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Abstract

Relative entropy of coherence can be written as an entropy difference of the original state and the inco-
herent state closest to it when measured by relative entropy. The natural question is, if we generalize this
situation to Tsallis or Rényi entropies, would it define good coherence measures? In other words, we define a
difference between Tsallis entropies of the original state and the incoherent state closest to it when measured
by Tsallis relative entropy. Taking Rényi entropy instead of the Tsallis entropy, leads to the well-known
distance-based Rényi coherence, which means this expression defined a good coherence measure. Interest-
ingly, we show that Tsallis entropy does not generate even a genuine coherence monotone, unless it is under a
very restrictive class of operations. Additionally, we provide continuity estimates for both Tsallis and Rényi
coherence expressions. Furthermore, we present two coherence measures based on the closest incoherent state
when measures by Tsallis or Rényi relative entropy.

1 Introduction

Quantum coherence describes the existence of quantum interference, and it is often used in thermodynamics
[1L 6] [15], transport theory [23] B34], and quantum optics [10} 25], among few applications. Recently, problems
involving coherence included quantification of coherence [2, 18, 2], 22} 26, [36], distribution [20], entanglement
[5, 29], operational resource theory [3l, 5, O, [33], correlations [13] [16, B0], with only a few references mentioned
in each. See [28] for a more detailed review.

The golden standard for any “good” coherence measure is for it to satisfy four criteria presented in [2]:
vanishing on incoherent states; monotonicity under incoherent operations; strong monotonicity under incoherent
operations, and convexity. Alternatively, the last two properties can be substituted by an additivity for subspace
independent states, which was shown in [36]. See Preliminaries for more details.

A number of ways has been proposed as a coherence measure, but only a few satisfy all necessary criteria
[2, 87, B88]. A broad class of coherence measures are defined as the minimal distance D to the set of incoherent
states Z, as

CD(p) = min D(p, 3).

It was shown in [2] that for a relative entropy there is a closed expression of a distance-based coherence:

min S(pl|8) = S(pllA(p)) = S(A(p)) — 5(p) , (1.1)



here A(p) is the dephased state in a pre-fixed basis, see Notation

Different set of incoherent operations generate other physically relevant coherence measures. The largest
set one considers is the set of incoherent operations (I0) [2], which have Krauss operators that each preserve
the set of incoherent states (see Definition . A smaller set is called genuine incoherent operations (GIO)
[8], which act trivially on incoherent states, see Definition See [4] for a larger list of incoherent operations,
and their comparison. For these types of incoherent operations one may look at similar properties as the ones
presented in [2]. Restricted to GIO, one would obtain a measure of genuine coherence when it is non-negative
and monotone, or a coherence monotone when it is also strongly monotone under GIO.

Motivated by the last expression in , similar expressions were considered in [7] for Tsallis and Rényi
entropies:

R R
Sa (A(p)) - Sa (p> )
T T
Sa (A(p)) - Sa (p) :
It was found that these expressions define genuine coherence monotones (definition will come later). They have
advantage over distance-based measures by being the explicit expressions, easy to calculate. Moreover, they

can be regarded as measurement-induced entropy increment related to the quantum thermodynamics [14].

In [31] the following generalized genuine coherence monotone was proposed:

Cr(p) = Sr(A(p)) — St(p)

here S¢(p) is a quasi entropy, which could be defined in two ways, one of which is S¢(p) = —S¢(p|||1).

Here we show the operational meaning of this f-coherence, by showing that it is not possible to distill a
higher coherence states from a lower coherence state via GIO, Theorem To prove this result, we first show
the continuity of f-coherence, Theorem

If one looks at again, the last expression is the difference in entropies of the state p and its closest
incoherent state A(p), when measured by the relative entropy. So we ask a question, if we change the entropy and
relative entropy in this expression to the Tsallis ones, would that generate a good coherence monotone/measure?
Note that this change will change the closest incoherent state as well. In other words, we investigate the
properties of the following Tsallis coherence

CTa(p) := ST (Aulp)) — SL(p) ,

here A,(p) is the closest incoherent state to p when measured by Tsallis relative entropy, i.e.
Sa (PllAal(p)) = min S, (pl|4) -

The explicit form of A, is given in [22], and it is the same for Rényi and Tsallis relative entropies.
Surprisingly, taking Rényi entropies above leads to the well-known distance-based Rényi coherence:

CRa(p) = min Sy (pll6) = S5/ (pllAalp)) = S (Balp)) = Sa'(p) -

This means that the entropy increment for von Neumann entropy (with relative entropy) and Rényi entropy
are good coherence measures, however, we show that a similar Tsallis entropy does not lead even to a good
genuine coherence monotone. It is a coherence monotone under a very restrictive class of operations.

Besides investigating properties of new Tsallis coherence, we also prove continuity estimates for both Tsallis
and Rényi coherences, Theorems [5.9) and

At the end, we propose two new coherence measures, inspired by the expression for the closest incoherent
state when measured by the Tsallis or Rényi relative entropy.



2 Preliminaries

2.1 Coherence

Let H be a d-dimensional Hilbert space. Let us fix an orthonormal basis £ = {| j)}?:1 of vectors in H.
2.1 Definition. A state § is called incoherent if it can be represented as follows 6 =3, 6;|7) (j| -

2.2 Notation. Denote the set of incoherent states for a fived basis € = {[j)}; as T ={p=>_;p;|j) (j|}- 4
dephasing operation in £ basis is the following map:

Alp) ="l pli)14) Gl -

J

2.3 Definition. A CPTP map ® with the following Kraus operators
(p) = 3 Kupk; |

is called the incoherent operation (I0) or incoherent CPTP (ICPTP), when the Kraus operators satisfy
K,IK, C I, for alln ,
besides the regular completeness relation ) K}K, = 1.
Any reasonable measure of coherence C(p) should satisfy the following conditions
e (C1)C(p) >0, and C(p) =0 if and only if p € Z;

e (C2) Non-selective monotonicity under I0 (monotonicity): for all IO ® and all states p,
Clp) = C(2(p)) ;

e (C3) Selective monotonicity under IO (strong monotonicity): for all IO ® with Kraus operators K,,, and
all states p,

c(p) =S puClon) .
n
where p, and p, are the outcomes and post-measurement states

Ko pK* .
pn= Sy = TR
n

e (C4) Convexity,

anc(pn) >C (Z pnPn) ,

for any sets of states {p,} and any probability distribution {p,}.

Conditions (C3) and (C4) together imply (C2) [2].
Alternatively, instead of the last two conditions, one can impose the following one



e (C5) Additivity for subspace-independent states: For p; + ps = 1, p1,p2 > 0, and any two states p; and
P2,
C(p1p1 @ p2p2) = p1C(p1) + p2C(p2) -

In [36] it was shown that (C3) and (C4) are equivalent to (C5) condition.

These properties are parallel with the entanglement measure theory, where the average entanglement is not
increased under the local operations and classical communication (LOCC). Notice that coherence measures
that satisfy conditions (C3) and (C4) also satisfies condition (C2).

In [§] a class of incoherent operations was defined, called genuinely incoherent operations (GIO) as quantum
operations that preserve all incoherent states.

2.4 Definition. An IO map A is called o genuinely incoherent operation (GIO) is for any incoherent
state 6 € L,

AG) =56 .

Additionally, it was shown that an operation A is GIO if and only if all Kraus representations of A has all
Kraus operators diagonal in a pre-fixed basis [§].
Conditions (C2), (C3) and (C4) can be restricted to GIO and obtain different classes of coherence measures.

2.5 Definition. In this case, a genuine coherence monotone satisfies at least (C1) and (C2). And if a
coherence measure fulfills conditions (C1), (C2), (C3) it is called measure of genuine coherence.

A larger class than GIO, called SIO, was defined in [33, [35].

2.6 Definition. An IO A is called strictly incoherent operation (SIO) if its Kraus representation operators
commute with dephasing, i.e. for A(p) = Z]- K;pK7, we have for any j,

K;A(p)K] = A(K;pK?) -

Since Kraus operators of GIO are diagonal in £ basis, any GIO map is SIO as well, i.e. GIO C SIO, [§].
A class of operators generalizing SIO, called DIO, was introduced in [3].

2.7 Definition. An IO A is called dephasing-incoherent operation (DIO) if it itself commute with de-
phasing operator, i.e.

Thus, we have GIO c SIO ¢ DIO.
One may consider an additional property, closely related to the entanglement theory:

e (C6) Uniqueness for pure states: for any pure state |1)) coherence takes the form:

where S is the von Neumann entropy and A is the dephasing operation defined as

Alp) =) {lplid1i) Gl -

J

However, for other coherence measures the von Neumann entropy in (C6) may change to another one, and the
dephased state may also change to another free state.



2.2 Rényi and Tsallis coherences

As mentioned before, relative entropy of coherence can be defined using three expressions
C(p) = min 5(pl|d) = S(plA(p)) = S(A(p)) = S(p) - (2.1)

Let us point out that A(p) is the closest incoherent state to p when measured by relative entropy, which was
shown in [2].
Recall, that Tsallis entropy is defined as for a € (0, 2]

1 (0%
Sa(p) = T"a [Trp® —1] ,

Tsallis relative entropy is defined as
1
T asl—a
SE(s) = 1 [T (') 1
Rényi entropy is defined as for o € (0, 00)

(e}

log Trp™ |
«

1
Sa(p) = 1=

and Rényi relative entropy is defined as

SHpl6) = log Tr (p™6' =) .

a—1

Motivated by different forms involved in the definition of relative entropy of coherence (12.1)), Rényi coherence
has been defined as

CRL(p) = min SH(pllo) , (2.2)
CRZ(p) = SE(A(p)) — SE(p) (2.3)
CR3(p) = SE(pl|Ap)) - (2.4)

The first definition C R} is a particular case of any distance-based coherence [2], and was separately discussed
n [27]. The second definition CR? was introduced in [7]. The third definition CR3 was introduced in [4].
Similarly, Tsallis coherence has been defined as

CTa(p) = min Sa (pllo) | (2.5)
CTZ(p) = Sa(A(p) = Sa (p) - (2.6)

The first definition CT! is a particular case of any distance-based coherence [2]. The second definition CT
was introduced in [7].

These definitions are all different, in particular, due to the fact that the closest incoherent state to a state
p, when measured by either Rényi or Tsallis relative entropy, is not a state A(p). From [4, 22] the closest
incoherent state to a state p for either Rényi or Tsallis relative entropies is

Balr) = 5757 22416”1013 U] €T 2.7



where N (p) = >, (4| p* [J >1/ ®. The corresponding relative entropy becomes
OTHp) = S (Pl Balp) = — IN()* ~1] | (28)

and
«

CRa(p) = S (pllAalp)) = —

Interestingly enough difference-based Tsallis coherence when oo = 2 is related to the distance-based coherence
induced by the Hilbert-Schmidt distance [§]

C3'5(p) = min | p - 313 = 53 (A(p)) — S5 (p) ,

log N(p) . (2.9)

where ||p —6||3 = Tr(p — 6)2.

2.3 Generalized coherences

Any proper distance D(p, o) between two quantum states, can induce a potential candidate for coherence. The
distance-based coherence measure is defined as follows [2].

2.8 Definition.
CD :=min D(p, d
(p) 561%1 (p,0) ,

1.5. the minimal distance between the state p and the set of incoherent states T measured by the distance D.
o (C1) is satisfied whenever D(p,d) =0 iff p = §.
e (C2) is satisfied whenever D is contracting under CPTP maps, i.e. D(p,0) > D(®(p), ®(0)).
e (C4) is satisfied whenever D is jointly convex.

Since the relative entropy, Rényi and Tsallis relative entropies satisfy all three above conditions for a € [0, 1),
(C1), (C2), and (C4) are satisfied for C(p), CRL, CT..
Another generalization was considered in [31], which is based on quasi-relative entropy.

2.9 Definition. For strictly positive bounded operators A and B acting on a finite-dimensional Hilbert space
H, and for any continuous function f : (0,00) — R, the quasi-relative entropy (or sometimes referred to as the
f-divergence) is defined as

S(AllB) = Te(f(LpR3")A) |

where left and right multiplication operators are defined as L(X) = BX and Ra(X) = X A.

Having the spectral decomposition of operators one can calculate the quasi-relative entropy explicitly [12],32].
Let A and B have the following spectral decomposition

A= "N b5l B= e [vow) (0] - (2.10)
J k

Here the sets {|¢r) (¥j|}jk, {|¥r) (¥j]}; % form orthonormal bases of B(H), the space of bounded linear opera-
tors. By [32], the quasi-relative entropy is calculated as follows

Sy(alm) =07 (52) Handion P (2.11)
Gk !



2.10 Assumption. To define f-coherence, we assume that the function f is operator convexr and operator
monotone decreasing and f(1) = 0.

f-entropy was defined in two ways in [31]

SHp) : = —S;(ollD) = ZM‘( ) (2.12)

$30) s = F0/d) = So11/d) = 10 /0) = Y () (2.13)
J
where {);}; are the eigenvalues of p.

2.11 Definition. For either f-entropy, the f-coherence is then defined as

Cy(p) = S5(A() — S5(p) - (2.14)

If {)\;} are the eigenvalues of p, and the diagonal elements of p in £ basis are x; = (j| p|j), then from (2.12)),
we have

CHp) = ;Ajf (Al) —;Xjf <><1>
2(p) = ;)\jf (dl/\]> _Zj:Xjf <d>1<j> ;

Since f(z) = —log(z) is operator convex, coherence measure defined above coincides with the relative
entropy of coherence ((2.1)) [2]:
Ciog(p) = Siog(A(P)) = Siog(p) = S(A(p)) = S(p) = C(p) -

The function f(z) = 2= (1—2'~%) is operator convex for a € (0,2). The coherence monotone then becomes
the Tsallis relative entropy of coherence

Calp) ZXJ Z/\a = CT3(p) -

2.4 Properties

Here we list which properties (C1)-(C5) are satisfied by which coherences and under which conditions. For
Rényi and Tsallis entropies we do not consider a case when o = 1 and the entropies reduce to the relative
entropy of coherence.

(C1) | (C2) under | (C3) under | (C4) | (Cb)

CD v 10 [2] X v

CRL ac[0,1)| V 10 X [27] v

CR2 ac(0,2]| v GIO see (a) X
CR? v DIO [4]

CTac[0,1)| v 10 X v

CT? ac(0,2] | v GIO see (a) X
Cy v GIO see (a) X




The fact that CT2 and CR? are monotone under GIO can be derived from GIO monotonicity of C; [31], or
it was shown separately in [7]. There are examples when the monotonicity of both are violated under a larger
class of operators when « > 1,[7].

CT? satisfies a modified version of additivity (C5), which CR2 also violates [7],

CTZ(p1p1 @ pap2) = pFCTL(p1) + p5CT5(p2) -

(a) In [31] it was shown that C, and in particular CR2 and CT2, reach equality in the strong monotonicity
under a convex mixture of diagonal unitaries in any dimension, which implies these coherences reach equality
in strong monotonicity under GIO in 2- and 3- dimensions. Moreover, these coherences are strongly monotone
under GIO on pure states in any dimension.

CRL(p), CT!(p) violate strong monotonicity [22, 27]. In [22] it was shown that CT!(p) satisfies a modified
version of the strong monotonicity: for a € (0, 2]

Zp% a4 “CTo(pn) < CT,(p) |

where p, = Tr(K,pK}), ¢, = Tr(K,Ay(p)K}) and p, is a post-measurement state.
Clearly, (C6) is not satisfied for any Rényi or Tsallis coherences in its original form, therefore it was not
included in the list. However, the values of coherences on pure states can be easily calculated in some cases.

3 f-coherence distillation

3.1 Continuity of f-entropy and f-coherence

In addition to the above list of properties of the f-coherence, one can add its continuity in the following form
(this is a direct application of result in [19]).

3.1 Lemma. Let p and o be two states such that € := %”ﬂ —oll1. Then

1SH(p) = S}o)| < —(1—e)f <11_6> B f( 1>

S5 - 30 < 1 (5) - 0-9f (qrmg) ~ () -

Denote either of the right hand-sides as H(¢€), and note that H is continuous in €, and goes to zero when € — 0.

Proof. Recall that for any convex function f, the transpose of it f(z) = xf(1/x) is also convex. We adapt a
convention 0 - oo = 0, so for a convex function f such that f(1) = 0, we have f(0) = f(1) = 0. Then f- entropy
(2.12) can be written using a transpose function as

Skp) = =Ss(plll) = =Tr(pf(p™")) = =Tx(f(p)) ,
and

S30) = ~Sy(pll1/d) = F(1/d) ~ Te(pF ({dp} ™)
= F(1/d) ~ JTe(F(dp))



In [I9] Theorem 1, it was proved that for Sy(p) = —Trg(p) and any convex function g the following holds

,(0) = Sy(@)] < o)~ a1~ = (@=1) (3 (755 ) ~90))

when € = %H p —o|l1. And in Corollary 3, the result was generalized for non-unit trace density matrices: let p
and o be two states of the same trace ¢, and let € = 3||p — o1 € [0,¢], then

,(0) = $y(0)] < ) = 9t — )~ (@~ 1) (5 (757 ) ~90) -

Adapting this result to our situation, it holds that

S} - s} <~ -ar (12 ) -er (1)
And similarly, for & := de = %||dp — do|1 € [0,d]

153(p) — S3(0)|

= [T (F(dp)) ~ Tr(F (o)

<~ [f@) - fa-o - @1 (Fe/@-1) - ()]

() 0 arlta) o (55)

From this continuity result, one can obtain continuity of the f-coherence.

3.2 Theorem. Let p and o be two states such that € := §||p—o||1. Let H(e) be as in the previous theorem for
the corresponding f-entropy. Then for f-coherences we obtain

[Cr(p) = Cylo)| < 2H(e) -

Proof. Let p and o be two states with e = 1||p — o];. Since trace-norm is monotone under CPTP maps, in
particular, under dephasing operation, it follows that

1A(p) = Alo)]lL < [lp — oy < 2¢.

Therefore, from continuity results above Theorem for either f-coherence and the corresponding f-entropy,
we obtain

[Cs(p) = C(0)]
< [57(A(p)) = S¢(A(a)) + S5 (p) = Sy (o)
< 2H (e) .
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3.2 Coherence distillation

In [§] it was shown that it is not possible to distill a higher coherence state o from a lower coherence state p
via GI operations when coherence is measured by a relative entropy of coherence (which equal to the distillable
coherence). The same result holds for f-coherences as well, which relies on the continuity property of coherence
above, and the GIO monotonicity of f-coherence [31]. For completeness sake, we present the adapted proof
from [8] below.

3.3 Definition. A state o can be distilled from the state p at rate 0 < R < 1 if there exists an operation
Qn ®nR
p 1

possible is the supremum of R over all protocols fulfilling the aforementioned conditions.

— 7 such that || Trpefm — 0 < e€and e = 0 as n — oo. The optimal rate at which distillation is

3.4 Theorem. Given two states p and o such that

Cr(p) < Cy(o) ,

it 1s not possible to distill o from p at any rate R > 0 via GIO operations.

Proof. Suppose the contradiction holds, assume that there are two states p and o such that C¢(p) < C¢(0),
and that the distillation is possible. In particular, for large enough n, it is possible to approximate one copy of
o. In other words, for any € > 0, there is a GIO A such that

ITra i Ap®™) — ol < e
By Lemma 12 in [§], there exists a GIO A acting only on one copy of p, such that
Tr,-1A(p%") = A(p) .
Thus, for any € > 0, there is a GIO A such that
JA(p) — ol <.
Using the asymptotic continuity of f-coherence, Theorem for these two e-close states, we obtain
Cs(A(p)) = Cy(0)] < 2H(e/2) |

Recall that H(e) for either f-coherence is continuous in € € (0, 1) and it goes to zero when ¢ — 0. Therefore,
summarizing from the beginning, for any § > 0, there is GIO A such that

Cs(A(p)) — Crlo)| < 6. (3.1)
Take § := 3(Cy(0) — Cy(p)) > 0. Since Cy is GIO monotone, for any GIO A, we have

Cr(A(p)) < Cy(p) -

Therefore,

0 < 5(Cp(0) = Cr(A(p) < Cp(o) — Cy(Alp)) -

DO | =

This is a contradiction to (3.1)).



11

4 New Rényi and Tsallis coherences

Playing off the last expression in the definition of the relative entropy of coherence we define coherence
measure as follows:

CTalp) = SE(Aalp)) — SL(p) ,

for Tsallis entropy, and

CRa(p) := SE(Aa(p)) — SE(p)

for Rényi entropy. Recall that here A, (p) is the closest incoherent state to p when measured by the Rényi or
Tsallis relative entropy, i.e.

Sa(pllAalp)) = min Sa(pld) -

Recall from (2.7) that
Z Gl 19) 1)

j
where N(p) = >_, (j] p®| 7)Y Having this explicit form of A4 (p) , both coherences can be explicitly calculated
1
1-a

1 1
SR S
I-a [N<p>a ] v
_ N(p)* —1 Trp?
~ a—1 N(p~

_ T Trp®
- Sa (,OHAQ(P)) N(p)a

CTa(p) =

[Tr (Aa(p)®) — Trp®]

Trp®
N(p)

= CT,(p)
>0

The last two equalities come from (2.8). Similarly, from (2.9) for the Rényi coherence

CRa(p) = 1 [oa Tr (Aa(p)") ~ log Trp"]

1 1

= — |1 Trp® | — log Trp®
1—a[°g(zv<p>a “)) o8 ”]
8]

= log N
78N ()

= SE(pllAalp))
= CRy(p) .

This means that for Rényi entropy of coherence we have a similar expressions to the relative entropy of coherence

(2.1
CRa(p) = min S(pll6) = S5’ (pllAalp)) = S (Aalp)) = Sa'(p) -

Therefore the distance-based Rényi coherence C'R. (p) coincides with the new definition CR,(p), and therefore
we will mostly focus on the new definition of Tsallis coherence CT,(p).
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5 Tsallis coherence

5.1 Positivity

As we noted above, the Tsallis coherence is non-negative. Note that this is a non-trivial statement, that cannot
be directly observed by the monotonicity of entropy under linear CPTP maps, as it was done for CT2, CR2,C i
since the map p — A, (p) is non-linear.

5.2 Vanishing only on incoherent states

5.1 Proposition. CT,(p) =0 if and only if p € T is incoherent.

Proof. First, suppose that the state p € Z is incoherent, then A, (p) = p. Therefore, CT,(p) = SL(As(p)) —

Sa(p) = 0.
Now, suppose that CT,(p) = 0. From calculations above, since Trp® > 0 for a non-zero state, this means
that S (p||Aa(p)) = 0, which happens only when p = A,(p) € Z. Therefore, p € T is incoherent. O

5.3 Value on pure states

Let p = |9) (1| be a pure state. Since p® = p, then

CTo(p) = —— [Tr (Aa(p)®) — Tep?] = ST(Aa(p)) -

1l -«

To calculate this Tsallis entropy explicitly, we note that Tr(A,(|¢) (¢¥])*) = N(|¢) (¢])~%, where N(|¢) (¢|) =
525 |13} [*. Thus,

11—«

CTa(p) = 1 | [ S lwlppre ] -1

5.4 Comparison with CT!

Recall that from our previous calculations,

CT, (P) = CTC% (,0)

Let us denote as \; := (j| p*|j). Then

Te(p™) =D (ilp*17) = Al -

J

And
(e
. N
N(p)* = 261 I | =1y -
J
Here || - ||, denotes the Schatten p-norm. Since Schatten p-norms are monotone decreasing in p, we have that
CT.(p) > CTi(p), for0<a <1,
and

CTo(p) < CTL(p), forl<a<?2.
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5.5 Monotonicity
5.2 Theorem. CT,(p) is invariant under diagonal unitaries.

Proof. Let U =Y € |n) (n| be a unitary diagonal in € basis. Then

« 1 e arrs ALl -
Aa(UpU*) = UG > GlUpt T )Y 1) G
1 L b o —ids | Ll
- S (j| i pere=ids |j>1/az<ﬂ\€¢JP e i) 13) G

= Aa (p)

Since the Tsallis entropy is invariant under unitaries itself, we have

CTo(UpU”) = CTu(p) -

5.3 Theorem. Tsallis coherence is not monotone under GIO.

Proof. Let us fix the basis & = {|0),|1)} Let p = |¢) (¢)| be a pure state with |(|0)|> = x = 3/4 and
[(PI]?=1-x=1/4.
For a pure state p the entropy is zero, and therefore

CTa(p) = ST(Aalp)) — SZ(p)

= 57(Aalp))

= [T {Aa(p)*} - 1]

_ ! | —1
1 -« i (Zj X;/a>a

S l-a | (3Ye41)"

Let A be GIO, with Kraus operators A(p) = K1pK7] + KopK5 where Kraus operators are diagonal in & basis

) 1 9
K, = Voi sl K= {)5 .
2

N[ =

Clearly Y K}K, = 1. Then

where a = 3;—\/\?. The eigenvalues of this matrix are 812 = % (1 £ 4/ % + 4a2>. And the normalized eigenvector

corresponding to 32 are

1 a
P1,2) = :
|¥1,2) \/a2+(ﬂ1,2— %)2 <ﬁ1,2— i)



0.65

0.6

: T : T T T T T T
——CT ()
X — — CT_(Al)

0.55 -

0.5

0.4

Figure 1: Failure of monotonicity under GIO for small a.

Therefore, Tr(A(p)®) = 5§ + 5%, and

N(A(p) = D Bul(iln) [/ + Bal (lp2) [P/ .
j

And the Tsallis coherence is then
_1 [ 1 1]
1—a | N(A(p)®

From Figure [1], we see that, for example, for o = 0.2, monotonicity has failed

CTa(A(p))

Te(A(p)°) -

CT,(p) < 0.5 < CT,(A(p)) .

5.4 Definition. A GIO map A that commutes with A, is called a-GIO.

14

A unitary diagonal under a fixed basis £ is an a-GIO for any «. For a = 1, A, (p) = A(p), which commutes

with any GIO.
5.5 Theorem. Tsallis coherence is monotone under a-GIO.

Proof. By definition

CTa(p) — CTa(Alp)) = Sa (A(p)) = Sa(p) + 5a (Aa(p) — Sa (Aa(Alp))) -

Since Tsallis entropy is monotone under CPTP maps, S (A(p)) — SZ(p) > 0. A commutes with A, and A is

GIO, so it leaves the incoherent states, such as A, (p), invariant, therefore

Sa(Ra(p)) = 52 (Aa(A(p)) = S5 (Aalp)) — 84 (A(Aa(p)) = 0.
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5.6 Strong monotonicity.

5.6 Theorem. Tsallis coherence CT,(p) reaches equality in strong monotonicity for convex mixtures of diagonal
unitaries. Therefore, CTy,(p) reaches equality in strong monotonicity under GIO in two- and three-dimensions,
when Kraus operators are proportional to diagonal unitaries.

Proof. Consider a GIO A that is a probabilistic mixture of diagonal unitaries, i.e. let

Ap) = 3 axUipUs
k

where a; € [0,1] with Y« = 1, and the unitaries Uy, are diagonal in €. Then from Theorem since CT,, is
invariant under diagonal unitaries, we have

> apCTo(UrpUy) = (Z ak> CTa(p) = CTu(p) .
k k

In general, C'T,, fails strong monotonicity for IO maps.
5.7 Theorem. Tsallis coherence CT,(p) fails strong monotonicity under 10 maps.

Proof. We use example from [27], which was used to show that C' R}, fails strong monotonicity under IO maps.
Consider a three-dimensional space spanned by standard orthonormal basis € = {|0),]1),|2)}. Let the density

matrix be
1 1
1 0 (2) 0
=y
1 0 1
Let the Kraus operators of the I0 map be
010 1 00
Ki=10 0 0], Ko=10 0 b
0 0 a 0 00

Here |a|? +|b]? = 1 to satisfy the condition K} K; + K} Ky = I. Tt is straightforward to check that these Kraus
operators leave the space of incoherent states Z invariant. The output states are

1 1 2 0 0 1 1 b 0
P1 = *KIPKT =-—"7510 0 0 ) P2 = 7K2;0K§ =—>|0b |b|2 0 )
2 2 14162
h Tl o o e b2 TPE o o
where p; = % and po = ﬁ. Notice that p; € Z is diagonal and therefore incoherent, and ps = |¢) (1] is

the pure state with |¢)) = m(m) +b11)).

The o power of p is the state

1

o 1
Pm= 5 | 0
1

S N O
—_ O =
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Figure 2: Failure of strong monotonicity under 10.

And therefore the Tsallis coherence is

4

—

CTa(p) = 5 (Balp)) = 53(p) = § (24 2oy —gm()]

Since p € Z is incoherent, CT,(p1) = 0. And since po is a pure state, the Tsallis coherence is

1 1+ b

_ T —
p2CTu(p2) = p2Sy (Aa(p2)) = 1—a 4

(L )1+ b2/~ =1]
From Figure [2| we have, for example, for b = 0.9 and a = 0.21101, we have

CTa(p) < 0.35 < paCTa(p2) = ¥ p;CTalpy) -
J

O

For strong monotonicity property it is important how the quantum channel is written in terms of its Kraus
operators. We showed that in 2- or 3-dimensions, if GIO is written as a convex mixture of diagonal unitaries,
then Tsallis coherence reaches equality. However, if GIO is written in some other way, we show that Tsallis
coherence may fail strong monotonicity.

5.8 Theorem. Tsallis coherence fails strong monotonicity under GIO, even on pure states, if Kraus operators
are not proportional to unitaries.

Proof. We are going to use the same example as in Theorem Let us fix the basis £ = {|0),|1)} Let
p = [¥) (1| be a pure state with |[(1|0)|?> = x = 3/4 and |(|1)|> =1 — x = 1/4.
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For a pure state p the entropy is zero, and therefore

CTa(p) = SE(Aa(p))

«

= [T {A(p)} ~ 1
1 1

1—a _(Zj X;/a)“ B

1 4 .
Cl—a | (34 1)" '

Let A be GIO, with Kraus operators A(p) = KipK{ + KapK; where Kraus operators are diagonal in £

5o 5
K= | V2 . Ke=[v2 ).

Clearly > K}K, = I. Then the post-measurement states p, = pinKnpK; = |¢n) (| are also pure, where
[Yn) = = Kn |¥0) and pn = (]| KK [¢). Let us denote [(fnlj)* = &nj = 5-[ (1| K [1) [* = ;- [knj|*x;, and
Pn=2; |knjl*x;. Then p; = 1% and po = 1—76, and

basis

)

D=

2 1 6 1
511—5,512—5 521—?7522—?-
Therefore,
CTu(p1) = Sg(Aa(pl))

1" a [Tr{Aa(p1))*} — 1]

1 1 X

=— - -

Lo (2a0)

— 1 i 3 —

Cl—a | (2Ve 4 1)
Similarly,

CTa(p2) = S5 (Aalp2))

= [T {Aa(p2)*} 1]

1 1
tma (2 a)

1 7 T
T l-a (61/ +1)° ’
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Figure 3: Failure of strong monotonicity under GIO for small «.

From Figure 3| we have, for example, for a = 0.20303, strong monotonicity fails since

CTa(p) <042 < plcTa(pl) +p20Ta(p2) .

5.7 Continuity for both Tsallis and Rényi coherences
5.9 Theorem. Let p = |¢) ()| and o = |¢) (¢| be pure states on C? such that t||p — o||y = €. Then, we obtain

|CTw(p) — CTa(0)| < % (dl—“ - (dl‘i + H(e))_a> , for0<a <1,

—

and

|CTa(p) — CTa(o)| < [1-(1—H(e) ], forl<a<2,

a—1
where H(e) =1 — (1 —e)'/* —el/o(d — 1)1_5 Both right hand-sides converge to zero when € goes to zero.

Proof. Denote x; = |(¢|j)|* and & = [(¢[j)|*>. Then,

[0
1 1/a 1/«
CTul) = CTlo) = e (| 20— (2
J J

1

= g AN = [T (A |

—

where f(z) = z'/® is convex function for 0 < o < 1 and —f is convex for a > 1, and recall that A(p) =

225 X4 17) (il and A(o) = 525 &5 15) (-

Since trace-norm is monotone under CPTP maps, and A is a CPTP map, we obtain

1 1
S18G) =A@ < Sl ol =
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By continuity of f-entropy [19], the difference for 0 < o < 1 is bounded by
Trf(A(p)) — Trf(A(0))] < H(e)

where H (¢) is calculated for f(z) = 2!/, and therefore has expression as in the theorem statement. For o > 1,
— f is convex, and therefore,

ITrf(A(p)) — Trf(A(0))| < —H(e) ,
where the right-hand side is positive for a > 1.
For 0 < o < 1, notice that the constant sequence is majorized by both (4); < (x); and (); < (€);, therefore,
since f(x) = x'/® is a convex function, by results on Schur-concavity [I1], 17, 24], we have Zj le-/a, Z]‘ 5;/(1 >

d*~. For o > 1, since z < x'/®, then > X;/a,zj fjl-/a > 1.

For 0 < a < 1, for the function g(x) = 27 and any 0 < s < ¢, we have |¢'(s)| > |¢'(¢)|. Therefore by the
Mean Value Theorem, there exist ¢ € [dl_é, 1], such that

|[Tef(Ap))] ™ = [Tef(A(e)] ™| = [Trf(A(p) — Trf(A(0))] g (0)]
< H(e)lg'(c)| -

Also, there exists s € [dlfé,c] such that
1 1
l9(a %) = g(d~% + H(e)| = H(e)lg'(5)] -
Therefore, since |¢'(s)| > |¢'(c)|, we have

[ITef(A D] = [T (A < [g(d 5 = g(@'~# + H(e)))

- <d1‘0‘ - (dl—é + H(e))a> .

Similarly, for a > 1, by the Mean Value Theorem, there exists s, ¢ > 1, such that

|[Tef(A(p)] ™ = [Tef(A(0)] %] = [Trf(A(p) — Trf(A(0))]1g'(0)]
< —H(e)lg'(s)]

=(1-(1-H(e)™ ) .
Thus, we obtain the statement of the theorem. O
Similarly to the above, we can show the continuity for Rényi coherence for pure states

5.10 Theorem. Let p = [¢)) (¢)| and o = |¢) (@] be pure states on C? such that §||p— o1 = €. Then, we obtain

a

[CRA(p) = CRA(0)] < " log (dlf + H(e)) Ylogd, for0<a<1,

and
«

a—1

|C’R(1X(p) - CR}I(U)‘ < log(1—H(e)), forl<a<?2,

where H(e) =1 — (1 — e)V/* — et/a(d — 1)175 Both right hand-sides converge to zero when € goes to zero.
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Proof. Denote x; = |(¢|j)|* and & = [(¢[j)|*>. Then,

1 1 . (0% 1/ 1/
‘CRoc(p) - CR(X(O—)‘ - ’1 _ Oé’ log ZXJ - log Z&]
J J

= o IO TE(A() ~ g Tef (A(e)]

where f(z) = z'/* is convex function for 0 < o < 1 and —f is convex for o > 1, and recall that A(p) =

2.5 Xi19) Gl and Ao) =32, & 15) (-

Since trace-norm is monotone under CPTP maps, and A is a CPTP map, we obtain
1 1
S180) ~ A@) < Sl ol =
By continuity of f-entropy [19], the difference for 0 < o < 1 is bounded by
Trf(A(p)) — Trf(A(0))| < He) ,

where H (e) is calculated for f(z) = z'/®, and therefore has expression as in the theorem statement. For a > 1,
—f is convex, and therefore,

Trf(A(p)) — Trf(A(0))] < —H(e) ,
where the right-hand side is positive for a > 1.
For 0 < o < 1, notice that the constant sequence is majorized by both (3); < (x); and (%); < (€);, therefore,
since f(x) = 2/ is a convex function, by results on Schur-concavity [IT} [I7, 24], we have p3F Xl»/a, > {;/a >

J
d'==. For a > 1, since « < /@, then Zj X;/Q,Zj 5]1/01 > 1.

For the function g(z) = logz and any 0 < s < ¢ < 1, we have |¢/(s)| > |¢'(c)|, and therefore by the Mean
Value Theorem, there exist s, ¢ € (0, 1], such that d=a <s<¢c and

[Trf(A(p)] ™ = [Tef(A(0)] | = [Trf(A(p) — Trf(A(0))] |9 ()]
< H(e)lg'(s)|
= ‘log s — log (dl_é + H(e))‘ )
Similarly, by the Mean Value Theorem, there exists s,c > 1, such that
[Trf (AP = [Tef(A0)] | = [Tef(A(p) — Trf(A(0)] |9 ()]
< —H(e)lg'(s)|
=log(1 — H(e)) .

Thus, we obtain the statement of the theorem. O

6 Improved a-coherence measure

Note that even though A; = A, these two operators scale differently, in the following sense: A(pp) = pA(p),
and A, (pp) = A(p). For this reason, define the “unnormalized” A,,

Aalp) =D (lp™ 13)* 13) Gl - (6.1)

J
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Note that Ay (p) = A(p™)1/e.
In [7], a coherence measure was proposed

Tr[A(p)* — o[, (6.2)

which was shown to be satisfy (C5). Since (C5) is equivalent to (C3) and (C4), and the later two imply (C2),
satisfying (C5) implies that the expression is a coherence measure.
Similarly to this, we propose the following coherence measures

CA(p) = Tr|Aalp) = p| = Te [A () = g (6.3)

and

1
@ o art
C2(p) = Tr|Aalp)® = p°| " = Tr|A(p) = 71 . (6.4)

Both, C! and C2, can be easily shown to satisfy (C5): for p; +p2 = 1, p1,p2 > 0 and any two states p; and pa,

C(p1p1 @ p2p2) = p1C(p1) + p2C(p2) .
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