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Discriminative Canonical Correlation Analysis (DCCA) is a powerful supervised feature extraction
technique for two sets of multivariate data, which has wide applications in pattern recognition.
DCCA consists of two parts: (i) mean-centering that subtracts the sample mean from the sample;
(ii) solving the generalized eigenvalue problem. The cost of DCCA is expensive when dealing with a
large number of high-dimensional samples. To solve this problem, here we propose a quantum DCCA
algorithm. Specifically, we devise an efficient method to compute the mean of all samples, then use
block-Hamiltonian simulation and quantum phase estimation to solve the generalized eigenvalue
problem. Our algorithm achieves a polynomial speedup in the dimension of samples under certain
conditions over its classical counterpart.

I. INTRODUCTION

As a promising new computing paradigm, quantum
computing has shown enormous power over classical com-
puting due to its inherent parallelism and entangle-
ment [1, 2]. In recent years, a series of quantum al-
gorithms have been proposed with significant speedups
compared with their classical counterparts, such as clas-
sification [3–6], linear regression [7–9], dimensionality re-
duction [10–13], matrix computation [14–17]. Designing
quantum algorithms to accelerate the corresponding clas-
sical ones has appeared as a remarkable emerging direc-
tion in the field of quantum computing.
Feature extraction for pairs of multivariate data is an

indispensable part of multimodal recognition and infor-
mation fusion, which aims at extracting the feature pairs
from two groups of feature vectors [18, 19]. Canonical
Correlation Analysis (CCA) [20, 21] and Partial Least
Squares (PLS) [22] are widely-used feature extraction
techniques for pairs of multivariate data. For multi-
modal recognition task, CCA and PLS are unsuper-
vised, that is they do not utilize the class information
of the samples, resulting in the constraint of the recog-
nition performance. To solve this problem, Sun et al.
proposed a novel combined feature extraction technique
known as Discriminative Canonical Correlation Analy-
sis (DCCA) [18], which takes the advantage of class la-
bel information to find pairs of pairwise projection vec-
tors such that the within-class correlations are maxi-
mized and simultaneously the between-class similarities
are minimized. DCCA can be described as two steps:
(i) mean-centering that subtracts the sample mean from
the sample; (ii) solving the generalized eigenvalue prob-
lem. Since the time complexity of DCCA depends poly-
nomially on the number and the dimension of samples, it
is computationally expensive when dealing with a large
number of high-dimensional samples. Therefore, it would
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be of great interest to design the quantum algorithm for
DCCA.
Recently, Koide-Majima et al. presented a quantum-

inspired CCA (qiCCA) algorithm [23], which achieves
an exponential acceleration on the dimension of samples
compared with the original algorithm. After that, Hou
et al. suggested a Quantum PLS (QPLS) regression algo-
rithm [24], which realizes an exponential speedup in the
number of samples and their dimension over its classical
counterpart. However, the above algorithms are still un-
supervised and can not break through the limitation of
the recognition performance in multimodal recognition.
It is desirable to design a quantum algorithm for DCCA.
DCCA, which utilizes the class label information, is fun-
damentally different from CCA and PLS, and it seems
infeasible to obtain a quantum DCCA algorithm directly
based on the above qiCCA and QPLS.
In this paper we propose a Quantum DCCA (QDCCA)

algorithm. First, we propose an efficient method, called
Mean Estimation (ME), to compute the mean of all sam-
ples. The basic idea is inspired by inner product esti-
mation in Ref. [25], which uses the amplitude estimation
circuit [26] to compute the inner product of two quantum
states and then boosts the probability of success by me-
dian estimation [27]. We take advantage of the quantum
state preparation technique to generalize this method to
compute the mean of all elements in a row of any real
matrix. The mean-centering of DCCA can be realized
by ME and Quantum Multiply-Adder (QMA) [28, 29].
Then, inspired by Ref. [30], we use block-Hamiltonian
simulation [31] and quantum phase estimation to solve
the generalized eigenvalue problem. In Ref. [30], with
the help of the block-encoding technique [31–33], Shao et
al. put forward a novel quantum algorithm for solving
the generalized eigenvalue problem Dw = λEw when D
is Hermitian and E is Hermitian positive definite. Here
we design the block-encodings of the related matrices
to give a variant of Shao et al.’s algorithm such that
Dw = λEw can be solved when D is Hermitian and E
is Hermitian positive semidefinite. Based on this, the
generalized eigenvalue problem of DCCA can be solved.
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As a result, the QDCCA algorithm achieves a polyno-
mial speedup in the dimension of samples under certain
conditions over the classical algorithm.
This paper is organized as follows. We review the clas-

sical DCCA in Sec. II. In Sec. III, we propose the QD-
CCA algorithm in Sec. III A and analyze its complexity
in Sec. III B. The conclusion is given in Sec. IV.

II. REVIEW OF THE CLASSICAL DCCA

Given n pairs of original pairwise samples
{(ai,bi)}ni=1 ∈ Rp × Rq coming from c classes,
DCCA aims to find d pairs of pairwise projection vectors
under specified conditions, where d is a prespecified
parameter and satisfies the constraints d ≤ min(p, q)
and d ≤ c [18]. Let A = [a1, a2, ..., an] ∈ Rp×n,
B = [b1,b2, ...,bn] ∈ Rq×n denote the original data

matrices and M =

(
A
B

)
. Here we describe DCCA as

the following two steps.
Step 1. Mean-centering.
In this step, the Mean-Subtraction (MS) should be

used to make all sample features have zero mean. The
details are as follows.
(1) Compute two means of all samples:

ā =

∑
i ai

n
, b̄ =

∑
i bi

n
. (1)

(2) Each sample subtract the corresponding mean,
then the centralized pairwise samples {(xi,yi)}ni=1 can
be obtained where xi := ai − ā and yi := bi − b̄.
Step 2. Solve the generalized eigenvalue problem.
The first pair of pairwise projection vectors (wx,wy)

of DCCA can be formulated as the following optimization
problem:

max
wx,wy

wT
xXCY

Twy

s.t. wT
xXX

Twx = 1,wT
y Y Y

Twy = 1,
(2)

where X = [x1,x2, ...,xn], Y = [y1,y2, ...,yn] are the
centralized date matrices, C = diag(1n1

, 1n2
, ..., 1nc), 1ni

is an ni×ni matrix with all ones, ni denotes the number
of pairwise samples in the ith class, i = 1, 2, ..., c and∑

i ni = n.
Using the Lagrangian multiplier technique, it can be

transformed into the generalized eigenvalue problem:
(

XCY T

Y CXT

)(
wx

wy

)
= λ

(
XXT

Y Y T

)(
wx

wy

)
. (3)

The generalized eigenvectors corresponding to the first d
largest generalized eigenvalues λ are exactly the d pairs
of pairwise projection vectors of DCCA.
Let E

1

2w = v where E := diag(XXT , Y Y T ) and

w :=

(
wx

wy

)
, we can reduce equation (3) to a Hermitian

eigenvalue problem:

Hv = λv, (4)

where H := E− 1

2DE− 1

2 and D :=

(
XCY T

Y CXT

)
.

Once the eigenvectors {vi}di=1 corresponding to the
first d largest eigenvalues of H are obtained, we can get
{wi|wi = E− 1

2vi}di=1 after postprocessing.
The time complexity of DCCA is O(n(p+q)+(p+q)3)

where O(n(p + q)) comes from Step 1 and O((p + q)3)
comes from Step 2.

III. QUANTUM ALGORITHM FOR DCCA

In this section we first present the QDCCA algorithm
in Sec. III A, then analyze its complexity in Sec. III B.
We start with some notations that will be useful

throughout the paper. Note that we can rewrite A as
A = [A1, A2, ..., Ac], where the submatrix Ai ∈ Rp×ni

is the original data matrix of the ith class, i = 1, 2..., c.
Similarly, B = [B1, B2, ..., Bc], X = [X1, X2, ..., Xc] and
Y = [Y 1, Y 2, ..., Y c]. With such representations, we de-
fine the matrix A as A = [A1,A2, ...,Ac] where the sub-

matrix Ai = [Ai,0, ...,0] ∈ Rp×n′

, 0 is a vector with all
zeros and n′ = maxi ni. Let B = [B1,B2, ...,Bc] where

Bi = [Bi,0, ...,0] ∈ Rq×n′

and let M =

(
A
B

)
.

In our quantum algorithm, to apply quantum phase
estimation to reveal the eigenvalues of H , we must be
able to realize eiHt. To achieve it, we first analyze the
structure of H and find that D can be rewritten as

D =

(
XX

T
XY

T

YX
T

YY
T

)
−
(
XX

T 0
0 YY

T

)
:= J −K, (5)

where X := [
∑

j X
1
∗,j,

∑
j X

2
∗,j, ...,

∑
j X

c
∗,j] ∈ Rp×c, Y :=

[
∑

j Y
1
∗,j ,

∑
j Y

2
∗,j, ...,

∑
j Y

c
∗,j ] ∈ Rq×c, and X i

∗,j, Y
i
∗,j are

the jth column of X i, Y i respectively, i = 1, 2, ..., c.
Then H = E− 1

2JE− 1

2 − E− 1

2KE− 1

2 . Using the block-
encoding technique [31–33], once the block-encodings
of E, J , K are implemented, the linear combination
of block-encoded matrices allows us to construct the
block-encoding of H , and then we can use the block-
Hamiltonian simulation to realize eiHt. However, it
is not easy to create the block-encodings of E, J , K
directly. Fortunately, the matrices E, J , K are all
positive-semidefinite, we can prepare the density opera-
tors ρE := E

tr(E) , ρJ := J
tr(J) , ρK := K

tr(K) and create cor-

responding block-encodings to realize the block-encoding

of H̃ := ρ
− 1

2

E ρJρ
− 1

2

E − ρ
− 1

2

E ρKρ
− 1

2

E = tr(E)
tr(J)H . It means

that we can realize eiHt by implementing eiH̃t.
Our quantum algorithm is divided into four steps: (1)

preparing the density operators ρE , ρJ and ρK ; (2) de-

signing the block-encoding of H̃ ; (3) estimating the eigen-
values of H according to quantum phase estimation, and
then searching the first d largest eigenvalues of H to
get the corresponding eigenvectors {|vi〉}di=1; (4)postpro-
cessing: use quantum matrix inversion technique to get
{|wi〉||wi〉 ∝ E− 1

2 |vi〉}di=1.
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A. Algorithm

Assume that the matrices M , M and the vector
c := (n1, n2, ..., nc)

T are stored in Quantum Random
Access Memory (QRAM) [34] which allows the follow-
ing mappings to be performed in times O[log(n(p+ q))],
O[log(cn′(p+ q))] and O(log c), respectively.

OM : |i〉|j〉|0〉 → |i〉|j〉|Mij〉, (6)

OM : |i〉|j〉|0〉 → |i〉|j〉|Mij〉, (7)

Oc : |i〉|0〉 → |i〉|ni〉, (8)

where Mij and Mij are the (i, j)-entries of M and M
respectively.
The following lemma is necessary for our QDCCA al-

gorithm, which is a variant of Lemma A.10 in Supple-
mentary Material of Ref. [25].

Lemma 1. (mean estimation). Assume that the ma-
trix L ∈ Rd1×d2 is stored in a QRAM, that is the
unitary OL : |i〉|j〉|0〉 → |i〉|j〉|Lij〉 can be performed
in time O(log(d1d2)). For any ∆ > 0 and ǫ > 0,
there exists a quantum algorithm that computes in time

O(
maxij |Lij| log(d1d2)log

1

∆

ǫ ),

Umean : |i〉|0〉 → |i〉|L̄i,∗〉, (9)

with probability at least 1 − 2∆, where L̄i,∗ is the mean
of all elements in the ith row of matrix L and ǫ is the
error of L̄i,∗.

Proof. See Appendix A.
Now we detail the process of the QDCCA algorithm.
Step 1. Prepare the density operators ρE, ρJ and ρK .

The matrices E, J , K can be decomposed into
E = ÉÉT , J = J́ J́T and K = ḰḰT respectively,

where É := diag(X,Y ), J́ :=

(
X

Y

)
, Ḱ := diag(X,Y).

According to the construction of E, J , K, we find
that ρE , ρJ and ρK can be obtained by tracing out
the first register from the following three quantum
states respectively: |ψE〉 = 1

‖É‖F

∑2n
j=1

∑p+q
i=1 Éij |j〉|i〉,

|ψJ 〉 = 1
‖J́‖F

∑c
i=1

∑p+q
k=1 J́ki|i〉|k〉 and |ψK〉 =

1
‖Ḱ‖F

∑2c
i=1

∑p+q
k=1 Ḱki|i〉|k〉. That is to say, once these

states are obtained, we can get ρE , ρJ and ρK .
We now elaborate how to prepare the states |ψE〉, |ψJ〉

and |ψK〉. For simplicity, here we use Ia to represent the
identity operator acting on the ath register. The details
are as follows.
(1) Prepare the state |ψE〉.
According to the construction of matrices M and É,

we know

Éij =





Mij − M̄i,∗, 1 ≤ i ≤ p, 1 ≤ j ≤ n;

Mi,j−n − M̄i,∗, p+ 1 ≤ i ≤ p+ q,

n+ 1 ≤ j ≤ 2n;

0, otherwise.

(10)

We can use Lemma 1 to calculate M̄i,∗,
then combine with QMA to obtain the state
1√
2n

∑2n
j=1 |j〉 1√

p+q

∑p+q
i=1 |i〉|Éij〉. Afterwards, it is

possible to perform controlled rotation [35] and fixed-
point quantum search [36, 37] to obtain |ψE〉. The
specific process is as follows.
(1.1) Prepare the initial state

1√
2n

2n∑

j=1

|j〉1
1√
p+ q

p+q∑

i=1

|i〉2|0〉3|0〉4|0〉⊗2
5 . (11)

(1.2) By Lemma 1, with a givenOM , we can implement
Umean on the second and third registers to obtain

1√
2n

2n∑

j=1

|j〉1
1√
p+ q

p+q∑

i=1

|i〉2|M̄i,∗〉3|0〉4|0〉⊗2
5 . (12)

(1.3) Perform U =
∑n

j=1 |j〉〈j|⊗
∑p

i=1 |i〉〈i|⊗ (I⊗ I)+∑n
j=1 |j〉〈j| ⊗

∑p+q
i=p+1 |i〉〈i| ⊗ (I ⊗X) +

∑2n
j=n+1 |j〉〈j| ⊗∑p

i=1 |i〉〈i| ⊗ (X ⊗ I) +
∑2n

j=n+1 |j〉〈j| ⊗
∑p+q

i=p+1 |i〉〈i| ⊗
(X ⊗X) on the first, second and fifth registers to get

1√
2n

[ n∑

j=1

|j〉1
1√
p+ q

( p∑

i=1

|i〉2|M̄i,∗〉3|0〉4|00〉5

+

p+q∑

i=p+1

|i〉2|M̄i,∗〉3|0〉4|01〉5
)

+

2n∑

j=n+1

|j〉1
1√
p+ q

( p∑

i=1

|i〉2|M̄i,∗〉3|0〉4|10〉5

+

p+q∑

i=p+1

|i〉2|M̄i,∗〉3|0〉4|11〉5
)]
,

(13)

where X is the Pauli-X gate and I is the identity oper-
ator.
(1.4) Given a unitary UM : |i〉|j〉|0〉 → |i〉|j〉|Mi,j−n〉

for j = n + 1, n + 2, ..., 2n, the following state can be
obtained by performing OM ⊗|00〉〈00|+UM ⊗|11〉〈11|+
I1,2,4 ⊗ (|01〉〈01| + |10〉〈10|) on the first, second, fourth
and fifth registers.

1√
2n

[ n∑

j=1

|j〉1
1√
p+ q

( p∑

i=1

|i〉2|M̄i,∗〉3|Mij〉4|00〉5

+

p+q∑

i=p+1

|i〉2|M̄i,∗〉3|0〉4|01〉5
)

+

2n∑

j=n+1

|j〉1
1√
p+ q

( p∑

i=1

|i〉2|M̄i,∗〉3|0〉4|10〉5

+

p+q∑

i=p+1

|i〉2|M̄i,∗〉3|Mi,j−n〉4|11〉5
)]
.

(14)

We now detail the UM . For j = n + 1, n + 2, ..., 2n,
we can first construct the unitary |i〉|j〉|0〉|0〉 → |i〉|j〉|j−
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n〉|0〉 based on a unitary |j〉|0〉 → |j〉|f(j)〉 where f(j) =
j − n, then apply OM to the first, third and fourth reg-
isters, the state |i〉|j〉|Mi,j−n〉 can be obtained after un-
computing the third register.
(1.5) Implement UQMA ⊗ (|00〉〈00|+ |11〉〈11|) + I3,4 ⊗

(|01〉〈01|+|10〉〈10|) on the third, fourth and fifth registers
to get

1√
2n

[ n∑

j=1

|j〉1
1√
p+ q

( p∑

i=1

|i〉2|M̄i,∗〉3|Éij〉4|00〉5

+

p+q∑

i=p+1

|i〉2|M̄i,∗〉3|0〉4|01〉5
)

+

2n∑

j=n+1

|j〉1
1√
p+ q

( p∑

i=1

|i〉2|M̄i,∗〉3|0〉4|10〉5

+

p+q∑

i=p+1

|i〉2|M̄i,∗〉3|Éij〉4|11〉5
)]
,

(15)

where UQMA represents QMA acting on the third and
fourth registers.
(1.6) Add an ancillary qubit |0〉, carry out a appro-

priate controlled rotation on the ancillary qubit, then
uncompute the third, fourth and fifth registers to get

1√
2n

2n∑

j=1

|j〉1
1√
p+ q

p+q∑

i=1

|i〉2
(
Éij

α
|0〉6

+

√

1− (
Éij

α
)2|1〉6

)
,

(16)

where α = 2maxij |Mij |. See Appendix B for more de-
tails of α.
(1.7) Amplifying the amplitude of |0〉6 by fixed-point

quantum search [36, 37], then we can get the approximate
state of |ψE〉.
(2) Prepare the state |ψJ〉.
Note that we can rewrite M as M =

[M1,M2, ...,Mc], where Mi =

(
Ai

Bi

)
, i = 1, 2, ..., c.

From the construction of matrices M and J́ , we know
J́ki = n′M̄i

k,∗ − niM̄k,∗ where M̄i
k,∗ is the mean of

elements in the kth row of Mi. We can use Lemma 1
to calculate M̄i

k,∗ and M̄i,∗, then use Oc and QMA

to obtain the state 1√
c

∑c
i=1 |i〉 1√

p+q

∑p+q
k=1 |k〉|J́ki〉.

Afterwards, we use controlled rotation and fixed-point
quantum search to get |ψJ 〉. Details are as follows.
(2.1) Prepare the initial state

1√
c

c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|0〉3|0〉4|0〉5|0〉6. (17)

(2.2) By Lemma 1 and a unitary UM : |i〉|k〉|j〉|0〉 →
|i〉|k〉|j〉|Mi

kj〉 for j = 1, 2, ..., n′, we can realize the uni-

tary Ũmean : |i〉|k〉|0〉 → |i〉|k〉|M̄i
k,∗〉. Then the following

state can be obtained after performing Ũmean on the first
three registers.

1√
c

c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|M̄i
k,∗〉3|0〉4|0〉5|0〉6. (18)

The details of UM are as follows. According to the con-
struction of matrix M, we have Mi

kj = Mk,(i−1)n′+j for

j = 1, 2, ..., n′. We can first realize the unitary mapping:
|i〉|k〉|j〉|0〉|0〉 → |i〉|k〉|j〉|(i − 1)n′ + j〉|0〉, then perform
OM on the second, fourth and fifth registers. The state
|i〉|k〉|j〉|Mi

kj〉 can be obtained after discarding the fourth
register.
(2.3) Perform Uf : |x〉|0〉 → |x〉|f(x)〉 on the third and

fourth registers with function f(x) = n′x which can be
calculated efficiently in classical. Then we can get

1√
c

c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|x〉3|n′x〉4|0〉5|0〉6, (19)

where x = M̄i
k,∗.

(2.4) By Lemma 1, with a given OM , we can perform
Umean on the second and fifth registers to yield

1√
c

c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|x〉3|n′x〉4|M̄k,∗〉5|0〉6. (20)

(2.5) Apply Oc to the first and sixth registers. The
following state can be obtained after implementing QMA
on the fourth, fifth and sixth registers.

1√
c

c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|x〉3|J́ki〉4|M̄k,∗〉5|ni〉6, (21)

where J́ki = n′M̄i
k,∗ − niM̄k,∗.

(2.6) Add a qubit and rotating conditioned on |J́ki〉4
to get

1√
c

c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|x〉3|J́ki〉4

|M̄k,∗〉5|ni〉6
(
J́ki
β

|0〉7 +

√

1− (
J́ki
β

)2|1〉7
)
.

(22)

where β = 2n′ maxij |Mij |. See Appendix B for more
details of β.
(2.7) Uncompute the redundant registers. Then we can

use fixed-point quantum search to amplify the amplitude
of |0〉7 to get the approximate state of |ψJ〉.
(3) Prepare the state |ψK〉.
From the construction of matrices M and Ḱ, we have

Ḱki =





n′M̄i
k,∗ − niM̄k,∗, 1 ≤ k ≤ p, 1 ≤ i ≤ c;

n′M̄i−c
k,∗ − ni−cM̄k,∗, p+ 1 ≤ k ≤ p+ q,

c+ 1 ≤ i ≤ 2c;

0, otherwise.

(23)
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Similar to |ψJ〉, we can first prepare the state
1√
2c

∑2c
i=1 |i〉 1√

p+q

∑p+q
k=1 |k〉|Ḱki〉, then use controlled ro-

tation and fixed-point quantum search to get |ψK〉.
(3.1) Prepare the initial state

1√
2c

2c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|0〉3|0〉4|0〉5|0〉6|0〉⊗2
7 . (24)

(3.2) Perform U =
∑c

i=1 |i〉〈i|⊗
∑p

k=1 |k〉〈k|⊗(I⊗I)+∑c
i=1 |i〉〈i| ⊗

∑p+q
k=p+1 |k〉〈k| ⊗ (I ⊗X) +

∑2c
i=c+1 |i〉〈i| ⊗∑p

k=1 |k〉〈k| ⊗ (X ⊗ I) +
∑2c

i=c+1 |i〉〈i| ⊗
∑p+q

k=p+1 |k〉〈k| ⊗
(X ⊗X) on the first, second and seventh registers to get

1√
2c

[ c∑

i=1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|0〉3|0〉4|0〉5|0〉6|00〉7

+

p+q∑

k=p+1

|k〉2|0〉3|0〉4|0〉5|0〉6|01〉7
)

+

2c∑

i=c+1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|0〉3|0〉4|0〉5|0〉6|10〉7

+

p+q∑

k=p+1

|k〉2|0〉3|0〉4|0〉5|0〉6|11〉7
)]
,

(25)

where X is the Pauli-X gate and I is the identity oper-
ator.

(3.3) Given a unitary ŨM which can be used to per-
form the mapping |i〉|k〉|j〉|0〉 → |i〉|k〉|j〉|Mi−c

kj 〉 for i =

c+1, c+2, ..., 2c and j = 1, 2, ..., n′, we can realize the uni-
tary U : |i〉|k〉|0〉 → |i〉|k〉|M̄i−c

k,∗ 〉, i = c+1, c+2, ..., 2c by

Lemma 1. The realization of unitary ŨM is similar to UM
in stage (2.2). With the Ũmean in stage (2.2), we perform

Ũmean⊗|00〉〈00|+U⊗|11〉〈11|+I1,2,3⊗(|01〉〈01|+|10〉〈10|)
on the first three registers and the seventh register to get

1√
2c

[ c∑

i=1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|M̄i
k,∗〉3|0〉4|0〉5|0〉6|00〉7

+

p+q∑

k=p+1

|k〉2|0〉3|0〉4|0〉5|0〉6|01〉7
)

+
2c∑

i=c+1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|0〉3|0〉4|0〉5|0〉6|10〉7

+

p+q∑

k=p+1

|k〉2|M̄i−c
k,∗ 〉3|0〉4|0〉5|0〉6|11〉7

)]
.

(26)

(3.4) Similar to stage (2.3), the unitary Uf : |x〉|0〉 →
|x〉|f(x)〉 with function f(x) = n′x can be performed
efficiently. We implement Uf ⊗ (|00〉〈00| + |11〉〈11|) +
I3,4⊗(|01〉〈01|+|10〉〈10|) on the third, fourth and seventh

registers to obtain

1√
2c

[ c∑

i=1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|M̄i
k,∗〉3|n′M̄i

k,∗〉4

|0〉5|0〉6|00〉7 +
p+q∑

k=p+1

|k〉2|0〉3|0〉4|0〉5|0〉6|01〉7
)

+

2c∑

i=c+1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|0〉3|0〉4|0〉5|0〉6|10〉7

+

p+q∑

k=p+1

|k〉2|M̄i−c
k,∗ 〉3|n′Mi−c

k,∗ 〉4|0〉5|0〉6|11〉7
)]
,

(27)

where x = M̄i
k,∗ or M̄i−c

k,∗ .

(3.5) By Lemma 1, with a given OM , we can perform
Umean on the second and fifth registers to yield

1√
2c

[ c∑

i=1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|M̄i
k,∗〉3|n′M̄i

k,∗〉4|M̄k,∗〉5

|0〉6|00〉7 +
p+q∑

k=p+1

|k〉2|0〉3|0〉4|M̄k,∗〉5|0〉6|01〉7
)

+

2c∑

i=c+1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|0〉3|0〉4|M̄k,∗〉5|0〉6|10〉7

+

p+q∑

k=p+1

|k〉2|M̄i−c
k,∗ 〉3|n′Mi−c

k,∗ 〉4|M̄k,∗〉5|0〉6|11〉7
)]
.

(28)

(3.6) Using Oc, we can realize a unitary Uc : |i〉|0〉 →
|i〉|ni−c〉 for i = c + 1, c + 2, ..., 2c. We then implement
Oc⊗ |00〉〈00|+Uc⊗ |11〉〈11|+ I1,6⊗ (|01〉〈01|+ |10〉〈10|)
on the first, sixth and seventh registers to get

1√
2c

[ c∑

i=1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|M̄i
k,∗〉3|n′M̄i

k,∗〉4|M̄k,∗〉5

|ni〉6|00〉7 +
p+q∑

k=p+1

|k〉2|0〉3|0〉4|M̄k,∗〉5|0〉6|01〉7
)

+

2c∑

i=c+1

|i〉1
1√
p+ q

( p∑

k=1

|k〉2|0〉3|0〉4|M̄k,∗〉5|0〉6|10〉7

+

p+q∑

k=p+1

|k〉2|M̄i−c
k,∗ 〉3|n′Mi−c

k,∗ 〉4|M̄k,∗〉5|ni−c〉6|11〉7
)]
.

(29)

(3.7) Perform UQMA ⊗ (|00〉〈00|+⊗|11〉〈11|)+ I4,5,6⊗
(|01〉〈01|+|10〉〈10|) on the fourth, fifth, sixth and seventh
registers, then uncompute the redundant registers to get

1√
2c

2c∑

i=1

|i〉1
1√
p+ q

p+q∑

k=1

|k〉2|Ḱki〉4, (30)

where UQMA represents QMA acting on the fourth, fifth
and sixth registers.
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(3.8) Similar to stages (2.6)-(2.7), |ψK〉 can be ob-
tained by implementing controlled rotation and fixed-
point quantum search.
Note that we also complete the mean-centering of

DCCA while we prepare the three states.
Step 2. Design the block-encoding of H̃.

The block-encodings of ρE , ρJ and ρK can be obtained
easily according to Lemma 25 in Ref. [32].
We now show how to build up the block-encoding of

H̃ . We first construct the block-encodings of ρ
− 1

2

E ac-
cording to Lemma 9 in Ref. [33], and next realize the

block-encodings of ρ
− 1

2

E ρJρ
− 1

2

E as well as ρ
− 1

2

E ρKρ
− 1

2

E by
product of block-encoded matrices [32]. It is obvious
that (PL, PR) is a (2,1,0)-state-preparation-pair when
PL = HX and PR = H , where H represents a Hadamard
gate and X is a Pauli-X gate. Then, the block-encoding
of H̃ can be created according to linear combination of
block-encoded matrices [38]. We summarize the con-
struction parameters of block-encodings as TABLE I.
Step 3. Estimate the eigenvalues of H according to

quantum phase estimation, and then search the first d
largest eigenvalues of H to get the corresponding eigen-

vectors {|vi〉}di=1.

Given the block-encoding of H̃ , the unitary eiH̃t can
be implemented according to block-Hamiltonian simula-

tion (Theorem 3 in Ref. [31]). By using eiH̃t, we apply

quantum phase estimation on ρ0 := 1
p+q

∑p+q
k=1 |k〉〈k| to

obtain an approximation to the state

ρ1 =
1

p+ q

p+q∑

k=1

|λk〉〈λk| ⊗ |vk〉〈vk|, (31)

where λk and vk are the eigenvalues and eigenvectors of
H . The state ρ0 can be prepared easily by Hadamard
and CNOT gates.
Afterwards, we invoke the quantum search algorithm

for finding the maximum [39] to find the first d largest
eigenvalues of H and the corresponding eigenvectors
{|vi〉}di=1.
Step 4. Postprocessing.
According to TABLE I, we first create a (1, aE +

s, 2ǫE)-block-encoding of ρE . Then, for each |vi〉, we
use quantum matrix inversion technique (Theorem 10 in

Ref. [31]) to get the state |wi〉 := (ρE)−1/2|vi〉
‖(ρE)−1/2|vi〉‖2

∝ wi,

where i = 1, 2, ..., d.

B. Complexity analysis

In this section we analyze the time complexity of each
step of the QDCCA algorithm and summarize it as TA-
BLE II.
In Step 1, for stage (1), since the complexity of Pauli-

X gates, UQMA and controlled rotation are much smaller
than the complexity of other stages, we will neglect the
complexity of stages (1.3), (1.5) and (1.6). The complex-
ity of stage (1.1) is O[log(n(p + q))]. For stage (1.2),

by Lemma 1, we use the unitary Umean with complexity

O(
maxij |Mij | log(n(p+q)) log(1/∆1)

ǫ1
) to get the target state

with a probability at least 1− 2∆1 where ǫ1 is the error
of M̄i,∗. The complexity of stage (1.4) comes mainly from
OM and UM , and the number of gates required of UM

is roughly equal to OM . Hence, the complexity of stage
(1.4) is O[log(n(p+ q))]. For stage (1.7), we assume that

the proportion of elements in

(
X
Y

)
with absolute value

greater than m0 > 0 is at least 1
2 (or other reasonable

constants), to obtain the state |ψE〉 with a probability
close to 1, the complexity of the fixed-point quantum
search is

√
2n(p+ q)α2

‖É‖2F
≤

√
2n(p+ q)α2

(1/2)n(p+ q)(m0)2

= O(
maxij |Mij |

m0
).

Therefore, the complexity of stage (1) is

O(
(maxij |Mij |)2 log(n(p+q)) log(1/∆1)

m0ǫ1
).

For stage (2) of Step 1, the complexity of (2.3)
and (2.6) can be neglected. Due to the use of Umean

in (2.4), we should prepare the target state of stage
(2.3) repeatedly. The complexity of stage (2.1) is
O[log(c(p + q))]. By Lemma 1, we get the target state
of stage (2.2) with a probability at least 1 − 2∆2 in

time O(
maxij |Mij | log(cn′(p+q)) log(1/∆2)

ǫ2
) where ǫ2 is the

error of M̄i
k,∗, then the complexity of stage (2.4) is

O(
(maxij |Mij |)2 log(n(p+q)) log(cn′(p+q)) log(1/∆1) log(1/∆2)

ǫ1ǫ2
).

For stage (2.5), the complexity of Oc is O(log c) and
can be omitted. For stage (2.7), due to the fact that
the characteristics of samples within-class are similar,
we can assume that the proportion of elements in J́
with absolute value greater than n′′m0 is at least 1

2 (or
other reasonable constants) where n′′ = min(ni), then
the complexity of the fixed-point quantum search is

√
c(p+ q)β2

‖J́‖2F
≤

√
c(p+ q)β2

(1/2)c(p+ q)(n′′m0)2

= O(
maxij |Mij |

m0
).

Therefore, the complexity of stage (2) is

O(
(maxij |Mij |)3 log(n(p+q)) log(cn′(p+q)) log(1/∆1) log(1/∆2)

m0ǫ1ǫ2
).

For stage (3) of Step 1, the complexity of stages
(3.2), (3.6) and (3.7) can be neglected. The complexity
of stage (3.1) is O[log(2c(p + q))]. Since the complexity

of ŨM is same to U , the complexity of stage (3.3) is

O(
maxij |Mij | log(cn′(p+q)) log(1/∆2)

ǫ2
) by Lemma 1. For

stage (3.5), we should prepare the target state of
stage (3.4) repeatedly. Because the complexity of

stages (3.1)-(3.4) is O(
maxij |Mij | log(cn′(p+q)) log(1/∆2)

ǫ2
),

the complexity of stage (3.5) is

O(
(maxij |Mij |)2 log(n(p+q)) log(cn′(p+q)) log(1/∆1) log(1/∆2)

ǫ1ǫ2
).
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TABLE I. The construction of block-encodings.

matrices block-encodings of matrices parameters of block-encodings

ρE UρE = ((UE)
† ⊗ Is)(IaE ⊗ SWAPs)(UE ⊗ Is) (Lemma 25 in Ref. [32]) (1, aE + s, 2ǫE)

ρJ UρJ = ((UJ )
† ⊗ Is)(IaJ ⊗ SWAPs)(UJ ⊗ Is) (Lemma 25 in Ref. [32]) (1, aJ + s, 2ǫJ )

ρK UρK = ((UK)† ⊗ Is)(IaK ⊗ SWAPs)(UK ⊗ Is) (Lemma 25 in Ref. [32]) (1, aK + s, 2ǫK)

ρ
− 1

2

E ŨρE see Lemma 9 in Ref. [33] (2κ
1

2 , a′, ǫ3)

F := ρ
− 1

2

E ρJρ
− 1

2

E UF see Lemma 30 in Ref. [32] (4κ, a′′, 4κ
1

2 (ǫ3 + 2κ
1

2 ǫJ )

G := ρ
− 1

2

E ρKρ
− 1

2

E UG see Lemma 30 in Ref. [32] (4κ, a′′′, 4κ
1

2 (ǫ3 + 2κ
1

2 ǫK)

H̃ UH̃ see Lemma 52 in Ref. [38] (8κ, a′′′ + 1, 32κ
3

2 (ǫ3 + 2κ
1

2 ǫJ ))

Here UE , UJ , UK denote the unitary operations of preparing the states |ψE〉, |ψJ 〉, |ψK〉 respectively, and ǫE, ǫJ , ǫK are their
corresponding errors. SWAPs denotes a SWAP gate between the second register and an ancillary system, and Is is the

identity operator acting on s qubits. s = log(p+ q), a′ = aE + s+O(log(κ
3

2 log 1
ǫ3
)), a′′ = aJ + s+ 2a′, a′′′ = aK + s+ 2a′,

ǫE = O( ǫ3

κ3/2 log3(κ3/2

ǫ3
)
), κ is the condition number of ρE . aE = log n+ logm1 + 4, aJ = log c+ logm2 + 1, aK = aJ + 3,

logm1 is the number of qubits in the third and fourth registers when preparing |ψE〉, logm2 is the number of qubits in the
third, fourth, fifth and sixth registers when preparing |ψJ 〉.

TABLE II. The time complexity of each step of the QDCCA algorithm.

steps unitary operations time complexity

Step 1 UE TE = O(
(maxij |Mij |)2 log(n(p+q)) log(1/∆1)

m0ǫ1
)

UJ TJ = O(
(maxij |Mij|)3 log(n(p+q)) log(cn′(p+q)) log(1/∆1) log(1/∆2)

m0ǫ1ǫ2
)

UK TK = TJ

Step 2 UρE , UρJ , UρK TE, TJ and TK respectively

ŨρE T̃E = O(κ(aE + s+ TE) log
2(κ

3/2

ǫ3
))

UF T̃E + TJ

UG T̃E + TK

UH̃ T̃E + TJ + TK

Step 3 quantum phase estimation, quantum search O(d
√
p+ q(

n(maxij |Mij |)2κ
m2

0
ǫ4

+ log
m2

0
ǫ4

n(maxij |Mij |)2ǫH̃
)(T̃E + TJ + TK))

Step 4 quantum matrix inversion technique O(κT1−3 log κ)

all steps — O(
d
√

p+qn(maxij |Mij |)5κ3 log2(κ3/2

ǫ3
) log2(n(p+q)) logκ

m3
0
ǫ1ǫ2ǫ4

)

Here we follow the notations in TABLE I. In addition, ǫ1 is the error of M̄i,∗, ǫ2 is the error of M̄i
k,∗,

ǫH̃ = 32κ
3

2 (ǫ3 + 2κ
1

2 ǫJ )), ǫ4 is the error of quantum phase estimation, T1−3 is the total time complexity from Step 1 to Step

3. For simplicity, the factors log(1/∆1) and log(1/∆2) can be consider as constants, and aE + s in T̃E can be ignored.

The complexity of stage (3.8) is O(
maxij |Mij |

m0
). In

summary, the complexity of stage (3) is equal to stage
(2).

Let ˜|ψE〉 represent the approximate state of |ψE〉 which
we prepared and ǫij is the error of Éij . Then, the error
of |ψE〉 is

ǫE =

∥∥∥∥|̃ψE〉 − |ψE〉
∥∥∥∥
2

=

∥∥∥∥
1

‖ ˜́E‖F

∑

ij

(Éij + ǫij)|j〉|i〉 − 1

‖É‖F

∑

ij

Éij |j〉|i〉
∥∥∥∥
2

≤
∥∥∥∥

1

‖ ˜́E‖F

∑

ij

(Éij + ǫij)|j〉|i〉 − 1

‖É‖F

∑

ij

(Éij + ǫij)|j〉|i〉
∥∥∥∥
2

+

∥∥∥∥
1

‖É‖F

∑

ij

(Éij + ǫij)|j〉|i〉 − 1

‖É‖F

∑

ij

Éij |j〉|i〉
∥∥∥∥
2

=

∣∣∣∣1−
‖ ˜́E‖F
‖É‖F

∣∣∣∣+
∥∥∥∥

1

‖É‖F

∑

ij

ǫij |j〉|i〉
∥∥∥∥
2

=

∣∣∣∣1−

√√√√
∑

ij(Éij + ǫij)2
∑

ij(Éij)2

∣∣∣∣+

√√√√
∑

ij(ǫij)
2

∑
ij(Éij)2

,

where ‖ ˜́E‖F =
√∑

ij(Éij + ǫij)2. For simplicity, we

assume that 1−
√∑

ij(Éij+ǫij)2
∑

ij(Éij)2
≤ 0. A similar result can

be obtained if it is greater than 0. Let ǫij = ǫ1, then

ǫE ≤

√√√√1 +
2
∑

ij Éijǫij
∑

ij(Éij)2
+

∑
ij(ǫij)

2

∑
ij(Éij)2

− 1 +

√√√√
∑

ij(ǫij)
2

∑
ij(Éij)2



8

≤
√

1 +
2n(p+ q)αǫ1
1
2
n(p+ q)m2

0

+
n(p+ q)ǫ21

1
2
n(p+ q)m2

0

− 1

+

√
n(p+ q)ǫ21

1
2
n(p+ q)m2

0

≤
√

1 +
8maxij |Mij |ǫ1

m2
0

+
2ǫ21
m2

0

− 1 +

√
2ǫ1
m0

.

If maxij |Mij |, maxij |Mij |/m0 = O(1), then ǫE =
O(ǫ1). Similarly, we have ǫJ = ǫK = O(ǫ1 + ǫ2) where ǫJ
and ǫk are the errors of |ψJ 〉 and |ψK〉 respectively.
Let UE , UJ , UK denote the unitary operations of

preparing the states |ψE〉, |ψJ〉 and |ψK〉 respectively,
and TE, TJ , TK represent the complexity correspond-
ing to them. Once TE, TJ , TK are obtained, the com-
plexity of Step 2 can be calculated easily by the used
lemmas and theorem. As a conclusion, the complexity
of designing the block-encoding of H̃ is O(κ(aE + s +

TE) log
2(κ

3/2

ǫ3
) +TJ +TK) where κ is the condition num-

ber of ρE , s = log(p+ q), aE = logn+3+ logm1, logm1

is the number of qubits in the third and fourth registers
when preparing |ψE〉, ǫ3 is the error of ŨρE and ŨρE is

a block-encoding of ρ
− 1

2

E . See TABLE II for more details
of the complexity of other steps.
In Step 3, the complexity of preparing the state ρ0

is O(log(p + q)) and it can be ignored. By Theorem

3 in Ref. [31], we can implement eiH̃t with complex-

ity O((|8κt| + log 1
|2t|·ǫH̃

)(T̃E + TJ + TK)), where ǫH̃ =

32κ
3

2 (ǫ3 + 2κ
1

2 ǫJ)), T̃E is the complexity of ŨρE . Using

eiH̃t, the eigenvalues and eigenvectors ofH to accuracy ǫ4
can be obtained by applying quantum phase estimation

to ρ0 for time t = O( tr(J)
tr(E) · 1

ǫ4
). The value of tr(J)

tr(E) can

be determined if we replace fixed-point quantum search
by measurements in stages (1.7) and (2.7), and

tr(J)

tr(E)
=

‖J́‖2F
‖É‖2F

≤ c(p+ q)(n′α)2

(1/2)n(p+ q)(m0)2

= O(
n(maxij |Mij |)2

m2
0

).

Next, we use the quantum search algorithm with
query complexity O(

√
p+ q) and O(d) times of rep-

etition is enough to get the first d largest eigenval-
ues of H . Therefore, the complexity of Step 3 is

O(d
√
p+ q(

n(maxij |Mij |)2κ
m2

0
ǫ4

+ log
m2

0
ǫ4

n(maxij |Mij |)2ǫH̃
)(T̃E +

TJ + TK)).
According to Theorem 10 in Ref. [31], the complex-

ity of Step 4 is O(κT1−3 log κ), where T1−3 is the total
complexity from Step 1 to Step 3.
If d, maxij |Mij |, maxij |Mij |/m0 = O(1) and let

1/ǫ1, 1/ǫ2, 1/ǫ4, κ = O(log(n(p + q)), the complexity of

the QDCCA algorithm can be reduced to Õ(n
√
p+ q).

Note that with Õ we hide polylogarithmic factors. Since

the complexity of the classical DCCA algorithm is
O(n(p + q) + (p+ q)3), our quantum algorithm achieves
a polynomial speedup in the dimension of samples over
the classical algorithm.

IV. CONCLUSION

In conclusion, we have proposed a QDCCA algorithm
with rigorous complexity analysis. It has been shown
that our quantum algorithm achieves a polynomial ac-
celeration on the dimension of samples over its classical
counterpart when d, maxij |Mij |, maxij |Mij |/m0 = O(1)
and 1/ǫ1, 1/ǫ2, 1/ǫ4, κ = O(log(n(p + q)). The Lemma 1
presented an efficient method to compute the mean of el-
ements in a row of any real matrix, which can be reused
as a subroutine for other quantum algorithms. More-
over, in the QDCCA algorithm, we completed the mean-
centering when we prepared the density operators. It
can be a separate quantum algorithm (called QMS al-
gorithm) if we combine Lemma 1 with QMA to realize

|i〉|j〉|0〉 → |i〉|j〉|M̃ij〉 where M̃ij = Mij − M̄i,∗. The
QMS algorithm achieves an exponential speedup in both
the number of samples and their dimension over the clas-
sical MS algorithm. We can also modify the QMS algo-
rithm to perform other data preprocessing operations,
for example, Z-score standardization [40]. We hope that
the techniques we presented in this paper will inspire
others to explore more potential quantum algorithm ap-
plications in the future, such as expediting other classical
preprocessing operations, solving the generalized eigen-
value problem under certain circumstances.
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Appendix A: Proof of Lemma 1

Let us start by describing a procedure Uy to estimate
L̄i,∗ of matrix L, and the idea behind Uy is to calculate
the mean by the inner product. We start with the ini-

tial state |i〉1|0〉2|0〉⊗ log d2

3 |0〉4, the processes of Uy are as
follows.
(1) Perform a Hadamard gate on the second register,

then apply H⊗ log d2 to the third register to get

|i〉1
1√
2
(|0〉2 + |1〉2)

1√
d2

d2∑

j=1

|j〉3|0〉4.

(2) Considering the second register as the control reg-
ister, we perform controlled OL on the first, third and
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fourth registers to get

|i〉1
1√
2

(
|0〉2

1√
d2

d2∑

j=1

|j〉3|Lij〉4

+ |1〉2
1√
d2

d2∑

j=1

|j〉3|0〉4
)
.

(3) Append an ancillary qubit |0〉 and then perform a
appropriate controlled rotation on the ancillary qubit to
get

|i〉1
1√
2

[
|0〉2

1√
d2

d2∑

j=1

|j〉3|Lij〉4
(
Lij

C
|0〉5

+

√
1− (

Lij

C
)2|1〉5

)
+ |1〉2

1√
d2

d2∑

j=1

|j〉3|0〉4|0〉5
]
,

where C = maxij |Lij |.
(4) Uncompute the fourth register and let |φi〉 :=

1√
d2

∑d2

j=1 |j〉3|0〉4
(

Lij

C |0〉5 +
√
1− (

Lij

C )2|1〉5
)
, |ϕ〉 :=

1√
d2

∑d2

j=1 |j〉3|0〉4|0〉5, then perform a Hadamard gate on

the second register to get

|i〉1
[
1

2
|0〉2

(
|φi〉+ |ϕ〉

)
+

1

2
|1〉2

(
|φi〉 − |ϕ〉

)]
.

The probability of obtaining |1〉 when the second reg-

ister is measured is Pi1 = 1−〈φi|ϕ〉
2 . It is obviously that

〈φi|ϕ〉 =
∑d2

j=1
Lij

d2C
=

L̄i,∗

C , i = 1, 2, ..., d1.

By swapping the registers, we can rewrite |1〉2(|φi〉 −
|ϕ〉) as |yi, 1〉, and hence we have the final mapping

Uy : |i〉|0〉 → |i〉
(√

Pi1|yi, 1〉+
√
1− Pi1|Gi, 0〉

)

which can be carried out in time O(log(d1d2)), where |Gi〉
is a garbage state.

Then, similar to Ref. [25], we can use Uy, amplitude
estimation [26] and median evaluation [27] to get a quan-
tum state |ψi〉 for any ∆ > 0 such that,

‖ |ψi〉 − |0〉⊗ls|P̃i1, G〉 ‖2≤
√
2∆,

where l is an integer, s is the number of qubits in
|P̃i1, yi, 1〉, |P̃i1 − Pi1| ≤ ǫ and |G〉 is a garbage register.

The running time of the procedure is O(
log(d1d2) log

1

∆

ǫ ).

Finally, we can easily compute L̄i,∗ = C(1 − 2P̃i1).
If we want to have in the end an absolute error ǫ,
we should control the error of amplitude estimation as
ǫ
2C . Therefore, the total time complexity of Umean is

O(
maxij |Lij| log(d1d2) log

1

∆

ǫ ) where ǫ is the error of L̄i,∗.
This concludes the proof of Lemma 1.

Appendix B: Parameters analysis

In this Appendix we analyze the choice of parameters
α and β in parts (1) and (2) respectively.
(1) The choice of parameter α. If we want to perform

the controlled rotation effectively, the condition of α ≥
maxij |Éij | must be satisfied. Moreover,

max
ij

|Éij | = max
ij

|Mij − M̄i,∗|

≤ max
ij

(|Mij |+ |M̄i,∗|)

≤ 2max
ij

|Mij |.

Then, we can chose α = 2maxij |Mij | to make sure that
Éij

α is no more than 1.
(2) The choice of parameter β. Note that M can be

rewritten as [M1, ...,M c] where M i =

(
Ai

Bi

)
, i = 1, ..., c,

and

max
ki

|J́ki| = max
ikj

(∑

j

|M i
kj − M̄k,∗|

)

≤ max
ikj

[∑

j

(
|M i

kj |+ |M̄k,∗|
)]

≤ 2n′ max
ij

|Mij |.

Hence, we can chose β = 2n′maxij |Mij |.
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