

]
, (1)

where S1, S2 are two divided sets of the graph. According to the structure of
the witness, for a given 2-colorable graph state, only two measuring settings
are needed, and the j-th setting is observable

∏
i∈Sj

gi. The two settings corre-

sponding to the two-colorable graph in Figure 1 are shown in Figure 2. For
the j-th measuring setting

∏
i∈Sj

gi, we only need to measure the qubits corre-

sponding to Sj , and then measure the qubits corresponding to another subset
Sj according to the adjacency relationship with Sj . Therefore, a setting

∏
i∈Sj

gi

only needs O(n) local measurement times.

(a) (b)

Fig. 2 The two settings corresponding to the graph in Figure 1, where all red vertices
belong to S1 and all green vertices belong to S2. (a)(b) are the observables

∏
i∈S1

gi,
∏

i∈S2

gi

corresponding to S1, S2 respectively.

2.3 Measurement-only blind quantum computation

In MOBQC, the server Bob only needs to prepare the general resource state,
and the client Alice only needs to perform quantummeasurement. The protocol
steps are as follows: Bob prepares the general resource state and then sends
the prepared state particles to Alice via quantum channel, then Alice measures
the sent particles on the basis determined by her algorithm. The verification
of this model is generally aimed at the correctness of the resource state. Bob
is often required to prepare multiple copies of the resource state, and some of
which are used for verification and one of the rest is used for calculation, as
shown in Figure 3.
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Fig. 3 The verification process of MOBQC.

3 Public Verifiable Measurement-only Blind
Quantum Computation based on
entanglement witnesses

3.1 Verification algorithm

Inspired from Xu et al.’s verification mechanism[15], we present a verification
algorithm to verify the correctness of the prepared graph state. Given a target
graph state |G⟩ corresponding to a 2-colorable graph G, and an unknown state
ϱ to be verified. The two divided subsets of G are denoted as S1, S2, and the
verification process is shown in Algorithm 1.

In Algorithm 1, the condition constant C is determined to make sure the
fidelity between the prepared state ϱ and the required state |G⟩ is high enough.
Considering the fidelity estimation process, C isn’t fixed, but varies with the
order of the verifier, i.e., C will be different for the third-party verifier from
the client in our protocol. Therefore, we set C as a pending parameter so as
to ensures the scalability of the verification. Based on the above, Algorithm 1
can be applied to public verification.

3.2 Proposed protocol

In Sato et al.’s protocol[17], Charlie, the third-party arbiter, can arbitrate in
case of a dispute between the server Bob and the client Alice. However, the
verifier (Charlie) is determined in advance and participates in the whole pro-
cess, which isn’t a true third party independent with Bob and Alice. To achieve
a true public verification, i.e., any third party can participate in verification,
we removed Charlie’s role of third-party verifier, but only retained its stor-
age capacity of quantum state, therefore it’s renamed the storage center. The
third party that participates in the public verification will be selected from
other clients Alice2, Alice3,· · · , Alicel randomly, where l is the total number
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Algorithm 1 Verification Algorithm: verify the correctness of the prepared
graph state ϱ

Require: 2K n-qubit registers, a required graph state |G⟩, and a constant
0 ≤ C ≤ 2K.

Ensure: The 2K registers store the same prepared n-qubit state ϱ.
1: Select K registers independently, evenly and randomly from 2K registers

and mark it as the 1-st group, then mark the rest K registers as the 2-nd
group.

2: Measure observable
∏

i∈Sj

gj on each register in the j-th group.

3: Calculate Mϱ
j by Mϱ

j =
∏

i∈Sj

xi

∏
k∈N(i) zk+1

2 , where xi, zj are the results of

measuring observables Xi, Zj , and count the number of registers satisfy
Mϱ

j = 0 as Kj .
4: if K1 +K2 ≤ C then
5: Accept.
6: else
7: Reject.
8: end if

of clients. As shown in Figure 4, there are three parties in the protocol: the
server Bob is responsible for preparing the graph states; the set A = {Alice1,
Alice2,· · · , Alicel} is a set of clients of quantum computation, which are all
legal users[20, 21] registered with Charlie; the storage center Charlie has the
ability to store quantum states and is responsible for distributing the graph
states prepared by Bob to the client and selecting the third-party verifier, and
is ensured honesty. When the protocol is executed between Alice1 and Bob, any
other client Alicet in A where t ∈ {2, . . . , l} can perform public verification.

Fig. 4 The tripartite relationship in the proposed protocol.
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The graph states used in our protocol all correspond to 2-colorable graphs.
Taking client Alice1, who has a computing request, as an example, the specific
steps are as follows (also shown in Figure 5):
Step 1 Alice1 sends preparation request to Charlie, then Charlie forwards

it to Bob, where the graph state |G⟩ requested is an n-qubit state
corresponding to a 2-colorable graph and n ≥ 6.

Step 2 Bob prepares a 5Kn-qubit state |G⟩5K , whereK =
⌈
n2 log n

⌉
, ⌈·⌉ is

ceiling function. Then he send it to Charlie one by one qubit.
Step 3 Charlie divides the state sent from Bob into 5K n-qubit states |G⟩ in

turn and stores them in n-qubit registers respectively. He selects 2K
registers independently, evenly and randomly from these 5K registers
and keeps them, and then sends the rest 3K to Alice1 in turn.

Step 4 Alice1 divides the states sent from Charlie into 3K n-qubit registers and
selects 2K registers independently, evenly and randomly from them,
then executes Verification Algorithm (see Algorithm 1) where C = K

2n .
Step 5 If it accepts, Alice1 considers Bob honest and proceeds to the next step,

and otherwise considers Bob dishonest and refuses to pay for services.
Step 6 Alice1 randomly selects one register from the remaining K registers

and discards the others, then uses this register to perform MBQC, i.e.,
measures particles on the basis determined by her algorithm.

Step 7 If Alice1 claims that Bob is dishonest, Bob can ask Charlie for public
verification, and then Charlie randomly selects a third party Alicet
from Alice2, Alice3,· · · , Alicel to send verification request.

Step 8 If Alicet accepts the request, Charlie sends the 2K copies in his hand
to Alicet in turn. According to the graph state type, Alicet executes
Verification Algorithm, where C = 3K

4n . If it accepts, Alicet claims that
Alice1 is dishonest, otherwise Bob is dishonest.

4 Performance analysis

4.1 Completeness analysis

Completeness means that when Bob faithfully prepares the required graph
state, it must be accepted by Alice1 or Alicet with high probability. In Step 3

of Algorithm 1, the random variable Mϱ
j =

∏
i∈Sj

xi

∏
k∈N(i) zk+1

2 ∈ {0, 1} to

be calculated is the measurement result of
∏

i∈Sj

gi+I
2 . According to quantum

measurement theory, we have

M
ϱ

j = Tr

∏
i∈Sj

gi + I

2
ϱ

 , (2)
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Fig. 5 The process of public verifiable protocol. Solid lines represent graph states trans-
mission and dotted lines represent requests transmission.

where M
ϱ

j is the mathematical expectation of Mϱ
j . Assume Bob prepares the

correct state ϱ = |G⟩ ⟨G|, then we have

M
ϱ

j = Tr

∏
i∈Sj

gi + I

2
|G⟩ ⟨G|

 = Tr (|G⟩ ⟨G|) = 1. (3)

We have Mϱ
j ∈ {0, 1}, which means for each register k ∈ Π(j), Mϱk

j = 1,
i.e.,Kj = 0. Therefore ∀0 ≤ C ≤ 2K,K1 +K2 ≤ C, i.e., it must be accepted,
leading to the completeness.

4.2 Soundness analysis

Soundness means that if Alice1 or Alicet accepts the state ϱ prepared by Bob, it
must close to the graph state required by Alice1 with high probability. Fidelity
F = ⟨G| ϱ |G⟩ is generally used to measure the closeness. Fidelity estimation
is based on the following inequality [15]:

F ≥ 1

2
− 1

2
Tr
(
W (2)ϱ

)
. (4)

In our protocol, the expectation Tr
(
W (2)ϱ

)
is obtained by measuring the

entanglement witness W (2) detecting |G⟩ to determine whether the state ϱ
is close to |G⟩, so as to verifies the behavior of Bob. We have the following
theorem about the soundness of our protocol:
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Theorem 1 In our protocol,

(1) When Alicet hasn’t involved in arbitration, if Alice1 measures K1 + K2 ≤ K
2n ,

then we have

F ≥ 1− 4
√
λ1 + 1

n
(5)

with a probability

P ≥ 1− 4n−λ1
2 , (6)

where λ1 is arbitrary constant satisfying logn 16 ≤ λ1 ≤ (n−1)2

16 .

(2) When Alicet involves in arbitration, if Alicet measures K1 +K2 ≤ 3K
4n , then we

have

F ≥ 1− 3
√
λ2 + 1

n
(7)

with a probability
P ≥ 1− 4n−λ2 , (8)

where λ2 is arbitrary constant satisfying logn 4 ≤ λ2 ≤ (n−1)2

9 .

Proof In the theorem, (1) has been proved [15] and we only need to prove (2), using
some existing probability inequalities. If we perform the j-th measurement setting on
the rest 3K registers, then for each group of K registers selected by Charlie, we can
obtain an upper bound of the number of registers satisfying Mϱ

j = 0 in the rest 3K
registers measured and the relevant confidence probability, Hence, the lower bound

of
3K∑
k=1

Mϱk

1 is directly given. We then obtain a lower bound of M
ϱ
1 and the relevant

confidence probability. By Eq. 2 we can obtain a lower bound of Tr

( ∏
i∈Sj

gi+I
2 ϱ

)
.

By Eq. 1 and Eq. 4, we finally prove that the fidelity F satisfies a lower bound with
a certain confidence probability P . See Appendix A for details. □

Therefore, if the verification is passed, then the state prepared by Bob
is close to the required graph state with high probability, leading to the
soundness.

In the protocol, K = O
(
n2 log n

)
so that the probability in the theorem is

1− O
(
n−λ

)
for a constant λ, which is high enough; we set n ≥ 6 so that the

above λ exists. See Appendix A for details.

4.3 Efficiency analysis

Efficiency refers to the number of copies of the resource state prepared by the
protocol and the number of local measurements required. As mentioned above,
we set K = O

(
n2 log n

)
so that the probability is high enough. The detail

parameters of our and Sato et al.’s protocol[17] are shown in Table 1.
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Table 1 The detail parameters of public verifiable MBQC protocols

Protocol Copies numbers Parameters ranges Observables measured

Sato et al.’s |G⟩2k+m+1 k ≥ 4n2 − 1, m ≥ (2 ln 2)Knn5
n∏

i=1
g
ki
i

Our |G⟩5K K ≥
⌈
n2 logn

⌉ n∏
i∈Sj

gi

We first consider the number of copies. For the same n-qubit graph state
|G⟩, in Sato et al.’s protocol, the number of copies is

2k +m+ 1 ≥ 8n2 − 2 + (2 ln 2) knn+ 1

= 8n2 − 2 + (2 ln 2) knn+ 1

= Θ
(
n2n+5

) , (9)

i.e., O
(
n2n+5

)
at least; in our protocol it is 5K ≥ 5

⌈
n2 log n

⌉
= Θ

(
n2 log n

)
,

i.e., O
(
n2 log n

)
at least. Thus our protocol has advantages.

Then, the number of required local measurement is taken into account.

In Sato et al.’s protocol, they measured stabilizers
n∏

i=1

gki
i on k or 2k n-qubit

graph states, where k = (k1k2 . . . kn) is a string randomly selected. Consider-

ing that the local measurement decomposition of
n∏

i=1

gki
i may be complex, and

for a specific graph structure it may be O (2n)[22], thus the number of local
measurements is O (kn) = O

(
n2n+52n

)
; in our protocol, we measure observ-

ables
n∏

i∈Sj

gi on 2K n-qubit graph states and for each graph state the number

of the local measurements is O(n) as mentioned above, thus the total number
is O (Kn) = O

(
n3 log n

)
. Therefore, our protocol still has advantages.

5 Error propagation and mitigation

It is worth noting that all the above analyses are based on the fact that the
quantum channel does not contain noise. However, the actual channel has a
certain amount of noise, so there must be certain errors in the graph state’s
propagation. Since Bob is not assumed to be honest in our protocol (i.e., the
sent graph state is not guaranteed to be correct), it is impossible to determine
whether the graph state is disturbed by noise by comparing it with the target
state. To mitigate the impact of noise, we have the following two methods.
(1) Use channel noise detection For each n-qubit graph state |G⟩, the sender
(Bob or Charlie) insert some additional qubits that are not entangled with
the graph state into the n qubits. These qubits’ initial states are agreed in
advance by both the sender and the receiver (Charlie or Alice), and they will
be sent together with the graph state as a whole. In this way, if some noise
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is encountered during one transmission, the state of these extra qubits will be
changed with a certain probability, and thus the noise can be detected. If the
noise is considered to be too high, the receiver may reject the communication
and request retransmission.

For example, assuming that k additional qubits are in the initial state |0⟩,
bit-flip noise occurs in the quantum channel with probability p, and r qubits
are flipped to |1⟩ after transmission. Since r has a binomial distribution, its
expectation is kp. By Azuma-Hoeffding bound[23] (see Appendix A for details),
∀t > 0, we have

Pr
((

1− r

k

)
− (1− p) ≤ t

)
= Pr

(
p ≤ r

k
+ t
)
≥ 1− exp

(
−2kt2

)
. (10)

If pth is the noise threshold, then

Pr (p ≤ pth) ≥ 1− exp

(
−2k

(
pth − r

k

)2)
. (11)

Let 1 − exp
(
−2k

(
pth − r

k

)2) ≥ 99%, then r ≤ kpth − p
√
k ln 10 = rth. For

instance, let k = 5, p = 1%, then rth = 3.44. If r ≤ 3, then we can say

Pr (p ≤ pth) ≥ 99%. The larger the k, the smaller the rth−⌊rth⌋
rth

≤ 1
rth

, and the
tighter the upper bound. Other noise types can be detected similarly, and only
the corresponding initial states and measurement bases need to be agreed.
(2) Use fault-tolerant quantum computing (FTQC) As mentioned by Mori-
mae et al.[7], using a computational model that can handle particle losses can
effectively mitigate noise. An [[n, k, d]] quantum error-correcting codes (QECC)
encodes n physical qubits into k logical qubits, and a QECC with distance d
can correct up to d−1

2 errors on arbitrary qubits[24]. The entanglement of the
graph state will not be destroyed in a qubit stabilizer QECC scheme, because
it is not necessary to really know the initial state of the target qubit, but
only to measure and compare the relative change between the physical qubits.
On the other hand, only the measurements and quantum gates of single-qubit
Pauli operators X,Y, Z are required, which means that even receiver with
weak quantum ability can implement it. In existing fault-tolerant quantum
computing, the noise threshold can even reach 24.9%[25].

Note that the above two methods can be used in combination because they
are independent of each other. First, the channel noise detection can ensure
that the noise factor is lower than a certain threshold, and then the fault
tolerance mechanism can correct small errors. By using the two methods, the
error caused by channel noise can be mitigated to a certain extent. Of course,
when the noise reaches a certain level, even retransmission will fail.
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6 Conclusion

In this paper, we proposes a public verifiable measurement-only blind quantum
computation protocol. By introducing a storage center, it allows the third-
party verifier to be any other client randomly selected. Compared with the
previous protocol, our protocol is public verifiable in the true sense. In the
protocol, the fidelity estimation between arbitrary states and graph states are
realized by measuring the entanglement witnesses detecting the graph states.
Without loss of completeness and soundness, the nature of 2-colorable graph
states reduce the number of local measurements (O

(
n3 log n

)
) and the num-

ber of copies of the graph states resources (O
(
n2 log n

)
). Compared with the

arbitrable protocol of Sato et al.[17] (the number of local measurements is
O(n2n+5) and of copies of the resource states is O(n2n+52n)), our protocol has
obvious advantages. We also consider the communication error and give some
error mitigation schemes.

On the other hand, since we have only considered 2-colorable graphs, the
proposed protocol is not applicable to arbitrary graph states. For more general
graph states, more research is needed to further improve the efficiency and
performance of existing schemes.

Acknowledgments. The authors would like to thank the anonymous
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paper. This work is supported by the National Natural Science Foundation of
China (62071240), the Innovation Program for Quantum Science and Technol-
ogy (2021ZD0302902), and the Priority Academic Program Development of
Jiangsu Higher Education Institutions (PAPD).

Appendix A Proof of Theorem 1

In the theorem, (1) has been proved [15] with a condition n ≥ 6. Now we prove
(2). At first we introduce the following two probability bounds which will be
used in the analysis, where Pr (·) represents the event probability and E (·)
represents the mathematical expectation:
(1) Serfling’s bound[26] Given a set Y = (Y1, Y2, ..., YT ) of T binary random

variables with Yk ∈ {0, 1} and two arbitrary positive integers N and K
that satisfy T = N+K, select K samples that are distinguished from each
other independently, evenly and randomly from Y , and let Π be the set of
these samples, Π = Y −Π, then ∀0 < v < 1, we have

Pr

∑
k∈Π

Yk ≤ N

K

∑
k∈Π

Yk +Nv


≥ 1− exp

(
− 2v2NK2

(N +K) (K + 1)

)
.

(A1)
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(2) Azuma-Hoeffding bound[23] Given independent random variables
ξ1, ξ2, · · · , ξn where ξi ∈ [ai, bi] , i = 1, 2, · · · , n, then ∀t > 0, we have

Pr

(
ξ1 + ξ2 + · · ·+ ξn

n
− E

(
ξ1 + ξ2 + · · ·+ ξn

n

)
≤ t

)

≥ 1− exp

− 2n2t2

n∑
i=1

(bi − ai)

 .

(A2)

For the first K registers selected, we denote them as Π(1) and the rest 4K

as Π
(1)

. Let T = 5K,N = 4K,Yk =

{
0,M

ϱ′
k

1 = 1

1,M
ϱ′
k

1 = 0
, where ϱ′k is the state in the

k-th register in Π(1) or Π
(1)

, then we have

Pr

 ∑
k∈Π

(1)

Yk ≤ 4K

K

∑
k∈Π(1)

Yk + 4Kv

 ≥ 1− exp

(
− 2v24KK2

(4K +K) (K + 1)

)
(A3)

by Eq A1, which means if we perform the j-th measurement on the rest 4K
registers, then the upper bound of the number of the registers satisfying Mϱ

1 =

0 (i.e., Yk = 1) in Π
(1)

is 4
∑

k∈Π(1)

Yk + 4Kv, with the probability on the right-

side of Eq A3. Similarly, for the second K registers selected, we denote them

as Π(2) and the rest 3K as Π
(2)

. Let T = 4K,N = 3K,Yk =

{
0,M

ϱ′
k

2 = 1

1,M
ϱ′
k

2 = 0
,

where ϱ′k is the state in the k-th register in Π(2) or Π
(2)

, then we have

Pr

∑
k∈Π

2

Yk ≤ 3K

K

∑
k∈Π2

Yk + 3Kv

 ≥ 1− exp

(
− 2v23KK2

(3K +K) (K + 1)

)
,

(A4)
which means if we perform the j-th measurement on the rest 3K registers,

then the upper bound of the number of the registers satisfying Mϱ
2 = 0 in Π

(2)

is 4
∑

k∈Π(2)

Yk + 4Kv, with the probability on the right-side of Eq A4. In the

protocol, any two clients do not trust each other, thus it can be considered
that the rest 3K registers haven’t been measured. If we perform the first

measurement on the rest 3K registers, there will be 3K−

(
4
∑

k∈Π(1)

Yk + 4Kv

)
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registers satisfying Mϱ
1 = 1 at least, i.e.,

3K∑
k=1

Mϱk

1 ≥ 3K −

4
∑

k∈Π(1)

Yk + 4Kv

 . (A5)

Similarly, we have

3K∑
k=1

Mϱk

2 ≥ 3K −

3
∑

k∈Π(2)

Yk + 3Kv

 . (A6)

Let n = 3K, ξk = Mϱ
1 or Mϱ

2 , then by Eq A2 we have

Pr

(
1

3K

3K∑
k=1

Mϱk

1 −M
ϱ

1 ≤ t

)
≥ 1− exp

(
−2 · 3Kt2

)
. (A7)

By Tr

( ∏
i∈S1

gi+I
2 ϱ

)
= M

ϱ

1 and Eq A5 we have

Pr

Tr

(∏
i∈S1

gi + I

2
ϱ

)
> 1− 1

3K

4
∑

k∈Π(1)

Yk + 4Kv

− t


≥ 1− exp

(
−6Kt2

) , (A8)

and similarly we have

Pr

Tr

(∏
i∈S2

gi + I

2
ϱ

)
> 1− 1

3K

3
∑

k∈Π(2)

Yk + 3Kv

− t


≥ 1− exp

(
−6Kt2

) . (A9)
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Therefore, we have

F ≥ 1

2
− 1

2
Tr
(
W (2)ϱ

)
=

1

2
− 1

2
Tr (3Iϱ) +

1

2
Tr

(
2
∏
i∈S1

gi + I

2
ϱ

)
+ Tr

(
2
∏
i∈S2

gi + I

2
ϱ

)

= −1 + 1− 1

AK

4
∑

k∈Π(1)

Yk + 4Kv

− t+ 1− 1

3K

3
∑

k∈Π(2)

Yk + 3Kv

− t

= 1−
(
2 +

1

3

)
v − 2t− 1

3K

4
∑

k∈Π(1)

Yk + 3
∑

k∈Π(2)

Yk


≥ 1−

(
2 +

1

3

)
v − 2t− 4

3K

 ∑
k∈Π(1)

Yk +
∑

k∈Π(2)

Yk


= 1−

(
2 +

1

3

)
v − 2t− 4

3K
(K1 +K2) .

(A10)
with a probability

P ≥

[
1− exp

(
− 8v2K

5
(
1 + 1

K

))][1− exp

(
− 3v2K

2
(
1 + 1

K

))] [1− exp
(
−6Kt2

)]2
≥
[
1− exp

(
−Kv2

)]2[
1− exp

(
−6Kt2

)]2 ,

(A11)
where the second inequality in Eq A11 holds as long as K ≥ 2. Obvi-
ously

∑
k∈Π(1)

Yk = K1 and
∑

k∈Π(2)

Yk = K2 in Eq A10. To make F =

⟨G| ρ |G⟩ is 1 − O
(
1
n

)
, which is high enough, we need that v = O

(
1
n

)
, t =

O
(
1
n

)
, 4
3K (K1 +K2) ≤ 1

n which leads to F = 1 − O
(
1
n

)
. Therefore, we set

v =
√
λ2

n , t =
√
λ2√
6n

, then consider the acceptance condition K1 +K2 ≤ 3K
4n in

Algorithm 1, we have

F ≥ 1− 7

3

√
λ2

n
− 2

√
λ2√
6n

− 1

n
= 1−

(
7
3 + 2√

6

)√
λ2 + 1

n
≥ 1− 3.15

√
λ2 + 1

n
(A12)

with a probability

P ≥
[
1− exp

(
−λ2

n2
K

)]4
≥ 1− 4 exp

(
−λ2

n2
K

)
≥ 1− 4 exp

(
−λ2

n2
n2 log n

)
.

(A13)
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To make the probability P = 1 − O
(
n−λ

)
for a constant λ, we set K =⌈

n2 log n
⌉
, then

P ≥ 1− 4 exp

(
−λ2

n2
n2 log n

)
= 1− 4n−λ2 , (A14)

which is high enough. The condition for above F, P both to be positive is

logn4 ≤ λ2 ≤ (n−1)2

10 , where n ≥ 5. When n ≥ 5, we have n2 > (n−1)2

10 , thus

λ2 < n2, then v =
√
λ2

n < 1. Consider the condition of (1), we have n ≥ 6.
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