
Circuit Implementation of Discrete-Time Quantum Walks via the Shunt

Decomposition Method

Allan Wing-Bocanegra

Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias

Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico.

A00832476@tec.mx

Salvador E. Venegas-Andraca

Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias

Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico.

svenegas@tec.mx

April 5, 2023

Abstract

Several models have been proposed to build evolution operators to perform quantum walks in a theoretical

way, although when wanting to map the resulting evolution operators into quantum circuits to run them in

quantum computers, it is often the case that the mapping process is in fact complicated. Nevertheless, when

the adjacency matrix of a graph can be decomposed into a sum of permutation matrices, we can always

build a shift operator for a quantum walk that has a block diagonal matrix representation. In this paper, we

analyze the mapping process of block diagonal operators into quantum circuit form, and apply this method to

obtain quantum circuits that generate quantum walks on the most common topologies found in the literature:

the straight line, the cyclic graph, the hypercube and the complete graph. The obtained circuits are then

executed on quantum processors of the type Falcon r5.11L and Falcon r4T (two of each type) through IBM

Quantum Composer platform and on the Qiskit Aer simulator, performing three steps for each topology.

The resulting distributions were compared against analytical distributions, using the statistical distance `1
as a performance metric. Regarding experimental executions, we obtained short `1 distances in the cases of

quantum circuits with a low amount of multi-control gates, being the quantum processors of the type Falcon

r4T the ones that provided more accurate results.

1 Introduction

A random walk is a process describing the dynamics an agent follows by taking random steps on the vertices

of a connected graph, i.e. it is a stochastic process formed by successive summation of independent, identically

distributed random variables [1]. This mathematical model has been widely used in many areas of science such

as in chemistry to study the configurations of polymer-based materials [2], in biology to study the movement

and dispersal of animals and microorganisms [3], in computer science to perform image cosegmentation [4] and
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in economics to study the behaviour of stock markets [5], just to name a few examples and bring to light the

versatility of random walks as a mathematical tool.

Quantum walks constitute a promising universal model of quantum computation originally inspired in

random walks, that also studies the dynamics of a walker moving on the vertices of a graph, but in this case the

walker can be in a quantum superposition of states and, thus, take multiple directions and have different phases

at each step. This brings special properties such as quadratically wider spread of probability distribution [6]

and quadratically faster hitting time [7], which are key features to obtain a speed-up over classical algorithms.

Quantum walks can be either discrete [8] or continuous [9] in time. Within the field of discrete-time quantum

walks we can find coined [10] or coinless [11, 12] models. In this paper, we focus on the Coined Discrete-Time

Quantum Walk model [13], which is usually just called Discrete-Time Quantum Walk (DTQW) in the literature

since it was the first model of its type.

The Discrete-Time Quantum Walk model is an active research field that has already proved to be fruitful

as it has been used to solve or attempt to solve problems such as image and public-key encryption [14, 15], the

search of elements in an unstructured database [16, 17], the design and training of neural networks [18, 19], and

the quantization of the PageRank algorithm [20, 21, 22], among others, providing a speed-up when compared

with random-walk approaches for the same problems. Nevertheless, up to date, quantum walk-based algorithms

have mostly been tested theoretically or through simulations [16, 18], and not experimentally due to the fact that

quantum computers of the current Noisy Intermediate-Scale Quantum (NISQ) era [23], generate much noise and

decoherence, and thus are not suitable to calculate efficiently the probability distributions of quantum walks

except for very simple cases, such as few steps of a quantum walk on a line of few nodes as presented by K. N.

Cassemiro et al. [24] and M. A. Broome et al. [25] on specific quantum processors for this task, and by A. Shakeel

[26] and K. Georgopoulos [27] on general-purpose quantum computers. Efficient experimental implementations

of quantum walks on different topologies have been done using other models of quantum walks, i.e. staggered

quantum walks [28], topological quantum walks [29] and continuous-time quantum walks [30, 31, 32], being one

key factor, according to [28], the fact that coinless (e.g. staggered, topological or continuous) quantum walks

do not need an extra register for the coin state, and in NISQ computers additional qubits induce more noise to

the system, thus reducing fidelity in experimental runs.

As a step forward to efficiently run DTQW-based algorithms on quantum computers, in this work we study

the implementation of DTQW on IBM quantum computers and simulators, for the most common topologies

found in the literature, i.e. the line, cycle, hypercube, and complete graphs. We will analyze how to the-

oretically build the circuits based on the shunt decomposition method, how to optimize these circuits using

different techniques, how to implement them on IBM quantum computers and simulators, and, finally, as the

decompositions are not unique, we will compare their performance in order to choose the decomposition that

behaves best and is therefore suitable to be scaled for a larger number of qubits.

The structure of this paper is the following: In section 2 we introduce the theoretical basis of DTQW and

the shunt decomposition method, the method we use to build evolution operators, as block diagonal unitary

operators. We then show, in section 3, the general way in which block diagonal unitary operators can be

mapped into quantum circuit representation in order to be implemented in quantum computers. In section 4

we apply the method described in section 3 for the n-line, the n-cycle, the n-hypercube, and the 2n-complete

graph. We also provide a synthesis for some circuits based on a matrix analysis approach of their evolution

operators, and on different techniques to reduce networks of multi-control gates. In section 5 we implement the

quantum circuits derived in section 4 on IBM quantum computers and Qiskit simulators. In this section we

also provide the experimental distributions of the quantum states after measurement, and compare them with



3

the theoretical ones. Finally, in section 6, we present the conclusions

2 Theory of Discrete-Time Quantum Walks

A Discrete-Time Quantum Walk, considers a walker that moves between the vertices of a graph G(V,A) with

adjacency matrix A, where V and A are the vertex and arc sets, respectively. A DTQW is defined by three

elements: the quantum state of a walker, the evolution operator of the system and a set of measurement

operators. The state of the walker at time t is given by the composite quantum state presented in Eq. (1):

|ψ(t)〉 =
∑

i,j

aij |ci〉 ⊗ |vj〉 (1)

where |vj〉 ∈ HP is a state associated to vertex vj ∈ Z, and |ck〉 ∈ HC , with ck ∈ Z, is a state associated to a set

of arcs (vj , vi) ∈ A. The relation of relation coin states and arcs of G is explained in the next paragraphs (see

Eq. (6)). HP and HC are complex Hilbert spaces of size n′ and m′, and are called position and coin spaces,

respectively. Consider |vj〉 and |ck〉 to be represented by the corresponding canonical basis. The evolution

operator U is given by the product of the shift and coin operators, i.e.

U = S(C ⊗ In′) (2)

One step of the walker consists in the application of U to |ψ(t)〉, the walker standing on vertex vj ∈ V first

gets in a superposition of coin states by the action of C ⊗ In′ , and then moves toward all the adjacent vertices

at the same time, by the action of S. The state of the system after t steps is given by |ψ(t)〉 = U t|ψ0〉, where

|ψ0〉 is the initial state of the walker.

Finally, we define the measurement operators of the system as

Mj = Im′ ⊗ |vj〉〈vj | (3)

and the probability to find a walker on vertex vj after t steps is given by

P (|vj〉) = 〈ψ(t)|M †jMj |ψ(t)〉 (4)

Different methods to construct evolution operators to perform walks on different topologies have been

proposed. Particularly, the case in which the shift operator of a DTQW is a block diagonal matrix, whose block

elements are permutation matrices that allows us to easily manipulate S. Godsil and Zhan [33] named this

method shunt decomposition, and studied its application to perform DTQWs on regular graphs. Montanaro

[34] went further and proved the method to work for strongly connected digraphs, i.e. digraphs in which every

pair of vertices are connected by a path, although it also works for graphs with strongly connected subgraphs

that do not necessarily connect between them, as will be presented in a particular case later in this paper.

Now we explain the construction of the evolution operator. Let G be m′-regular graph, with adjacency

matrix A(G). Suppose Aᵀ can be decomposed as the sum of m′ permutation matrices, Pᵀ
i ∈ Rn′×n′ , i.e.

Aᵀ = Pᵀ
0 + Pᵀ

1 + · · ·+ Pᵀ
m′−1 (5)

We call each permutation matrix a shunt. Next, we associate each shunt with a coin basis state, and define

the shift operator of the system as expressed in Eq. (6).
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S =
m′−1∑

i=0

|ci〉〈ci| ⊗ Pᵀ
i (6)

Thus, a walker with coin state |ci〉 will only be able to move through arcs associated with shunt Pᵀ
i . Notice that

we use matrices Pᵀ
i to construct S, since otherwise the quantum walker would move in the opposite direction

to the arcs of G.

In explicit matrix notation, the shift operator takes the following form

S =




Pᵀ
0 0 . . . 0

0 Pᵀ
1 . . . 0

...
...

. . .
...

0 0 . . . Pᵀ
m′−1




(7)

Because S is a block diagonal matrix with unitary matrices as entries, S is unitary too, and contains the same

information of the connections between nodes than the original adjacency matrix.

The evolution operator can be completed by the choice of any coin operator C of dimension m′ × m′.

Nevertheless, in this work we will focus on the study of the circuit implementation of shift operators, and thus

we decided to always use Grover and Hadamard operators for this task.

Finally, the evolution operator is applied on a bipartite state |ψ(t)〉 ∈ HC ⊗HP , with dim(HC) = m′ and

dim(HP ) = n′, and the measurement operators act as defined in Eqs. (3) and (4).

3 Mapping of DTQWs to the Quantum Circuit Model

Let G(V,A) be a graph with connected components of order n′ = 2n, whose adjacency matrix can be decomposed

into the sum of m′ = 2m permutation matrices and whose vertices are labeled by integers. Associated to the

vertices of the graph G, there exists a set of 2n canonical basis vectors {|vj〉 : vj ∈ Z} that span HP , and

associated to the arcs connected to vertex vi there is a set of 2m canonical basis vectors {|ci〉 : ci ∈ Z} that

span HC .

In order to map the basis states of Hc and Hp into a composite state of qubits, we must map vj and ck into

bitstring notation. Thus, we define the function fV : Z→ B, where B is the set of all bitstrings, and consider

the basis states of a qubit to be given by

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
(8)

In this way, we are able to do the following map

|fV (vi)〉 = |qn . . . q1q0〉 = |qn〉 ⊗ · · · ⊗ |q1〉 ⊗ |q0〉 (9)

where qi ∈ {0, 1}.
This means that every basis vector |vi〉 can be rewritten as a composite state given by the tensor product

of n qubits. The same mapping is done for the coin space, allowing us to express the state vector of a quantum

walker, |ψ〉 = |ci〉 ⊗ |vi〉, in bitstring notation.

This mapping can be represented in an (n+m)-qubit quantum circuit, where the first n qubits form a register

|qn−1 . . . q1q0〉 that corresponds to the position states, and the last m qubits form a register |qn+m−1 . . . qn+1qn〉
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n P⊺
i

111

C3,7(P⊺
i ) =




I2n 0 0 0
0 I2n 0 0

0 0
. . . 0

0 0 0 P⊺
i




C3,7(P⊺
i )

(a)

Position
register

P⊺
0 P⊺

1 P⊺
2 P⊺

3 P⊺
4 P⊺

5 P⊺
6 P⊺

7

Coin
register

(b)

Figure 1 (a) Example of a multi-control-Pᵀ
i gate, along with its matrix representation. The pattern of white

and black dots can be interpreted as binary code, and defines the position of Pᵀ
i in the matrix representation

of C3,7(Pᵀ
i ), which follows the form of Eq. (7). (b) Circuit implementation of a block diagonal shift operator.

Notice the controls and the target of each gate span the coin and position registers, respectively, which holds

whenever mapping a block diagonal operator to circuit form

that corresponds to the coin states. Note that the leftmost state is associated with the less significant bit in

bitstring representation.

To completely map a DTQW into a quantum circuit, we need to express the evolution operator, U =

S(C ⊗ IP ), as a set of quantum gates. A general method can be followed for graphs whose adjacency matrices

can be decomposed in 2m permutation matrices Pᵀ
i of size 2n, as in Eq. (5), which will be used as block diagonal

elements of S. Given that all matrices Pᵀ
i are unitary, there exists a quantum gate representation for all of

them. Out of the quantum gate Pᵀ
i , we can create a controlled gate, Cm,j(Pᵀ

i ), which uses all the qubits of

the coin register as control qubits, as shown in Fig. 1(a). We call the black and the white dots in this figure

controls. The pattern that they create can be interpreted as binary code, where the black controls represent a

1, the white controls represent a 0 and the less significant bit of the bitstring is the uppermost control in the

position register. The second subindex j = 0, 1, . . . , 2m − 1 in Cm,j(Pᵀ
i ) represents the value of the bitstring

formed by the control qubits of the gate, while m represents the number of control qubits. Notice that we

reserve this notation for fully control gates which use the qubits at the bottom of the target gate as control

qubits. If the target gate is controlled using the top qubits we use the notation Cr,k(U). In the case the gate

is fully controlled using both top and bottom qubits, we use the notation Cr,k
s,l (U).

The result of controlling Pᵀ
i is a 2n+m block diagonal matrix, where all the diagonal elements of the matrix

are the 2n×2n identity, I2n , except for the jth element, which will be the matrix Pᵀ
i . This is given by Eq. (10):

Cm,j(Pᵀ
i ) = I2jn ⊕ Pᵀ

i ⊕ I2(2m−j−1)n (10)

where i, j = 0, 1, . . . , 2m− 1 and we define I0 as a zero-dimensional matrix.. Notice that i and j do not have to

coincide, which just means that the matrices Pᵀ
i can be shuffled in the diagonal indistinguishably.

This way, we can find 2m block diagonal gates Cm,j(Pᵀ
i ) in which the matrices Pᵀ

i are placed in a different
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position j relative to each other, and the rest of the elements are I2n . When these controlled gates are placed

next to each other in a quantum circuit, as in Fig. 1(b), the associated matrix representation is given by

S =

2m−1∏

j=0

Cm,j(Pᵀ
i ) (11)

a block diagonal operator whose elements are the additive decomposition of the adjacency matrix associated

to graph G, i.e. we obtain Eq. (7).

To complete the mapping of the evolution operator we can add a Hadamard coin by simply placing a

single-qubit Hadamard gate to all the qubits of the coin register to the left of the circuit for the shift operator.

4 Implementation of Shift Operators for DTQWs on Common Topologies

In this section, we will analyze the shunt decomposition of the adjacency matrices of the most common graphs

studied in the field of quantum walks: the line with n vertices, the n-cycle graph, the 2n-hypercube and the

2n-complete graph with self-loops, as well as their quantum circuit implementation.

4.1 DTQW on the n-cycle graph

The adjacency matrix of a 2n-cycle graph can be deduced following the pattern presented in [35], as shown in

Eq. (12).

Acycle =




0 1 0 0 . . . 0 0 0 1

1 0 1 0 . . . 0 0 0 0

0 1 0 1 . . . 0 0 0 0

0 0 1 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 1 0 0

0 0 0 0 . . . 1 0 1 0

0 0 0 0 . . . 0 1 0 1

1 0 0 0 . . . 0 0 1 0




(12)

In [36], Li et al. present general sequences of multi-control not gates that conform n-qubit increment and

decrement gates, as shown in Fig. (2). The transpose of the matrix forms of these gates are given in Eqs. (13)

and (14).

Aᵀ
inc =




0 0 0 0 . . . 0 0 0 1

1 0 0 0 . . . 0 0 0 0

0 1 0 0 . . . 0 0 0 0

0 0 1 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 0 0 0

0 0 0 0 . . . 1 0 0 0

0 0 0 0 . . . 0 1 0 0

0 0 0 0 . . . 0 0 1 0




(13)
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. . .

. . .

. . .

...

. . .

(a)

. . .

. . .

. . .

...

. . .

(b)

Figure 1: (a) n-qubit increment
gate. (b) n-qubit decrement gate.

(a)

. . .

. . .

. . .

...

. . .

(a)

Figure 1: (a) n-qubit increment
gate. (b) n-qubit decrement gate.

(b)

Figure 2 (a) n-qubit increment gate. (b) n−qubit decrement gate

Aᵀ
dec =




0 1 0 0 . . . 0 0 0 0

0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 1 0 0

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

1 0 0 0 . . . 0 0 0 0




(14)

Thus, the transpose adjacency matrix of a 2n-cycle graph can be written as a linear combination of the n-qubit

transpose increment and decrement operators

Aᵀ
cycle = Aᵀ

inc +Aᵀ
dec (15)

where both Aᵀ
inc and Aᵀ

dec are unitary.

According to Eq. (7), once we have the additive decomposition of an adjacency matrix associated to a

graph G into unitary matrices, we can construct a shift operator for a DTQW as shown in Eq. (16).

S =

(
Aᵀ

inc 0

0 Aᵀ
dec

)
(16)

Moreover, according to Eq. (11) we can build a sequence of controlled gates such that when applied subsequently,

they give out Eq. (16). The sequence of gates C1,0(Aᵀ
inc) and C1,1(Aᵀ

dec) is presented in Fig. (3). This is the

common implementation of a circuit for a cycle graph, although if a further matrix approach is made to Eq.

(16) the number of gates can be reduced in half. Firstly, notice that

Adec = Aᵀ
inc (17)

Now we define the following 2n × 2n matrix
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J =




0 0 0 0 . . . 0 0 0 1

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 1 0 0

0 0 0 0 . . . 1 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 1 . . . 0 0 0 0

0 0 1 0 . . . 0 0 0 0

0 1 0 0 . . . 0 0 0 0

1 0 0 0 . . . 0 0 0 0




(18)

When J is applied simultaneously to the right and to the left of a circulant matrix, i.e. a matrix of the form

presented in Eq. (19), the result is the transpose of the original matrix [26, 37].

C =




c0 cn−1 . . . c2 c1
c1 c0 cn−1 . . . c2
... c1 c0

. . .
...

cn−2
...

. . .
. . . cn−1

cn−1 cn−2 . . . c1 c0




(19)

Given that Aᵀ
inc lies on this category, Aᵀ

dec can be written alternatively as

Aᵀ
dec = JAᵀ

incJ (20)

so that (16) becomes

S =

(
Aᵀ

inc 0

0 JAᵀ
incJ

)
(21)

This matrix can be decomposed in the following way

Increment gate Decrement gate

. . . . . .

. . . . . .

. . . . . .

...
...

...
...

...
...

...
...

. . . . . .

. . . . . .

Figure 1: Shift operator for a 2n-cycle graph composed
of an n-qubit-controlled increment gate and an n-qubit-
controlled decrement gate.

Figure 3 Shift operator for a 2n-cycle graph composed of an n−qubit-controlled increment gate and an n−qubit-

controlled decrement gate
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C1,1(J) Increment gate C1,1(J)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

...
...

...

. . . . . . . . .

. . . . . . . . .

(a)

C1,1(J) Increment Gate C1,1(J)

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

...
...

...

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

(b)

Figure 4 Both (a) and (b) display a quantum circuit for the S operator of a DTQW on a 2n-cycle graph,

according to Eq. (22). The gates at the sides of the increment circuit are different implementations of C1,1(J)

(Eq. (24)). The equivalence between both circuit forms of C1,1(J) has been used in [38] and proven in [39]

S =

(
I2n 0

0 J

)(
Aᵀ

inc 0

0 Aᵀ
inc

)(
I2n 0

0 J

)
(22)

where

I2 ⊗Aᵀ
inc =

(
Aᵀ

inc 0

0 Aᵀ
inc

)
(23)

and

C1,1(J) =

(
I2n 0

0 J

)
(24)

C1,1(J) can be obtained by controlling with a black control a network of σx gates applied to all qubits of the

position register, given that σ⊗nx generates J , or by implementing CNOT gates in cascade configuration, as

shown in Fig. (4), which displays two reduced quantum circuit implementations of the shift operator presented

in Eq. (16). The equivalence between the two circuit forms of C1,1(J) was used in [38] to decompose general

multi-control gates and proven in [39] for low dimensional instances through a recursion relation which can be

used to obtain higher-dimensional instances.

The circuit presented in Fig. 4(a) was proposed by [26]. These circuits are suitable to efficiently simulate

DTQWs on cycle graphs of size 2n only.
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We now present a further approach, based on the matrix analysis of the shift operator, in order to implement

quantum circuits capable of simulating a DTQW on a general n-cycle graph.

First consider the matrix associated to an n-quibit increment gate (Eq. (13)). In [40], Li et al. define a

general method to decompose a square unitary matrix of order k into a product of no more than k(k − 1)/2

two-level unitary matrices of the same size. A special case of this decomposition is the one in which the matrices

Ti have size 2n × 2n and take the following form

Ti = Ii ⊕ σx ⊕ I2n−i−2; i = 0, 1, ..., 2n − 2 (25)

or in explicit matrix notation

Ti =



Ii 0 0

0 σx 0

0 0 I2n−i−2


 , (26)

where we define I0 as a zero-dimensional matrix.

In simple terms, Ti is an identity matrix in which a σx matrix was replaced in the main diagonal, and the

subindex i in Eq. (26) represents the number of ones above σx. The action of Ti on any matrix is to exchange

the rows i and i+ 1. In group theory this operation is known as adjacent transposition [41], thus we call Ti the

adjacent transposition operator.

The increment and decrement operators (Eqs. (13) and (14)) can be decomposed as the product of all

matrices Ti in descending and ascending order, respectively, i.e.

Aᵀ
inc = T0T1 · · · T2n−2 (27)

Aᵀ
dec = T2n−2 · · · T1T0 (28)

which can be though of as applying the sequence of Ti matrices to the identity I2n in order to switch its rows.

Now, if instead of multiplying the whole sequence of matrices Ti to obtain the n-qubit transpose increment

operator, we truncate the product up to the first k matrices, i.e., we obtain the operator of Eq. (29).

(Ak
inc)

ᵀ = T0T1 . . . Tk−2 (29)

or explicitly

(Ak
inc)

ᵀ = (A′inc)ᵀ ⊕ I2n−k =

(
(A′inc)ᵀ 0

0 I2n−k

)
(30)

where (A′inc)ᵀ is the k × k transpose increment operator, i.e. (A′inc)ᵀ is a k × k version of Aᵀ
inc in Eq. (13),

which is always 2n × 2n, but with k ≤ 2n. Thus, although (Ak
inc)

ᵀ is a 2n × 2n operator, when applied to a

register of n qubits, it will only have effect on the first k states, leaving the rest intact.

The same can be done for the transpose decrement operator, i.e. we define (Ak
dec)

ᵀ = Tk−2 · · · T1T0. Explicitly

(Ak
dec)

ᵀ = (A′dec)ᵀ ⊕ I2n−k =

(
(A′dec)ᵀ 0

0 I2n−k

)
(31)
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T0 T2 T4 T6 T8 T10 T12 T14 T2n

. . .

. . .

. . .

. . .

...
...

...
...
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...
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...

...

. . .

(a)

T1 T5 T9 T13 T4n+1

. . .

. . .

. . .

. . .

...
...

...
...

...

. . .

(b)

Figure 5 (a) Displays the sequence to create gates Ti whose index follow the relation i = 2j. (b) Displays the

sequence to create gates Ti whose index follow the relation i = 4j + 1. Both sequences are given by all the

combinations of multi-controlled not or swap gates

The circuit implementation of all adjacent transposition operators Ti is not trivial, given that the quantum

gates corresponding to operators with consecutive indices do not follow the same structure. We present three

quantum gate structures that generate transposition operators Ti for which i belongs to one of the sequences

(2j)j=2n−1

j=0 , (4j + 1)j=2n−2

j=0 , and (4j + 3)j=2n−2−1
j=0 . The union of all the sequences generate all natural numbers

from 0 to 2n− 2, thus the combination of transposition operators corresponding to different sequences generate

every Ti that follows Eq. (25). Figures 5(a) and 5(b) show the general pattern of transposition operators

associated to the first and second sequences, respectively. Each gate uses all the qubits of the position register

for its construction. The transposition operators associated to the third sequence must follow a more complex

process for their construction that will be described next.

Firstly, the transposition gates associated to (4j+3)j=2n−2−1
j=0 will only be used in the case where the position

register consists of three or more qubits, otherwise the gates associated to the first two sequences alone will

suffice, given that for n qubits we can have a maximum of 2n − 1 transposition gates. Now, to construct

transposition gates for position registers of more than two qubits, we will make use of multi-control SWAP gate

whose controls are placed in the upper qubits, and we will denote it by Cr,i(SWAP ), where we remark that r

and i refer to the number of controls and the value of the binary string formed by the controls, respectively, as

described in section 3.

The Cr,i(SWAP ) gate will allow us to define a set of basis gates which will serve to generate different

transposition gates Ti through a recurrence relation. Each basis gate, BrT , is composed of a Cr,0(SWAP ) gate

at the core, surrounded to the left and to the right by CNOT gates in descending and ascending echelon-like

form, respectively, as can be seen in the sequence presented in Fig. 6(a). The superindex in BrT stands for the

number of controls in the core Cr,0(SWAP ) gate. For n ≥ 3 qubits, there will be n − 2 basis gates following

the pattern of Fig. 6(a)

Once we have constructed all basis gates BrT for n ≥ 3 qubits, the set of transposition gates Ti associated

to (4j + 3)j=2n−2−1
j=0 can be obtained by a recursive relation. To explain how this recursive relation works, we

refer to Fig. 6(b) to explain the first instances of the relation and then provide a general rule.

The upper circuit in Fig. 6(b) takes place in a 3-qubit register, which means there is place for one transpo-

sition gate, thus the transposition gate T3 coincides with the basis gate B1T . The middle circuit in this figure
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B1
T B2

T

. . .

Bn−2
T

. . . . . .

. . . . . .

. . . . . .

. . . . . .

...

. . . . . .

. . . . . .

. . . . . .

(a)

T3

T3 T7 T11

T3 T7 T11 T15 T19 T23 T27

(b)

Figure 6 (a) Sequence of basis gates BrT to generate the set of transposition gates Ti associated to (4j+3)j=2n−2−1
j=0

as the number of qubits increaces. (b) Sequence of circuits that contain all the transposition gates Ti associated

to (4j + 3)j=2n−2−1
j=0 for n = 3, 4, 5. This sequence allows us to see that as we increase the number of qubits,

the transposition gates for n qubits can be constructed using the set of gates for n − 1 qubits, i.e. if SnT
is the set of transposition gates associated to (4j + 3)j=2n−2−1

j=0 for n qubits, then the recurrence relation

SnT = C1,0(Sn−1T )Bn−2T C1,1(Sn−1T ) complies

takes place in a 4-qubit register, thus there is place for 3 transposition gates. The center gate, T7, coincides with

the basis gate B2T , and the gates to left and right of T7 are built by taking the 3-qubit T3 gate and controlling

the core C1,0(SWAP ) gate with a bottom white and a black control, respectively. For the lower circuit, we

follow a similar rationale. We place the basis gate B3T at the center of the sequence, then take the sequence of

4-qubit Ti gates built in the previous circuit and place them to the left and right of B3T but now with an extra

bottom white and black control, respectively, to the core Cr,i(SWAP ) gates associated to 3-qubit Ti gates. In

general, the sequence of transposition gates associated to (4j+ 3)j=2n−2−1
j=0 for a register of n qubits, is obtained

by taking the Bn−2T basis gate and use it as the center gate of the sequence, then taking the sequence of Ti gates

for a register of n − 1 qubits, which we will call Sn−1T for simplicity, and finally adding a controlled version

of Sn−1T to the left and right of Bn−2T , using bottom white and black controls, respectively. In short notation,

SnT = C1,0(Sn−1T )Bn−2T C1,1(Sn−1T ). The index of each n-qubit Ti gate is assigned following (4j+ 3)j=2n−2−1
j=0 from

left to right.
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In order to apply the generalization of the increment and decrement operators to k qubits to a DTQW, we

will proceed similarly as in the case of a 2n-cycle graph. That is, we build controlled gates out of (Ak
inc)

ᵀ and

(Ak
dec)

ᵀ, so that we compute the operators presented in Eqs. (32) and (33):

C1,0((A
k
inc)

ᵀ) =




(A′inc)ᵀ 0 0 0

0 I2n−k 0 0

0 0 Ik 0

0 0 0 I2n−k


 (32)

C1,1((Ak
dec)

ᵀ) =




Ik 0 0 0

0 I2n−k 0 0

0 0 (Ak
dec)

ᵀ 0

0 0 0 I2n−k,


 (33)

which act on quantum states |ψ〉 with coin state |0〉 and |1〉, respectively. Thus the shift operator of a DTQW

on a k-cycle graph is given by S = C1,0((Ak
inc)

ᵀ)C1,1((Ak
dec)

ᵀ), i.e.

S =




(A′inc)ᵀ 0 0 0

0 I2n−k 0 0

0 0 (A′dec)ᵀ 0

0 0 0 I2n−k


 (34)

As an example, consider the 5-cycle graph (see. Fig. 7(a)), with adjacency matrix which can be decomposed

as a sum of 5× 5 increment and decrement operators.

(A5c)
ᵀ =




0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0




(35)

In order to be implementable as a quantum circuit, an operator must have size 2n× 2n, thus we augment both

5× 5 increment and decrement operators according to equations (30) and (31), and we obtain

(A5
inc)

ᵀ =




0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




(36)
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(A5
dec)

ᵀ =




0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




(37)

This procedure induces three extra vertices to the graph, as shown in Fig. 7(b).

Next, according to Eq. (34) we write the shift operator for this system as

S5C =

(
(A5

inc)
ᵀ 0

0 (A5
dec)

ᵀ

)
(38)

The quantum circuit associated to this operator is shown in Fig. 7(c).

0

1

23

4

Figure 1: (a) 5-cycle
graph. (b) 8-vertex graph
which contains a 5-cycle
graph as a subgraph and
three isolated nodes. (c)
Circuit implementation of
the evolution operator of
a QW on (b). To per-
form a QW on the 5-cycle
using circuit (c) initialize
the position state of the
walker on any state |v⟩ for
which v = 0, . . . , 4.

(a)

0

1

23

4 5

6

7

(b)

C1,1(T0)

C1,1(T1)

C1,1(T2) C1,1(T3) C1,0(T3) C1,0(T2)

C1,0(T1)

C1,0(T0)

(c)

Figure 7 (a) 5-cycle graph. (b) 8-vertex graph which contains a 5-cycle graph as a subgraph and three isolated

nodes. (c) Circuit implementation of the evolution operator of a DTQW on (b), according to Eq. (34). To

perform a DTQW on the 5-cycle using circuit (c) initialize the position state of the walker on any state |v〉 for

which v = 0, . . . , 4

The position register must be initialized in a composite state whose bitstring representation corresponds to

the label (an integer number) of any vertex of the subgraph that conforms a 5-cycle graph. If the composite

state is initialized in any of the other vertices the walker will remain on that vertex every time the evolution
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operator is applied. The coin operator can be initialized either with the state |0〉, |1〉 or a superposition of both

states.

The action of the shift operator S5C on the quantum states of the position register associated to the labels

of the vertices is presented in Table(1). From this example, notice that the minimum number of qubits to

implement a DTQW on a k-cycle graph in the circuit model is n+ 1, where n is the minimum value such that

2n > k.

Table 1 Action of the shift operator for a DTQW on a 5-cycle (Fig. 7) on the states |0〉|q1q2q3〉 and |1〉|q1q2q3〉.
The first and second pair of columns represent the transition of position states with coin states |0〉 and |1〉,
respectively

coin |0〉 coin |1〉
base 2 base 10 base 2 base 10

|000〉 → |001〉 |0〉 → |1〉 |000〉 → |100〉 |0〉 → |4〉
|001〉 → |010〉 |1〉 → |2〉 |100〉 → |011〉 |4〉 → |3〉
|010〉 → |011〉 |2〉 → |3〉 |011〉 → |010〉 |3〉 → |2〉
|011〉 → |100〉 |3〉 → |4〉 |010〉 → |001〉 |2〉 → |1〉
|100〉 → |000〉 |4〉 → |0〉 |001〉 → |000〉 |1〉 → |0〉
|101〉 ↔ |101〉 |5〉 ↔ |5〉 |101〉 ↔ |101〉 |5〉 ↔ |5〉
|110〉 ↔ |110〉 |6〉 ↔ |6〉 |110〉 ↔ |110〉 |6〉 ↔ |6〉
|111〉 ↔ |111〉 |7〉 ↔ |7〉 |111〉 ↔ |111〉 |7〉 ↔ |7〉

Notice that the set of adjacent transposition operators Ti has applications way beyond the cycle graph,

given that it is a well known results in group theory that a general permutation is obtained by the product of

transpositions [41] – where a transposition is the permutation of two elements leaving the rest intact – and any

transposition can be obtained by the product of adjacent transpositions [42]. Thus, as we have provided the

circuit form of all adjacent transpositions of rows in 2n× 2n matrices, then any 2n× 2n permutation matrix (or

shunt in this work) can be generated by the set of operators Ti. Combining this result with Eq. (5), we can

generate the quantum circuit of associated to any transposed adjacency matrix.

4.2 DTQW on the line

Consider a graph constituted by n vertices each one connected only to the previous and next ones, except for

the vertices at the endings, which are only connected to the previous node. We refer to this mathematical

object as the n-node line graph, or simply the n-line. Fig. 8 displays a 7− line as an example. The adjacency

matrix of an n-line is an n× n matrix presented in Eq. (39).

-3 -2 -1 0 1 2 3

Figure 8 7-line graph
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-4 -3 -2 -1 0 1 2 3

(d)

Figure 9 Steps to transform a cycle graph into a line graph according to Table 2. (a) 8-cycle graph with labels in

ascending order. (b) 8-cycle graph with transformed labels to binary. (c) 8-cycle graph with labels interpreted

as two’s complement (d) Rearranged 8-cycle graph into a straight line

Aline =




0 1 0 0 . . . 0 0 0 0

1 0 1 0 . . . 0 0 0 0

0 1 0 1 . . . 0 0 0 0

0 0 1 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 1 0 0

0 0 0 0 . . . 1 0 1 0

0 0 0 0 . . . 0 1 0 1

0 0 0 0 . . . 0 0 1 0




(39)

Notice that its form is quite similar to the adjacency matrix of a cycle graph, with the only difference that

it only has elements in the diagonals above and below the main one, and not in any other entry. In order to

implement a DTQW on an n-line, we can take advantage of this fact, and of what we derived in the previous

subsection.

We consider a 2n-cycle graph with nodes labeled with consecutive integers in ascending order starting from

zero. Next we map the integer representation of each label to binary. After that, we consider the obtained

bitstrings to be in two’s complement notation1, so that if we go back to integer representation, the upper half of

the labels now take the values from −1 to −2n. The proposed transformation for the numbers 0 to 8 is shown

in Table 2. Finally, we rearrange the nodes of the graph, in ascending order in a straight line, and consider

only the subgraph formed by the vertices with labels in the interval [−n′, n′], where n′ = 2n−1− 1. Notice that

n′ is always odd, thus there is always a central node in the line graphs studied in this work. An example of the

process of transformation from an 8-cycle graph to a 7-line is shown in Fig. 9.

In view of the transformation previously proposed, a DTQW on a line can be understood as a DTQW on

a 2n-cycle graph whose labels have been mapped using two’s complement and which holds the restriction that

1Two’s complement is a way to represent both positive and negative numbers in bitstring notation. Strings whose leftmost

bit bn = 0, correspond to positive numbers. When bn = 1, we have a negative number. The rest of the bits, N = bn−1 . . . b2b1,

represent the value of the number and bn only indicates the symbol. When bn = 0, the right substring, N , has the same relation

with decimal numbers as in binary notation. However, when bn = 1, the relation of N with decimal numbers is inverted with

respect to binary notation. E.g., for a 3-bit string, let bn = 1, then for N equals 00, 01, 10 and 11 the associated numbers are 4, 3,

2 and 1, respectively, in such a way that 100, 101, 110 and 111 are associated to −4, −3, −2 and −1, respectively.
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Table 2 Transformation of labels of an 8− cycle graph. Visual sequence given in Fig. 9

Decimal Binary Two’s complement Decimal

0 → 000 → 000 → 0

1 → 001 → 001 → 1

2 → 010 → 010 → 2

3 → 011 → 011 → 3

4 → 100 → 100 → -4

5 → 101 → 101 → -3

6 → 110 → 110 → -2

7 → 111 → 111 → -1

the evolution operator can be applied a maximum number of times k ≤ n′ − n0, where n′ = 2n−1 − 1 and n0 is

the initial node of the walk. If it is applied a greater number of times than k, the walker will move in a cycle.

This implies that instead of finding an additive decomposition for the adjacency matrix shown in Eq. (39)

and getting a new shift operator out of it, we can consider the shift operator already presented in Eq. (16), and

for the circuit implementation, we consider the circuit presented in Fig. 4. The minimum number of qubits

needed to implement a walk on a line of k steps is obtained by solving Eq. (40) for n and then finding dne+1,

where the extra unit is due to the coin register.

k = 2n−1 − n0 − 1 (40)

4.3 DTQW on the hypercube

The hypercube graph, Qn(V,E), is an n-regular graph, built from the set of vertices and edges of the n-

dimensional hypercube, also called n−cube. The graphical representation of Qn for n = 1, 2, 3, 4 is shown in

Fig. (10).

1-cube 2-cube

3-cube 4-cube

Figure 10 Visual representation of the n-cube for n = 1, 2, 3, 4

In order to construct the general graph Qn, let Sn be the set of all n-bitstings, and let V = {vi : vi ∈ Sn}
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P0 P1 P2 P3

(a)

C2,0(P0)

C2,1(P1)

C2,2(P2)

C2,3(P3)

(b)

C2,1(P1)

C2,2(P2)

C2,3(P3)

(c)

Figure 11 (a) Quantum gate representation of the matrices that conform the shunt decomposition of the

adjacency matrix of a 4-cube. Quantum circuit associated to the shift operator of a DTQW on a (b) 4-cube

and (c) 3-cube with self-loops

be the set of bitstrings that are labels for the vertices of the n-cube. Two such bitstrings vi and vj correspond

to adjacent vertices if and only if they differ only in one bit, that is, their Hamming distance is equal to one.

Adjacent vertices are connected by an edge Ei ∈ E, such that E = {{vi, vj}|vi, vj ∈ Sn; vi 6= vj} is the set of

edges of the graph. Each vertex vj is connected to n other vertices by n edges Ei. Notice according to section

2 a DTQW takes place on a directed graph, thus, to comply with this requirement, we can replace edges Ei by

a set of parallel arcs pointing in opposite directions.

The usual definition of the shift operator for a DTQW on an n-cube is given in Eq. (41).

S =

m−1∑

i=0

2m−1∑

j=0

|ci, vj ⊕ ei〉〈ci, vj | (41)

or

S =
m−1∑

i=0

2m−1∑

j=0

|ci〉〈ci| ⊗ |vj ⊕ ei〉〈vj |

where ei is the n-dimensional bitstrings with all bits zero except for the ith bit, which is 1, ci and vj are m

and n-dimensional bitstring, respectively, and the symbol ⊕ represents the binary sum or bit-wise xor. Notice

that in this system the dimension of the coin spacace, m, is related to the dimension of the position space, n,

as n = 2m.

The factor |ci〉〈ci| restricts S to be a block diagonal matrix, and thus the block diagonal elements,
∑2m−1

j=0 |vj⊕
ei〉〈vj | (for fixed i), are the shunt decomposition of the adjacency matrix of a 2m-cube.

The adjacency matrix of an n-cube can be obtained following the next recursive pattern presented in [43]

An+1 =

(
An In
In An

)
; n > 0; A0 = (0) (42)

For any dimension n = 2m, An can be decomposed as the sum of unitary matrices, A2m =
∑n−1

i=0 P
ᵀ
i , where

each Pᵀ
i is written in terms of the Pauli matrix σx and the 2× 2 identity only
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Pᵀ
i = I⊗i2 ⊗ σx ⊗ I

⊗(n−i−1)
2 ; i = 0, 2, . . . , n− 1 (43)

where we define I⊗02 = (1).

For the case in which vj is the bitstring whose binary value corresponds to decimal value of the index j,

then the following equation holds for some bitstring ei

Pᵀ
i = I⊗i2 ⊗ σx ⊗ I

⊗(n−i−1)
2 =

2m−1∑

j=0

|vj ⊕ ei〉〈vj | (44)

This can be corroborated by explicit matrix analysis of both expressions.

Therefore, according to Eq. (7), the matrix representation of the shift operator is given by

S =

n−1⊕

i=0

I⊗i2 ⊗ σx ⊗ I
⊗(n−i−1)
2 (45)

In order to get the quantum circuit associated with S, we use the fact that a quantum gate can be built for

every unitary matrix Pᵀ
i by setting a register of n qubits, and placing a σx gate in the ith qubit leaving the

rest of the register empty, as in the example shown in Fig. 11(a). Next, we control all gates Pᵀ
i using all the

qubits of the coin register with a different pattern of black and white controls for each Pᵀ
i , in order to obtain

the quantum gates Cm,j(Pᵀ
i ), as explained in section 3. The combination of gates Cm,j(Pᵀ

i ) is equal to the shift

operator of the system, and form a pattern as in the example shown in Fig. 11(b).

Furthermore, we can use the circuit of a 2m-cube to obtain a circuit for any cube of dimension lower than

2m, with the restriction that the number of dimension we decrease from the original cube, will be the number

of self-loops added to all the vertices of the new structure. To do this, simply remove the first k CNOTs with

the largest range; the resulting circuit will be that of a (2m − k)-cube with k self-loops. For instance, if we

want to obtain a circuit for a 3-cube with self-loops, then we modify the circuit of a 4-cube to obtain the circuit

shown in Fig. 11(c).

The general pattern of the quantum circuit representation of S was proposed by Douglas and Wang in [44],

being a key element to our paper to construct an explicit link between the shunt decomposition method and

the quantum circuit representation of S. In order to simplify the circuit, notice that negated black controls are

represented by white controls, and we negate a black control by placing σx gates at both sides of it. Current

quantum computers do not allow the direct implementation of white controls, thus if we are to build a quantum

circuit that consists of a sequence of multi-control gates, we want that when we replace all white controls

with black controls sorrounded by σx gates to the left and to the right, as many σx gates as possible cancel

out. This can be achieved by initially designing the circuit in such a way that as many white controls are

next to each other in the sequence of multi-control gates. For this purpose, we propose the use of gray code,

which a bitstring representation of numbers such that for two consecutive numbers in decimal notation the

corresponding bitstrings differ in only one bit. That is, this sequence maximizes the resemblance of consecutive

bitstrings, and if we associate 0’s and 1’s with white and black controls, respectively, when using this sequence

to generate all Cm,j(Pᵀ
i ) gates that constitute the shift operator of a 2n-cube, we can cancel out a wide number

of redundant σx gates. Although, for gray code to be efficient, we must start the sequence with the string of

all ones, or to put it in another way, the leftmost (or rightmost, it is indistinct) gate must be controlled with

only black controls, and then single-bit-flipping sequence can be used to control the following gates. This is

exemplified in Fig. 12.
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(a) (b)

(c)

Figure 12 (a) Circuit implementation of the shift operator of a DTQW on a 8-cube proposed in [44], where

the controls follow gray code sequence. (b) Current quantum computers only admit black controls, thus white

controls must replace by black controls surrounded by two σx gates. (c) Redundant CNOTs are cancelled out,

which could represent an advantage if the circuit is to be implemented in noisy quantum computers

4.4 DTQW on the 2m-complete graph with self-loops

An n-complete graph with self-loops, Kn is a set of n vertices such that the vertex vi is connected with all other

vertices vj , including itself. An example of this type of graph is given in Fig. (13).
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7
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1
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Figure 13 Graph K8

The adjacency matrix of an n−node complete graph with self-loops at every vertex is a matrix whose entries
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are all ones (Eq. (46)). Here we propose a method to decompose the adjacency matrix of the K2m graph, where

m is the dimension of the coin register.

AKn =




1 1 1 . . . 1 1 1

1 1 1 . . . 1 1 1

1 1 1 . . . 1 1 1
...

...
...

. . .
...

...
...

1 1 1 . . . 1 1 1

1 1 1 . . . 1 1 1

1 1 1 . . . 1 1 1




(46)

The decomposition can be done by means of the tensor products of σx and I2 operators. For this purpose,

we appeal again to binary code: consider the σx operator to be a ”1”, and I2 operator to be a ”0”. Now consider

the tensor product of a number n1 of operators σx and a number n2 of operators I2 (n1 + n2 = m), in such a

way that their sequence is interpreted as binary code. Every sequence of tensor products defines a matrix Pᵀ
i ,

such that the index i corresponds to the number the sequence represents. The sequence of operators for the

graph K8 is shown in the set of Eqs. (47).

Pᵀ
0 = I2 ⊗ I2 ⊗ I2 (47a)

Pᵀ
1 = I2 ⊗ I2 ⊗ σx (47b)

Pᵀ
2 = I2 ⊗ σx ⊗ I2 (47c)

Pᵀ
3 = I2 ⊗ σx ⊗ σx (47d)

Pᵀ
4 = σx ⊗ I2 ⊗ I2 (47e)

Pᵀ
5 = σx ⊗ I2 ⊗ σx (47f)

Pᵀ
6 = σx ⊗ σx ⊗ I2 (47g)

Pᵀ
7 = σx ⊗ σx ⊗ σx (47h)

Then

AK8 =

7∑

i=0

Pᵀ
i (48)

Fig. 14(a) shows the sequence of quantum gates that corresponds to every operator Pᵀ
i . Similar to the

previous sections, we have to control these gates and then place them in sequence in order to obtain a quantum

circuit for a shift operator that performs a DTQW on the graph K8. In this case, the quantum circuit can be

simplified if the index j of the controlled gate, Cm,j(Pᵀ
i ), is equal to the index of the operator Pᵀ

i . This means

that every sequence of σx and I2 gates will be controlled by a sequence of white and black dots that represent

the same number in binary, as shown in Fig. 14(b).

The addition of the identity gate to the circuits is just for illustrative purposes, it can be neglected. Although,

even if we do so, some of the gates Cm,j(Pᵀ
i ) are still multi-target multi-control. This type of gate can be

decomposed into a set of single-target multi-control gates [45], as shown in the example of Fig. 15(a). Then,

multi-controlled gates that have the same target qubit and whose sequence of black and white dots differs only

in one element can be simplified as shown in the example of Fig. 15(b). This property has been derived in

different works [46, 47, 48] using different methods.
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P0 P1 P2 P3 P4 P5 P6 P7

I I I I

I I I I

I I I I

(a)

C3,0(P0)

C3,1(P1)

C3,2(P2)

C3,3(P3)

C3,4(P4)

C3,5(P5)

C3,6(P6)

C3,7(P7)

I I I I

I I I I

I I I I

(b)

Figure 14 (a) Gate sequence corresponding to the permutation matrices presented in the set of Eqs. (47). (b)

Gate sequence corresponding to the shift operator of a DTQW on K8 (Fig. (13)). Notice that the sequence of

identity and CNOT gates is the same as the sequence of black and white dots for each gate

When both properties are applied to the whole network of multi-control CNOT gates shown in Fig. (15),

everything can be reduced to only three gates, as shown in Fig. 16(a). The sequence of controlled gates can

be continued (see Fig. 16(b)) to obtain a shift operator for a DTQW on a complete graph with 2m vertices.

Notice that we can use the same procedure replacing the gate σx by an arbitrary multi-qubit U gate to obtain

efficient implementation of operators shift for different graphs.

In terms of outer products, the shift operator for this system can be defined in a similar way than the usual

definition of the shift operator for a DTQW on the hypercube Eq. (41), with the only difference that in this

case, the direction bitstrings ei are all bitstrings of size m, in such a way that we associate one bitstring to

each edge connected to the vertex where the quantum walker stands on. This provides 2m directions for the

walker to move at each vertex. The analysis of the matrix form of S resulting from this idea conducted us to

find the decomposition presented in the set of Eqs. (47), which can be extended to any dimension 2m following

the same procedure.

Douglas and Wang proposed in [44] a circuit which can be generalized to perform a DTQW on a graph K2n ,

using n SWAP gates, arranged as presented in Fig. 17. The circuit was the result of mapping a different shift

operator to perform a DTQW on the same topology. The shift operator used has the following action on the

state of a walker S|ci, vj〉 = |vj , ci〉, thus it seems logical to use SWAP operators for its mapping to a quantum

=

(a)

(a)

=

(a)

(b)

Figure 15 Examples of the (a) Decomposition of a multi-control multi-target gate. (b) Synthesis of two

multi-control single-target gates which differ by only one control color for the same control qubit
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(a)

. . .

. . .

. . .

. . .

...
...

...
...

. . .

. . .

. . .

. . .

(b)

Figure 16 (a) Synthesized circuit after applying

the decompositions shown in Fig. 15 to the shift

operator of a DTQW on K8 (Fig. 14(b)). (b) Shift

operator composed of n CNOT gates to perform

a DTQW on K2n

. . .

. . .

. . .

. . .

...
...

...
...

. . .

. . .

. . .

. . .

(a)

(a)

...
= ...

...
...

(b)

Figure 17 (a) Sequence of n SWAP gates correspond-

ing to the shift operator of a DTQW on K2n , pro-

posed in [44]. (b) Decomposition of a SWAP gate

into CNOT gates

circuit. Each SWAP gate can be implemented using three CNOT gates, therefore the shift operator proposed

by Douglas and Wang can be implemented using 3n CNOT gates, while the circuit we propose for a DTQW

on the same topology, needs only n CNOT gates, as can be seen from Fig. 16(b), which proves it to be more

efficiently implementable in terms of CNOT gates.

5 Simulation and Experimental Implementation of DTQWs

In this section we implement specific cases of the quantum circuits associated to the shift operators of the

topologies studied in the previous sections, using both IBM’s quantum computers publicly available through

IBM Quantum [49] and Qiskit Aer simulator. The topologies that we will focus on in this section are the

graph K4, the 8-line, the 3-cube with self-loops and the 5-cycle graph, presented in this order in the coming

subsections. For the first two graphs experimental results will be presented, while for the last two graphs we

limit ourselves to present Qiskit simulations. The quantum processors we used to perform the experimental

computations are: ibmq manila, ibmq bogota, ibmq quito, and ibmq lima, with quantum volume (QV) 32, 32,

16, and 8, respectively. All of these quantum processors have 5 qubits, connected in T-like (quito and lima)

and line-like (manila and bogota) topologies as shown in Fig. (18). Due to the low amount of available qubits

we restrict our DTQWs to take place in low-dimensional cases of the graphs studied. We implemented the

quantum circuits directly in the Quantum Composer.

We utilized the statistical distance between distributions

`1(P,Q) =
1

2

∑

∀i
|P (i)−Q(i)| (49)

as a metric to evaluate the performance of each quantum circuit compared to the theoretical distributions,

where the shorter the distance, the higher the resemblance of an experimental distribution to the theoretical

one. To have a visual representation of the performance of the implemented DTQWs, we present a summary
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(a)
(a)

0 1 2

3

4

(a)
(b)

Figure 18 Connectivity map of the quantum processors used in this work to perform DTQWs. (a) Processor

type: Falcon r5.11L. ibmq manila and ibmq bogota follow this connectivity. (b) Processor type: Falcon r4T.

ibmq quito and ibmq lima follow this connectivity. See [50] for more information on the processors

grid of the obtained probability distributions in the following sections, that include the theoretical distributions

and the experimental distributions with best metrics for each model and each step, regardless of the quantum

processor used. In all cases, i.e. simulated, experimental and theoretical DTQWs, the initial state of the walker

was the state ψ = |0〉C ⊗ |0〉P , for all the models. The theoretical distributions were calculated analytically,

using the corresponding shift and coin operators of each graph, obtained as described in the previous sections.

A repository with all the circuits resulting from this work in Qiskit format, is available in [51].

5.1 DTQW on the graph K4

To perform a DTQW on a graph K2m we need 2m qubits, thus, with the available 5-qubit quantum computers

we can only run circuits for the graphs K2 and K4, although we will focus on the latter. We compare the

performance of both models for the graph K4 shown in Figs. 16 and 17. The metrics of the experimental

distributions are shown in Tables 3 and 4, where the former corresponds to the model introduced in this paper

(CNOT model), while the latter corresponds to the model introduced by Douglas and Wang (SWAP model)

[44]. The depth and size of the original single-step circuits is 2 and 4, respectively, for both models. However,

to be able to run in IBM’s quantum computers, these circuits must undergo a transpilation process to adapt

to the topology (see Fig. 18) of the quantum computers and be optimized for noise reduction. Furthermore,

this process involves a change of basis to the set CNOT ,
√
x and Rz, which is the native set of gates in IBM’s

quantum computers. Thus, in the case of the one-step transpiled circuits, the size of the circuit with best metric

is 11 and 14, for the CNOT model, while the depth and size of the circuit with best metric for the SWAP

model is 15 and 18, respectively.

Table 3 `1 distance between experimental and theoretical distributions for the graph K4 using the CNOT

model. ibmq quito has the best overall performance.

Device/Steps 1 step 2 steps 3 steps Avg

ibmq manila 0.057 0.114 0.297 0.156

ibmq bogota 0.114 0.091 0.352 0.185

ibmq quito 0.048 0.024 0.319 0.130

ibmq lima 0.040 0.049 0.384 0.158

Although the topology is the same for both models, the dynamics of the walker changes depending on the

shift operator. The most visible case arises when we compare the third step of both models, while for the
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Table 4 `1 distance between experimental and theoretical distributions for the graph K4 using the SWAP

model. ibmq manila has the best overall performance.

Device/Steps 1 step 2 steps 3 steps Avg

ibmq manila 0.051 0.130 0.182 0.121

ibmq bogota 0.130 0.144 0.227 0.167

ibmq quito 0.112 0.101 0.341 0.185

ibmq lima 0.048 0.054 0.355 0.152

CNOT model we obtain the state |0011〉 after measurement, for the SWAP model we obtain the state |0000〉
(see Fig. 19). Additionally, the the walker needs 8 applications of the evolution operator to complete a cycle

on the graph using the former model, while with the latter the walker needs only 4 applications. We define

the cycle of a DTQW as the number of steps T such that UT = I, and as a consequence the quantum state of

a walker |ψ(t)〉 returns to its initial state. Further simulations using Qiskit, show that the number of steps to

complete a cycle in the graph K2m remains constant for m = 1, 2, 4, 8, 16, which suggests that these might be

constant values for any dimension 2m.
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Quantum Walk on the graph K4 using the SWAP model
Theoretical distributions

1 step 2 steps 3 steps

Experimental distributions
Processor: ibmq lima Processor: ibmq lima Processor: ibmq manila

1 step 2 steps 3 steps

(a)

Quantum Walk on the graph K4 using the CNOT model

Theoretical distributions
1 step 2 steps 3 steps

Experimental distributions
Processor: ibmq lima Processor: ibmq lima Processor: ibmq manila

1 step 2 steps 3 steps

(b)

Figure 19 Comparison between theoretical and best experimental probability distributions of a DTQW on a K4

graph of 1, 2 and 3 steps. (a) Distribution using the CNOT model and (b) Distribution using the SWAP model.

The processor used to obtain each distribution is indicated on top of them. The metrics of each distribution

can be found in Tables 3 and 4. These distributions present the best metrics of all the models studied in this

work, which is attributed to the simplicity of the circuit in both cases and to the fact that one qubit less was

needed to perform the DTQWs in comparison to the other models. Notice that the measured state after a

DTQW of three steps is different in both models. Although we perform a DTQW on the same topology, the

fact that the CNOT and SWAP models have diagonal and non-diagonal shift operators, respectively, changes

the dynamics of the walker

5.2 DTQW on the 8-line

In the case of the 8-line, two models were considered, for which four qubits were needed. The first model is

presented in Fig. 4(a) and we label it LRA (Long-Range Arrangement); the second model is presented in Fig.

4(b) and we label it NNA (Nearest-Neighbors Arrangement as proposed in [38]). Comparing these models we

want to study if the arrangement of CNOT gates to the sides of the increment operator has an effect on the
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circuit performance. Specially because NNA is optimal to run in a line-like quantum computer (see Fig. 18(a)),

as it adjusts perfectly to this topology, while LRA must be transpiled into a completely different sequence of

CNOT gates, which increases substantially the total number of gates. This fact can be illustrated from the

example presented in Fig. 20. Regarding T-like configuration, in principle there is no preferred model.

The `1 distances between experimental and theoretical distributions are summarized in Tables 5 and 6,

where the first table corresponds to the LRA model and the second one to the NNA model.

From these tables we can see that the performance of LRA model is better, which we attribute to the

depth and size of the original and transpiled circuits. The depth and size of the original one-step circuit for

the LRA model are 10 and 10, while the depth and size for its transpiled version with best metric are 35 and

44, respectively. In the case of the original one-step NNA model, the depth and size are 13 and 14, while the

depth and size of its transpiled version with best metric are 43 and 52, respectively. In Fig. 21 we present the

theoretical and experimental distributions for the first three steps on this topology. Notice that regardless of

the lower amount of CNOT gates in the NNA model when using a line-like quantum processor (manila and

bogota) we still obtain worse results, which suggests that the increment operator has a worse performance in

these type of quantum processors.

(a)

(b)

Figure 20 Comparison between the original and transpiled circuit implementations of gate C1,1(J) using (a)

NNA and (b) LRA. The quantum circuits were transpiled to the connectivity map of ibmq manila, which has

a line-like form (see 18(a)). Notice from (a) that NNA remains the same after the transpilation process, which

indicates it is the optimal arrangement for this type of line-like topologies
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Quantum Walk on the 8-line

Theoretical distributions
1 step 2 steps 3 steps

Experimental distributions using the LRA model
Processor: ibmq lima Processor: ibmq lima Processor: ibmq quito

1 step 2 steps 3 steps

Experimental distributions using the NNA model
Processor: ibmq quito Processor: ibmq quito Processor: ibmq bogota

1 step 2 steps 3 steps

Figure 21 Comparison between theoretical and best experimental probability distributions of a DTQW on an

8-line of 1, 2 and 3 steps. The first row displays the theoretical distributions for each step, while the second

and third rows display experimental distributions with the best metrics for each for each step of the LRA and

NNA models, respectively. The best metrics are the values in bold in tables 5 and 6. The processor used to

obtain each distribution is indicated on top of them. Notice that in all cases, the experimental distributions

resemble the theoretical ones, which indicates the circuits were implemented efficiently, hence we have a good

performance. This fact is also supported by the low statistical distances for these models reported in the

aforementioned tables
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Table 5 `1 distance between experimental and theoretical distributions for the 8-line using the NNA model.

Shorter distances indicate the best experimental performance for each step. ibmq quito has the best overall

performance.

Device/Steps 1 step 2 steps 3 steps Avg

ibmq manila 0.548 0.534 0.655 0.579

ibmq bogota 0.457 0.597 0.431 0.495

ibmq quito 0.402 0.369 0.455 0.409

ibmq lima 0.548 0.534 0.655 0.579

Table 6 `1 distance between experimental and theoretical distributions for the 8-line using the LRA model.

Shorter distances indicate the best experimental performance for each step. ibmq lima has the best overall

performance.

Device/Steps 1 step 2 steps 3 steps Avg

ibmq manila 0.474 0.438 0.428 0.446

ibmq bogota 0.457 0.345 0.590 0.464

ibmq quito 0.402 0.386 0.400 0.396

ibmq lima 0.339 0.337 0.456 0.377

Attempts to efficiently run the quantum circuit for a DTQW on a line of 16 nodes were done, although

the probability distributions in this case were poor given that as we increase the dimensionality of the graph,

the number and size of multi-control gates is consequently incremented too, and current NISQ computers have

problems maintaining a good fidelity when running circuits with a large number of multi-control gates, as was

the case when running 4-qubit instances of Grover’s algorithm in [52]. This problem was also present when

running the circuits for the DTQW on the cycle and hypercube graphs even for low-dimensional instances,

thus, in the next sections we decided to replace experimental executions on IBM quantum computers for Qiskit

simulations using the Aer simulator in order to prove the functionality of our model.

5.3 DTQW on the 5-cycle graph

In section 4.1 we presented the quantum circuit of the shift operator for a walk on a 5-cycle graph (Fig. 7(c)),

based on CNOT, Cn,i
m,j(X) and Cn,i

m,j(SWAP ) gates. Qiskit allows us to easily implement the Cn,i
m,j(X) gate

using the mcx method. To take advantage of this method, we can use the fact that the Cn,i
m,j(SWAP ) gate,

can be decomposed into a set of two CNOT and one Cn,i
m,j(X) gates, as shown in Fig. 22.

Fig. 23 shows the comparison between Qiskit-simulated and theoretical distributions, for the first, second

and third steps of a DTQW on the 5-cycle, for which we obtained statistical distances of 0.029, 0.0215 and

0.011, respectively.
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=

Figure 22 Example of the decomposition of a multi-control swap gate in terms of CNOT gates. The left-hand

side circuit is a particular case of a multi-cotrol Fredkin gate, which was efficiently decomposed in [53, 54],

resulting in the right-hand side circuit

Quantum Walk on the 5-cycle

Theoretical distributions
1 step 2 steps 3 steps

Qiskit simulated distributions
1 step 2 steps 3 steps

Figure 23 Theoretical and Qiskit-simulated probability distributions of a DTQW of 1, 2 and 3 steps on a 5-cycle

graph

5.4 DTQW on the 3-cube with self-loops

To perform a DTQW on a 3-cube with self-loops, we use the circuit proposed in Fig. 11(c) for the shift operator,

while for the coin operator we use the Grover operator, given that its behavior has been widely studied for this

topology in [55, 56, 16, 57].

Fig. 24 shows the comparison between Qiskit-simulated and theoretical distributions, for the first, second

and third steps of a DTQW on the 3-cube, for which we obtained statistical distances of 0.021, 0.025 and

0.0195, respectively.
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Quantum Walk on the 3-cube

Theoretical distributions
1 step 2 steps 3 steps

Qiskit-simulated distributions
1 step 2 steps 3 steps

Figure 24 Comparison between theoretical and Qiskit-simulated probability distributions of a DTQW on a

3-cube with self-loops of 1, 2 and 3 steps. The first row displays the theoretical distributions for each step,

while the second row displays Qiskit-simulated distributions.

6 Conclusion

In this paper we have introduced a general method to map evolution operators of DTQWs into quantum

circuits, focusing on the case in which the shift operator is a unitary block diagonal matrix, given that this

structure allows a direct circuit implementation using fully controlled quantum gates.

We have used our method to build circuits for graphs commonly presented in the literature of DTQWs,

like line, cycle, hypercube and complete graphs. We have shown that these circuits – some of them previously

introduced in the literature – can be derived from our general method. Furthermore, studying the block diagonal

form of the shift operators, we extended number of dimensions in which a DTQW can take place in the case

of the hypercube and the cycle graph. For the hypercube, we explained how to modify the circuit proposed by

Douglas and Wang [44] for a 2n-hypercube, to perform a DTQW on a hypercube of any dimension by modifying

the number of self-loops in the graph. Additionally for this topology, we provided a way to reduce redundant

NOT gates by forcing the pattern created by white and black controls of adjacent multi-control gates to follow

two’s complement sequence. In the case of the cycle graph, we provided a sequence of gates, which we called

adjacent transposition operators, Ti, that allow us the build the shift operator for a cycle graph of any size.

Moreover, the adjacent transposition operators might serve as building blocks to construct the quantum circuit

associated to any possible permutation matrix, however, due to the fact that all of them are composed of fully

controlled gates, they are not suitable to be implemented efficiently in NISQ computers, due to fidelity issues.

Finally, we also used the fact that the decomposition of multi-control quantum gates has been widely studied

in order to propose efficient methods to synthesize the circuits, being the most notable case the one for the

DTQW on a 2n-complete graph, which was reduced from an exponential to a linear number of gates.

In order to prove the reliability of the shunt decomposition method, in section 5 we ran punctual cases of

the quantum circuits studied section 4, using both IBM’s public quantum computers and Qiskit Aer simulator.

The distributions obtained from experimental executions and simulations were compared against analytical

results using the `1 distance as metric. The topologies we considered were the K4, 8-line, 5-cycle and 3-cube
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graphs. However, we were able to obtain short `1 distances only for the first two topologies, given that the

quantum circuits associated to them were the simplest ones. In the case of the last two topologies, poor results

were obtained due to the fact that the circuits for these topologies demand a large number of multi-control not

gates, which cannot yet be efficiently run on the quantum computers used. Therefore, we decided to use Qiskit

Aer simulations in these cases, obtaining short `1 distances in both of them.

Looking to determine whether performance varies from one model to another, in the case of the complete

graph, we compared a circuit obtained using the shunt decomposition method (CNOT model) with a circuit

whose shift operator is not block diagonal (SWAP model) [44]. Both circuits in original form have the same

complexity, and even when transpiled, the SWAP transpiled circuit had only a few more quantum gates than

the CNOT transpiled circuit (see [51]), which resulted in very short `1 distances for both models, as presented

in tables 3 and 4. However, we did find out a difference between the models, i.e. in the third step, using the

SWAP model, there was 100% probability to find the walker in the state associated to node 0, while for the

same step, but using the CNOT model, there was 100% probability for the walker to be in the state associated

to node 1 (see Fig. 19). This provides evidence, that different shift operators for the same topology might lead

to different walker dynamics.

Another important aspect to mention is that ibmq quito and ibmq lima were the quantum computers that

gave out the largest number of best metrics for specific steps in different models executed experimentally, being

ibmq quito the one that had the best average performance in 2 out of 4 models studied. We attribute this to

the connectivity of these quantum computers, which is T-like (Fig. 18), rather than other factors like quantum

volume which is 16 and 8 for ibmq quito and ibmq lima, respectively, and 32 for both bogota and manila.

Finally, we conclude that the method we developed to map block diagonal unitary operators into quantum

circuits can be applied to execute DTQW whose shift operator is constructed based on the shunt decomposition

of the adjacency matrix on which the DTQW takes place. Although, the method has experimental limitations in

the sense that, in general, it requires a large amount of multi-control gates which induce errors in the execution,

we believe it is still be relevant given that is it perfectly suitable to study quantum circuits in an analytical

manner and through simulations.
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