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Cryptanalysis of Three Quantum Money Schemes
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Abstract

We investigate the security assumptions behind three public-key quantum money schemes.
Aaronson and Christiano proposed a scheme based on hidden subspaces of the vector space Fn

2

in 2012. It was conjectured by Pena et al in 2015 that the hard problem underlying the scheme
can be solved in quasi-polynomial time. We confirm this conjecture by giving a polynomial
time quantum algorithm for the underlying problem. Our algorithm is based on computing the
Zariski tangent space of a random point in the hidden subspace.

Zhandry proposed a scheme based on multivariate hash functions in 2017. We give a poly-
nomial time quantum algorithm for cloning a money state with high probability. Our algorithm
uses the verification circuit of the scheme to produce a banknote from a given serial number.

Kane, Sharif and Silverberg proposed a scheme based on quaternion algebras in 2021. The
underlying hard problem in their scheme is cloning a quantum state that represents an eigenvec-
tor of a set of Hecke operators. We give a polynomial time quantum reduction from this hard
problem to a linear algebra problem. The latter problem is much easier to understand, and we
hope that our reduction opens new avenues to future cryptanalyses of this scheme.
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1 Introduction

The first quantum money scheme was proposed by Wiesner [28] around 1970. The idea was to
represent banknotes using quantum states which, by the laws of quantum mechanics, would be
impossible to copy. Wiesner’s scheme, which is nowadays called a private-key quantum money
scheme, worked as follows. The bank generates a pair (s, ρs) consisting of a classical serial number
s and a quantum state ρs, and stores s along with a classical description of ρs in a database. Without
access to the database, no algorithm would be able to copy ρs with non-negligible probability.
Therefore, only the issuing bank would be able to verify the banknotes. Although this scheme
is information-theoretically secure, it suffers major drawbacks in terms of practicality: First, the
issuing bank has to maintain a huge database containing classical descriptions of every banknote
ever produced. Second, only the bank can verify a banknote, and therefore the users have to take
the money back to the bank for every transaction.

Subsequent efforts to address the drawbacks of Wiesner’s scheme led to the idea of public-key
quantum money. The first formal treatment of public-key quantum money was given by Aaronson
[1]. Intuitively, in such a scheme, a banknote can be verified by everyone, using a publicly known
algorithm, but cannot be copied by anyone. The first explicit construction of public-key quantum
money, which was based on stabilizer states, was given in [1]. The construction was later proved
to be insecure by Lutomirski et al. [19].

Public-key quantum money cannot be information-theoretically secure, it has to be based on
a computational assumption. There have been many attempts at building a secure public-key
quantum money scheme. Farhi et al. [11] proposed a scheme based on knot theory. A banknote in
their scheme consists of a quantum state ρs representing a superposition of certain grid diagrams,
and serial number s which is the Alexander polynomial of the grids in ρs. A banknote is verified
using a procedure based on a classical Markov chain.

Aaronson and Christiano [3] proposed a scheme based on hidden subspaces of the vector space
Fn
2 . In their scheme, a banknote consists of a quantum state ρs that is a uniform superposition

of elements in a random linear subspace As ⊂ Fn
2 of dimension n/2, and a serial number s that

provides membership oracles for As and the orthogonal complement A⊥
s . The verification of a

banknote is done using a projection operator built from the membership oracles for As and A⊥
s .

Zhandry [30] adapted the idea proposed in [19] to give a construction of public-key quantum
money based on multivariate hash functions. In their scheme, even the issuing bank cannot repro-
duce the same banknote. A bank note in their scheme consists of a quantum state that is a uniform
superposition of the preimages of a random output y of a hash function, and a serial number which
is the point y. To be able to verify banknotes, a restricted class of hash functions are used. The
verification is done using the quantum Fourier transform and computing the ranks of matrices in a
certain superposition.

Kane, Sharif and Silverberg [14] proposed a completely different construction for public-key
quantum money based on quaternion algebras. There exists a set of commuting operators, called
Hecke operators, on the space of modular forms. The Hecke operators are Hermitian, and therefore
the space of modular forms has a basis consisting of simultaneous eigenvectors for these operators. A
banknote in this scheme consists of a quantum state ρs that is an eigenstate of the Hecke operators,
and a serial number s that is a set of eigenvalues corresponding to ρs and a certain set of Hecke
operators. The verification of a banknote is done using phase estimation.
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1.1 Previous cryptanalysis

Unfortunately, the security of all proposed public-key quantum money schemes to this date have
been based on ad hoc/nonstandard computational assumptions. However, there has been a limited
number of attempts, many of which were not convincing, at cryptanalyzing these assumption. As
mentioned above, the public-key quantum money scheme of [1] was broken by Lutomirski et al.
[19] who presented two attacks that worked in different parameter regimes. Their first attack was
classical and used only the description of the verification circuit, while their second attack was a
quantum algorithm that could generate banknotes that were different from the intended banknotes
but could pass verification with non-negligible probability.

Pena et al. [21] presented an attack on the scheme [3], but their attack was not on the original
parameters. In particular, the explicit construction proposed in [3] is defined over F2, but the
attack presented in [21] is only efficient if the scheme was defined over Fp for a larger prime p. Pena
et al. conjectured that for p = 2 their algorithm would run in quasi-polynomial time. Their attack
is entirely classical and uses only the serial number given in the banknote.

Roberts [23] proposed an attack on the assumption underlying the scheme of [30] for a certain
parameter regime. However, as discussed in a later version of [30], the attack does not make the
system insecure. Moreover, the hardness assumption behind the scheme could be modified in a way
that renders the attack useless.

1.2 This work

In this paper, we carry out cryptanalysis on the following three schemes:

• Aaronson and Christiano [3]. As mentioned above, this scheme is based on hidden subspaces of
the vector space Fn

2 . The hard problem behind this scheme is to recover a secret linear subspace
of Fn

2 from the the set of common roots of a set of random polynomials over F2. The previous
attack, carried out by Pena et al. [21], against this scheme uses the Gröbner basis algorithm.
Their attack is only effective if the scheme was defined over Fp for larger p, instead of F2. It was
conjectured in [21] that there exists a quasi-polynomial time algorithm for the original scheme
over F2.

We give a polynomial time quantum algorithm for the case F2. Our attack is geometric, it uses
the fact that a linear variety is isomorphic to its Zariski tangent space at any point. In particular,
the subspace hidden by a set of polynomials can be viewed as a linear variety Y included in an
affine variety X. We show that one can recover the hidden subspace by simply computing the
kernel of the Jacobian matrix of X at a random point of the subspace Y . Such a random point
is obtained by measuring a money state.

• Zhandry [30]. This scheme is based on Multivariate Hash Functions. There are different versions
of the paper [30] that give slightly different formulations of the scheme, but the underlying
hardness assumptions can all be stated using the idea of multi-collision of multivariate polynomial
hash functions. We will focus on the version [29], in which the hardness assumption is directly
stated using quadratic forms.

We give a polynomial time quantum algorithm, using which one can obtain arbitrarily many
copies of a given banknote. Our algorithm uses the verification circuit of the scheme to produce
a certain superposition of “bolts”. A measurement on this superposition then produces a copy
of the money state with high probability. The ability to produce arbitrarily many copies of
the money state comes from the fact the measurement outcome y′ can be compared against the
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given serial number y. If y′ = y then desired money state has been produced, otherwise the
whole process is repeated.

• Kane, Sharif and Silverberg [14]. This scheme is based on quaternion algebras. There have not
been any attempts at cryptanalyzing this scheme yet, partly because of the mathematics involved
which is rather nontrivial. The underlying hard problem in this scheme is simply cloning the
money state which is an eigenstate of the set of all Hecke operators.

Although we have not been able to break this scheme, we give a polynomial time quantum
reduction from the underlying hard problem to the problem of inverting a certain matrix A. Our
algorithm is based on a deep connection between ideal classes in a rational quaternion algebra and
the space of modular forms of weight 2 over the complex numbers. The connection is provided
by the theory of Theta series. The matrix A is highly structured, with entries the representation
numbers of explicit quaternary quadratic forms. In other words, A can be described by a set
of polynomials of degree two in four variables. To work with this matrix, one does not need to
know much about the theory behind the scheme. We believe that this reduction is an important
first step toward an effective cryptanalysis of this scheme, and opens interesting new avenues for
future attacks.

2 Preliminaries

Quantum computation. For a detailed treatment on quantum information we refer the reader
to [27]. A register in this paper can contain a classical or a quantum state. The classical state of a
register X is described by a finite alphabet Σ. An example alphabet used in this paper is Σ = Fn

2 .
The quantum state of X is described by the set of density operators D(X ) where X is the complex
Euclidean space CΣ.

We will also represent quantum states using unit vectors in X , which are called pure states.
We will use the Dirac notation when describing unit vectors. In particular, a unit column vector
x ∈ X is written as |x〉, and the row vector x∗, which is the conjugate transpose of x, is written as
〈x|. The quantum state of the register X can then be written as

∑

x∈Σ

αx|x〉,
∑

x∈Σ

|αx|2 = 1.

The trace distance between two quantum states ρ and σ is defined by ‖ρ − σ‖1 where ‖A‖1 =
Tr

√
A∗A is the trace norm of linear operators. For pure states |ψ〉 and |φ〉 the distance is computed

using
‖|ψ〉〈ψ| − |φ〉〈φ|‖1 = 2

√

1− |〈ψ|φ〉|2.
For quantum state ρi and σi, i = 1, 2

‖ρ1 ⊗ ρ2 − σ1 ⊗ σ2‖1 ≤ ‖ρ1 − σ1‖1 + ‖ρ2 − σ2‖1.

Public-key quantum money. Following the definition in [3], a public-key quantum money
scheme consists of three algorithms:

• Gen. Takes as input a security parameter κ, and generates a key pair (kpri, kpub) in proba-
bilistic polynomial time (in κ). Here, kpri is the private key and kpub is the public key.

• Bank. Takes as input a private key kpri, and generates a banknote in probabilistic polynomial
time.
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• Ver. Takes as input the public key kpub and a banknote, and outputs either ‘accept’ or ‘reject’.

A banknote, denoted by |$〉, usually consists of a pair (s, ρs) where s is a binary string and ρs is a
mixed quantum state. The string s is called the serial number, and the state ρs is called the money

state.
The notion of security for a quantum money scheme is best explained using an adversary-

challenger game. The goal for an adversary A is to produce a copy of a valid banknote without
having access to the private key. Consider the following game played by A and a challenger.
The challenger calls Bank to generate a banknote |$〉 = (s, ρs), and sends the banknote to A. A
generates two alleged banknotes |$1〉 = (s1, ρs1) and |$2〉 = (s2, ρs2) where ρs1 and ρs2 are allowed to
be entangled. The challenger accepts if and only if Ver accepts both |$1〉 and |$2〉 and s1 = s2 = s.
A quantum money scheme (Gen,Bank,Ver) is said to be secure if for any polynomial time quantum
adversary A, the challenger accepts in the above experiment with probability negligible in κ.

3 Quantum Money From Hidden Subspaces

In this section, we investigate the security of the quantum money scheme proposed by Aaronson
and Christiano [3], which is based on hidden linear subspaces of Fn

2 .

3.1 The quantum money scheme

Let n = κ where κ is the security parameter. The n-qubit money state in this scheme is a uniform
superposition

|A〉 = 1

2n/4

∑

x∈A

|x〉,

where A ⊂ Fn
2 is a random linear subspace of dimension n/2. The bank generates such a state by

choosing a set of n/2 random and linearly independent elements of Fn
2 and building a superposition

from their linear combinations. The state |A〉 is then verified by querying to classical oracles UA

and UA⊥ where A⊥ is the orthogonal complement of A. These oracles are membership oracles.
More precisely, for x ∈ Fn

2

UA|x〉 =
{

−|x〉 if x ∈ A,

|x〉 otherwise.

The oracle UA⊥ is defined similarly. Using these oracles we can build projectors PA and PA⊥ onto
the basis elements of A and A⊥, respectively. The verification process works by first projecting
onto A, then applying the n-qubit Hadamard transform H⊗n, then projecting on A⊥ and finally
applying another H⊗n. So the verification algorithm can be written as VA := H⊗nPA⊥H⊗nPA. It
can be shown that VA = |A〉〈A|, i.e., VA is just a projector onto A. This means that the verification
algorithm accepts a state |ψ〉 with probability |〈ψ|A〉|2.

In the above scheme, the following algorithms are publicly accessible.

G(r): takes a random r ∈ {0, 1}n as input. Outputs a set of random linearly independent elements
{y1, . . . , yn/2} for a subspace Ar ⊂ Fn

2 , and a serial number sr.

H(s): checks if s is a valid serial number.

T(r): takes an input of the form |s〉|x〉 and applies UAr to |x〉 if s is a valid serial number.

T
⊥(r): similar to T(r) but with UAr replaced by UA⊥

r
.
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The Bank and Ver algorithms are then defined as follows:

Bank calls G(r) for a uniformly random r ∈ {0, 1}n to receive a pair (sr, Ar), and outputs a
banknote |$r〉 = |sr〉|Ar〉.

Ver takes as input a banknote ¢, and uses H to check if ¢ is of the form (s, ρ) for a valid serial
number s. If s is valid then it uses T and T

⊥ to compute VA(ρ), and outputs ‘accept’ if and
only if VA outputs ‘accepts’.

Assuming black box access to the oracles UA and UA⊥ , it was proved in [3] that a counterfeiter
needs at least Ω(

√
ǫ2n/4) queries to prepare a state ρ such that 〈A|⊗2ρ|A〉⊗2 ≥ ǫ. However, there

has been no provably secure instantiation of these oracles to this date.
The first instantiation of UA and UA⊥ was proposed in the same paper [3], which was based

on multivariate polynomials. The idea is to “obfuscate” the subspace A using a set of polynomials
p1, . . . , pm ∈ F2[x1, . . . , xn]. More precisely, let Id,A be the set of polynomials of degree d in
F2[x1, . . . , xn] that vanish on A. Then the polynomials pi are selected uniformly at random from
Id,A. For a large enough m, the polynomials p1, . . . , pm uniquely determine A with overwhelming
probability. This means for all v ∈ A we will have p1(v) = · · · = pm(v) = 0, and for any v /∈ A we
will have pk(v) 6= 0 for at least one 1 ≤ k ≤ m with overwhelming probability. This is proved in
the following lemma.

Lemma 3.1 ([3, Lemma 29]). Let A ⊆ Fn
2 be a linear subspace and let β > 1 be a constant. For any

set of polynomials p1, . . . , pβn ∈ Id,A selected uniformly at random, define Z = {v ∈ Fn
2 : pi(v) =

0 for all 1 ≤ i ≤ βn}. Then A ⊆ Z, and Pr[A = Z] = 1− 2−Ω(n).

One can sample uniformly at random from Id,A in time O(nd) which is polynomial when d
is a constant. An immediate consequence of Lemma 3.1 is that the set of random polynomials
p1, . . . , pβn can be effectively used as a membership oracle for A. Therefore, the banknote (sr, |Ar〉),
which can be generated efficiently by the bank, consists of a superposition over the random subspace
Ar and the list of polynomials sr = {pi}1≤i≤βn corresponding to Ar. The hardness assumption
underlying the quantum money scheme of [3] is based on the following problem:

Problem 3.2. Let d ≥ 3 be a constant integer and β > 1 a real number. Let A ⊂ Fn
2 be a random

linear subspace of dimension n/2 and let p1, . . . , pβn ∈ Id,A be selected uniformly at random. Given
the banknote (s, |A〉), where s = {pi}1≤i≤βn, recover a set of generators for A.

A noisy version of Problem 3.2 was also introduced in [3], but was later shown to be quantum
polynomial time equivalent to the noiseless version [2, Section 9.6]. In this paper, we give a quantum
polynomial time algorithm for Problem 3.2. Our idea is based on computing the Zariski tangent
space of the variety described by the set of polynomials s.

3.2 Background

In this section, we review some basic facts about tangent spaces in algebraic geometry. Let X be a
scheme, and let x ∈ X be any point. Let κ(x) = OX,x/mx be the residue field at x, where OX,x is
the local ring at x and mx is the maximal ideal of OX,x. Then mx/m

2
x is a vector space over κ(x).

The Zariski tangent space of X in x is defined as the dual vector space

TxX = (mx/m
2
x)

∨.

The following are standard in algebraic geometry, but include some explanations for the sake of
completeness.
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Fact 3.3. If Y ⊆ X is a closed subscheme, and y ∈ Y , then TyY ⊆ TyX. This is because the
morphism

my/m
2
y → mx/m

2
x

of κ(y)-vector spaces, where my is the maximal ideal of OY,y, is surjective. Therefore, the dual
morphism is injective.

Fact 3.4. For closed subschemes Y,Z ⊆ X and a point y ∈ Y ∩Z, we have Ty(Y ∩Z) = TyY ∩TyZ.
Here, Y ∩ Z is the scheme-theoretic intersection. Locally, we can replace X with a Spec(A), for a
ring A, so that Y and Z are described by some ideals I, J ⊂ A. Then the intersection Y ∩ Z is
SpecA/(I+J), and the above statement can be proved using straightforward commutative algebra.

Let k be a field. By a k-variety X we mean a reduced separated scheme of finite type over k. In
this paper, we are interested in affine varieties, i.e., in schemes of the form X = Speck[T1, . . . , Tn]/I
where I = (f1, . . . , fm) is an ideal in the polynomial ring k[T1, . . . , Tn]. A k-variety is called linear if
it is defined by the intersection of hyperplanes. Therefore, X is linear when the defining polynomials
f1, . . . , fm all have degree one. A point x ∈ X is called a k-valued point if κ(x) = k. When X is
affine, the Zariski tangent space at a k-valued point x can be computed using the Jacobian matrix
at x. The Jacobian matrix of the set of polynomials f1, . . . , fm at x is defined as

Jf1,...,fm(x) =













∂f1
∂T1

(x) · · · ∂f1
∂Tn

(x)

...
. . .

...
∂fm
∂T1

(x) · · · ∂fm
∂Tn

(x)













,

where the derivatives ∂fi/∂Tj are formal derivatives.
For the affine variety X defined by the ideal I as above, the tangent space TxX at the point

x = (x1, . . . , xn) ∈ X is the linear variety defined by the coordinates of the vector

Jf1,...,fm(x)







T1 − x1
...

Tn − xn






. (1)

In other words, letting

gi =
n
∑

j=1

∂fi
∂Tj

(x)(Tj − xj),

the space TxX is defined as the zero set of the ideal (g1, . . . , gm). It follows from the above that

Fact 3.5. If X is a linear k-variety and x ∈ X is a k-valued point, then TxX = X.

3.3 Cryptanalysis

In this section, we give a polynomial time quantum algorithm for Problem 3.2. We are given a
banknote (s, |A〉) where A ⊂ Fn

2 is a random linear subspace of dimension n/2, and s is a set of
polynomials p1, . . . , pm ∈ Id,A, where m = βn, β > 1. The first step is to measure the state |A〉 to
obtain uniformly random element x ∈ A. So now we have two pieces of classical information: the
set of polynomials {pi} and a uniformly random x ∈ A.
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Geometrically, the subspace A is the set of F2-valued points in a linear variety Y given by an
ideal (H1, . . . ,Hn/2) with Hi’s homogeneous linear polynomials. It follows from (1) and Fact 3.5
that TxY = Y . In fact, since the Hi are homogeneous, we have

Y = ker JH1,...,Hn/2
(x).

Define the ideal I = (p1, . . . , pm), and let X = SpecF2[T1, . . . , Tn]/I. By Lemma 3.1, we can
safely assume that the varieties Y and X have the same set of F2-valued points. If we define
Xi = SpecF2[T1, . . . , Tn]/(pi) then X = X1 ∩ · · · ∩Xm.

Since pi ∈ Id,A, we have Y ⊆ Xi for all i = 1, . . . ,m, and therefore, by Fact 3.3,

Y = TxY ⊆ TxXi, i = 1, . . . ,m.

From this and Fact 3.4 we obtain

Y ⊆ TxX1 ∩ · · · ∩ TxXm = TxX. (2)

We prove that equality holds in (2) with high probability.

Proposition 3.6. We have Pr[Y = TxX] = 1− 2−Ω(n) in (2).

Proof. Note that the tangent space TxXi is given by the points on the hyperplane hi =
∑n

j=1(∂pi/∂Tj)(x)(Tj − xj). Since Y ⊆ TxXi, we have hi ∈ I1,A. We first prove the following
claim.

Claim. For any v /∈ A, exactly half of the elements in I1,A vanish at v.
The claim can be proved using the same trick as in the proof of Lemma 3.1. More precisely,

there exists a w = (w1, . . . , wn) ∈ A⊥ such that w · v = 1, so for every h ∈ I1,A we also have
h̃ = h+ w1T1 + · · · + wnTn ∈ I1,A. The claim now follows from the fact that exactly one of the h
and h̃ vanish at v.

Suppose, for now, that the hyperplanes TxXi, or equivalently the wi, are uniformly random
among the hyperplanes containing Y . Let v /∈ A. Then it follows from the above claim that
v ∈ TxX1 ∩ · · · ∩ TxXm with probability 2−m, which prove the proposition. So it remains to prove
that the hyperplanes wi ∈ I1,A are uniformly random when the pi ∈ Id,A are uniformly random.
Define the mapping

Dx : Id,A −→ I1,A

f 7−→
n
∑

j=1

∂f

∂Tj
(x)(Tj − xj).

Since translation by a point of A preserves Id,A and I1,A, we may assume that x is the origin. In
that case, the mapping Dx sends a polynomial f ∈ Id,A to its linear part. That means if we write
f = g + h where deg(h) ≤ 1 then Dx(f) = h ∈ I1,A. Now if f is uniformly random then every
monomial of f is uniformly random (among the monomials vanishing on A) and therefore, the
linear part of f is also uniformly random.

To summarize, the hidden subspace can be recovered using the following algorithm.

Input: A banknote (s, |A〉)
Output: A set of generators for the subspace A
1. Measure the state |A〉 to obtain a uniformly random x ∈ A.
2. Compute the Jacobian matrix Js(x) of the set of polynomials s at x.
3. Return a set of generators for the kernel of Js(x).
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3.4 Example

To explain the idea of the algorithm of Section 3.3, we give a concrete step-by-step example of the
computation. The example is generated randomly over the space F8

2, so n = 8. Let A ⊂ F8
2 be a

random linear subspace of dimension n/2 = 4 generated by the rows of the following random full
rank 4× 8 matrix:

A = Img









1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 1 0 1 1
0 0 0 1 1 0 0 1









.

Then A is the set of F2-valued points of the linear variety given by the ideal (H1,H2,H3,H4) where

H1(T ) = T1 + T6

H2(T ) = T2 + T5 + T6 + T8

H3(T ) = T3 + T5 + T6 + T7 + T8

H4(T ) = T4 + T5 + T6 + T7

If we set β = 9/8 then m = βn = 9. Let p1, p2, . . . , p9 ∈ I3,A be the following polynomials chosen
uniformly at random.

p1(T ) = T1T
2
3 + T2T

2
3 + T 2

1 T4 + T1T3T5 + T2T4T5 + T2T3T6 + T 2
3 T6 + T1T4T6 + T3T5T6 + T2T3T7 +

T2T3T8 + T1T5T8 + T2T5T8 + T4T5T8 + T 2
5 T8 + T4T7T8 + T6T7T8 + T 2

7 T8 + T1T2 + T1T5 +
T1T6 + T2T6 + T5T6 + T 2

6 + T1T8 + T6T8 + T2 + T5 + T6 + T8

p2(T ) = T1T3T4 + T1T3T5 + T3T4T5 + T4T
2
5 + T1T3T6 + T 2

3 T6 + T3T5T6 + T4T5T6 + T1T
2
6 + T3T

2
6 +

T 3
6 +T1T3T7+T4T5T7+T3T6T7+T2T5T8+T4T5T8+T

2
5 T8+T3T6T8+T5T6T8+T3T7T8+

T5T7T8+T6T7T8+T
2
7 T8+T5T

2
8 +T7T

2
8 +T1T2+T2T6+T4T6+T5T6+T

2
6 +T6T7+T1T8+

T6T8 + T3 + T5 + T6 + T7 + T8

p3(T ) = T2T3T5 + T3T
2
5 + T 2

2 T6 + T1T5T6 + T2T5T6 + T3T5T6 + T4T5T6 + T 2
5 T6 + T2T

2
6 + T2T5T7 +

T 2
5 T7+T1T6T7 +T 2

6T7+T3T
2
7 +T5T

2
7 +T6T

2
7 +T 3

7 +T3T5T8 +T2T6T8+T5T7T8+T 2
7T8 +

T4T6 + T5T6 + T 2
6 + T6T7 + T3 + T5 + T6 + T7 + T8

p4(T ) = T1T2T4 + T1T2T5 + T2T
2
5 + T3T

2
5 + T 2

1 T6 + T1T2T6 + T1T5T6 + T2T
2
6 + T1T2T7 + T3T4T7 +

T4T5T7+T
2
5 T7+T4T6T7+T4T

2
7 +T

2
3 T8+T3T5T8+T1T6T8+T2T6T8+T3T6T8+T5T6T8+

T 2
6 T8 + T3T7T8 + T4T7T8 + T3T

2
8 + T6T

2
8 + T3T5 + T 2

5 + T5T6 + T4T7 + T6T7 + T 2
7 + T5T8

p5(T ) = T 3
2 + T2T

2
3 + T2T3T4 + T1T

2
4 + T2T

2
4 + T 3

4 + T 2
2 T5 + T1T2T6 + T 2

2 T6 + T 2
4 T6 + T1T5T6 +

T1T
2
6 + T1T2T7 + T 2

4 T7 + T1T5T7 + T1T6T7 + T4T
2
7 + T5T

2
7 + T6T

2
7 + T 3

7 T
2
2 T8 + T2T3T8 +

T 2
4 T8 + T1T5T8 + T3T6T8 + T1T

2
8

p6(T ) = T1T
2
3 +T

2
2 T4+T2T4T5+T1T3T6+T2T4T6+T3T5T6+T1T3T7+T4T5T7+T

2
5 T7+T5T6T7+

T5T
2
7 + T1T3T8 + T2T4T8 + T3T

2
8 + T5T

2
8 + T6T

2
8 + T7T

2
8 + T 3

8 + T1T3 + T2T6 + T1T7 +
T2T8 + T5T8 + T6T8 + T 2

8

p7(T ) = T 2
1 T2+T 3

3 +T 2
2 T5+T2T3T5 +T 2

3T5+T 2
4 T5+T2T

2
5 +T1T2T6 +T1T3T6+T 2

3 T6+T2T5T6 +
T2T

2
6 +T3T

2
6 +T5T

2
6 +T 3

6 +T3T6T7+T3T
2
7 +T 2

3 T8+T2T5T8 +T3T5T8+T4T5T8+T 2
6T8 +

T3T7T8 + T4T7T8 + T5T7T8 + T6T7T8 + T 2
7 T8 + T1T4 + T4T6 + T1T8 + T6T8

p8(T ) = T1T2T3 + T2T
2
4 + T2T3T5 + T 2

4 T5 + T3T
2
5 + T2T3T6 + T 2

4 T6 + T3T5T6 + T2T5T7 + T 2
5 T7 +

T5T6T7 + T4T
2
7 + T5T

2
7 + T6T

2
7 + T 3

7 + T 2
4 T8 + T3T5T8 + T2T6T8 + T3T6T8 + T1T7T8 +

T5T7T8 + T3T5 + T 2
5 + T5T6 + T3T7 + T6T7 + T 2

7 + T5T8 + T7T8
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p9(T ) = T1T
2
4 +T3T

2
4 +T1T4T5+T2T4T5+T

2
4 T5+T4T

2
5 +T1T4T6+T

2
4 T6+T4T5T6+T

2
1 T7+T2T3T7+

T1T4T7+T3T4T7+T
2
4 T7+T2T5T7+T3T5T7+T4T5T7+T

2
5 T7+T1T6T7+T2T6T7+T3T6T7+

T5T6T7+T2T
2
7 +T3T

2
7 +T5T

2
7 +T1T2T8+T

2
4 T8+T4T5T8+T5T6T8+T

2
6 T8+T2T7T8+T1T

2
8

Let x = (0, 1, 0, 1, 0, 0, 1, 1) ∈ A be a uniformly random element, which is obtained by measuring
the given money state. Evaluating the Jacobian Jp1,...,p9 at x gives

Jp1,...,p9(x) =





























0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1
1 0 0 0 0 1 0 0
1 0 1 0 1 0 1 1
0 0 0 1 1 1 1 0
1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0





























Now, the kernel of the above matrix gives us the subspace A.

4 Quantum Money From Multivariate Hash Functions

In this section, we investigate the security of the quantum money scheme proposed in [29], which
is based on multivariate hash functions. The hash functions used in this scheme are defined as
follows. Let m and n be positive integers such that m > n. Define A = {Ai}1≤i≤n where each
Ai ∈ Fm×m

2 is an upper triangular matrix. The hash function corresponding to A is defined by

fA : Fm
2 −→ Fn

2

x 7−→ (xTA1x, . . . , x
T
Anx).

The function fA is not collision resistant [9], and in fact it is not hard to find collisions when the
matrices Ai are random upper triangular.

The hardness assumption underlying this scheme is instead based on the multi-collision resis-
tance of fA. Let us briefly define what that means. A set of k+1 points of Fm

2 is called non-affine if
they form a k-dimensional affine space. A function f is said to be (k+1)-non-affine multi-collision
resistant ((k+1)-NAMCR) if it is hard to find k+1 non-affine colliding inputs for f . The assump-
tion is that for k = poly(n), m < (k + 1/2)n and random upper triangular Ai, the function fA is
2(k + 1)-NAMCR.

4.1 The quantum money scheme

In the following, we briefly explain the quantum money scheme of [29]. The public parameters of
the scheme are:

• The integers m,n. We set n = κ where κ is the security parameter. For the verification to
work we can take k = 2n and m = kn = 2n2.

• The hash function fA. The upper triangular matrices in A = {Ai}1≤i≤n are generated
uniformly at random.

10



A banknote in this scheme consists of a pair (y, |Ey〉) where |Ey〉, called a bolt, is the money
state and y ∈ Fn

2 is the serial number. The bolt |Ey〉 is a product of states where each state is a
superposition of all x ∈ Fm

2 such that fA(x) = y. More precisely,

|Ey〉 ∝ |E′y〉⊗(k+1), where |E′y〉 ∝
∑

x:fA(x)=y

|x〉.

We refer the reader to [29] for the details of how a bolt is generated. Since we will use the
verification circuit in our attack, we include some details here. To verify a bolt, one needs to only
verify each of the states |E′y〉 independently. The verification of an alleged banknote |ψ〉 proceeds in
two steps: first, the state |ψ〉 is projected onto the span of the states {|E′z〉}z∈Fn

2
. Then the function

fA is computed into an auxiliary register and measured. The result of the measurement is then
compared against y to determine the validity of the banknote.

The states {|E′z〉}z∈Fn
2
are orthogonal and span a linear subspace B ⊂ C2m of dimension 2n. To

project onto B, a different set of basis states of B are used.

Fact 4.1 ([29]). Define the set of states

|φr〉 =
1

2m/2

∑

x∈Fm
2

(−1)r·fA(x)|x〉, r ∈ Fn
2 .

Then the states {|E′z〉} and {|φr〉} span the same subspace B.

Therefore, to project onto B we need to project onto the span of the states |φr〉. It is easy to
prepare |φr〉 given r. Conversely, it was shown in [29] that one can recover r given the state |φr〉.
We record this result for sake of later reference.

Theorem 4.2 ([29]). There is a polynomial time quantum algorithm that, given the state |φr〉,
computes r with overwhelming probability.

The verification procedure can now be summarized as follows. Given the input state |ψ〉, write
|ψ〉 = ∑

r αr|φr〉 + |ψ1〉 where |ψ1〉 is orthogonal to B. Then compute r into an auxiliary register
to obtain the state

∑

r αr|r〉|φr〉+ |ψ2〉 for some state |φ2〉. Now uncompute the second register to
obtain the state

∑

r αr|r〉|0〉+|ψ3〉 for some state |φ3〉. The verification algorithm then measures the
second register. If the measurement outcome is not zero the algorithm outputs ‘reject’. Otherwise,
the post-measurement state is

∑

r αr|r〉|0〉, and the algorithm computes |φr〉 into the second register
to obtain the state

∑

r αr|r〉|φr〉, and uncomputes r to obtain the state
∑

r αr|φr〉. Note that this
state is now the projection of the original state |ψ〉 onto B. Finally, the algorithm computes fA
into another register and measures that register. If the measurement outcome is not equal to y,
the algorithm outputs ‘reject’, otherwise it outputs ‘accept’.

4.2 Cryptanalysis

In this section, we propose a polynomial time quantum algorithm that given a nonzero serial number
y ∈ Fn

2 , generates a copy of the state

|E′y〉 =
1

√

Cy

∑

x:fA(x)=y

|x〉,

where Cy = #{x ∈ Fm
2 : fA(x) = y}, with probability 1. We start by noting that [29]

C0|E′0〉+ Cy|E′y〉 ∝
∑

r:r·y=0

|φr〉. (3)

11



Let |ψy〉 be the normalized quantum state proportional to the state (3). Then |ψy〉 is a uniform
superposition over the elements of Xy = {x ∈ Fm

2 : fA(x) = 0 or y}, i.e.,

|ψy〉 =
1

√

#Xy

∑

x∈Xy

|x〉.

Suppose there is a quantum algorithm Q that, given y, can efficiently prepare |ψy〉. To generate a
copy of |E′y〉, perform the following steps. Call Q to get a copy of |ψy〉. Compute fA into an extra
register to obtain the state

1
√

#Xy

∑

x∈Xy

|x〉|fA(x)〉 =
1

√

#Xy

(
√

C0|E′0〉|0〉 +
√

Cy|E′y〉|y〉), (4)

and measure the second register. If the measurement outcome is equal to y then we are done,
otherwise repeat the process from the beginning.

The probability of obtaining the state |E′y〉 is Cy/#Xy. Heuristically, the ratio Cy/#Xy is as
large as a constant. In other words, there is no reason that C0 is much larger or smaller than
Cy for any other y ∈ Fn

2 . We argue, with a little help from algebraic geometry, that this is
indeed the case. The function fA defines a morphism between two affine spaces fA : Am

F2
→ An

F2

where Am
F2

= SpecF2[T1, . . . , Tm], and similarly for An
F2
. Since both Am

F2
and Am

F2
are geometrically

irreducible, and since 0 is the generic point of these spaces, it follows from the fibre dimension
theorem [12, Chapter 14 ] that dim f−1

A (0) = dimAm
F2

− dimAn
F2

= m− n1. We also have that for

every y ∈ Fn
2 , all irreducible components of f−1

A (y) have dimension at least dim f−1
A (0). Now, by the

Lang-Weil theorem [18], [22, Section 7.7], for any y ∈ Fn
2 it holds that #f−1

A (y)(F2) = O(2dim f−1

A
(y))

where the constant depends on fA but not on y. This means the ratio

Cy

#Xy
=

#f−1
A (y)

#f−1
A (y) + #f−1

A (0)

is bounded below by a constant with overwhelming probability over the randomness of A.
It only remains to show that algorithm Q exists. The input to the algorithm is an element

y ∈ Fn
2 and the output is the state (3). The algorithm proceeds as follows. First, compute a basis

for the space {r ∈ Fn
2 : r · y = 0}. This can be efficiently done classically. Then using this basis,

generate the superposition
1√
2n−1

∑

r:r·y=0

|r〉. (5)

Next, compute |φr〉 into another register to obtain the state

1√
2n−1

∑

r:r·y=0

|r〉|φr〉. (6)

Using Theorem 4.2, uncompute r and discard the first register. This produces the state

|ψy〉 =
1√
C

∑

r:r·y=0

|φr〉, (7)

for an appropriate normalization constant C. The above algorithm is summarized as follows.

1Here, the dimension is the geometric dimension not the vector space dimension
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Input: A serial number y ∈ Fn
2

Output: A bolt |E′y〉
1. Compute a set G of generators for the kernel linear map r 7→ r · y.
2. Using G prepare the superposition (5).
3. Compute |φr〉 into another register to obtain the state (6).
4. Uncompute r and discard the first register to obtain the state (7).
5. Compute fA into an extra register to obtain the state (4).
6. Measure the second register. If the measurement outcome is equal to y then return the post-

measurement state. Otherwise, go to Step 2.

5 Quantum Money from Quaternion Algebras

In this section, we investigate the security of the quantum money scheme proposed in [14], which
is based on quaternion algebras. The hard problem underlying this scheme is copying a quantum
state that is encoding an eigenform of the Hecke operators. We give a reduction from this problem
to a linear algebra problem, namely inverting a matrix with entries the representation numbers of
quaternary quadratic forms. We believe that the latter problem is more suitable, and much more
accessible, for future cryptanalysis.

Informally, the idea of our reduction is as follows. Suppose the quantum state to be copied is
given by |φ〉 = ∑

αI |I〉 where the sum is over the set {I}I∈Cl(O) of representatives of the left ideal
classes of a maximal order O in a quaternion algebra. Let M be the formal abelian group with
basis Cl(O). For a fixed J ∈ Cl(O), based on a morphism from M to the space of modular forms
we obtain the identity

f(q) =
∑

I∈Cl(O)

αI

αJ
ΘI,J(q),

where the left hand side is the modular form corresponding to the formal sum
∑

I∈Cl(O) αI [I], and
the ΘI,J are theta series corresponding to the ideals I, J . By equating the coefficients of different
powers of q in both sides of the above identity, we form a system of linear equations. The entries of
the coefficient matrix A associated with this system are the representation numbers from the theta
series ΘI,J . The dimension of the system is equal to the size of the set Cl(O) which is exponentially
large. We show that if one is able to approximate the operation A−1 then one can make arbitrary
many copies of |φ〉.

5.1 Background

In this section, we review the minimal necessary background in modular forms and quaternion
algebras, and set up some notations, for the following sections. Our main references for modular
forms are [8, 17, 24]. For a comprehensive treatment of quaternion algebras we refer the reader to
[26].

5.1.1 Modular forms.

Let H = {z ∈ C : Im(z) > 0} be the complex upper half plane, and let SL2(Z) be the special linear
group over the integers. For γ =

[

a b
c d

]

∈ SL2(Z) and z ∈ H define γz = (az + b)/(cz + d), which
defines a group action on H. For any integer N > 0 denote by Γ(N) the kernel of the projection
SL2(Z) → SL2(Z/NZ). A congruence subgroup of SL2(Z) of level N is any subgroup Γ containing
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Γ(N). In this paper, we are particularly interested in the congruence subgroup

Γ0(N) =

{[

a b
c d

]

∈ SL2(Z) :

[

a b
c d

]

≡
[

∗ ∗
0 ∗

]

(mod N)

}

.

The weight-k operator [γ]k on the functions f ∈ Hom(H,C) is defined by (f [γ]k)(τ) = (cz +
d)−kf(γz). This is also a group action on Hom(H,C) since f [γ1γ2]k = (f [γ1]k)[γ2]k.

A weakly modular function of weight k with respect to a congruence subgroup Γ is a meromor-
phic function f : H → C such that f [γ]k = f for all γ ∈ Γ. Define the extended upper half plane
H∗ by adding the set of rational points of the projective line to H, i.e., H∗ = H∪P1(Q). A modular

form of weight k with respect to Γ is a weakly modular function f : H → C that is holomorphic on
H∗. Every modular form f has a Fourier expansion

f(z) =
∞
∑

n=0

anq
n, q(z) = e2πiz

called the q-expansion of f . If a0 = 0 in the q-expansion of f , we say that f is a cuspform.

5.1.2 Quaternion algebras.

Let F be a field of characteristic 6= 2. An F -algebra B is called a quaternion algebra if B has a basis
1, i, j, k as an F -vector space such that i2 = a, j2 = b and k = ij = −ji for some a, b ∈ F×. There is
an involution operation − : B → B defined by t+xi+yj+zk 7→ t−xi−yj−zk. The reduced trace
trd : B → F and the reduced norm nrd : B → F are defined by trd(α) = α+ α and nrd(α) = αα.
For F = Q, a quaternion algebra B is said to be ramified at a prime p if the completion B⊗QQp is
a division ring, otherwise B is unramified at p. In this paper, we are interested in the quaternion
algebra B over Q, denoted by Bp,∞, that is ramified at a single primes p and at ∞.

A Z-lattice I ⊆ Bp,∞ of rank 4 is called a fractional ideal. A Z-order (or simply an order)
O ⊂ Bp,∞ is a fractional ideal that is also a ring. A maximal order is an order that is not properly
contained in another order. For a fractional ideal I ⊆ Bp,∞ define

OL(I) = {α ∈ Bp,∞ : αI ⊆ I}.

Then OL(I) is also an order and is called the left order of I. The right order of I is defined similarly
by OR(I) = {α ∈ Bp,∞ : Iα ⊆ I}. An ideal I is invertible if there is another ideal I ′ such that
II ′ = OL(I) = OR(I

′) and I ′I = OL(I
′) = OR(I). We denote the inverse of I, if it exists, by I−1.

The reduced norm of an ideal I is a Z-submodule of Q generated by the set {nrd(α) : α ∈ I}. The
inverse of I can also be written as I−1 = I nrd(I)−1 where I = {α : α ∈ I} is the involution of I.
For an order O ⊆ Bp,∞, A left fractional O-ideal is a fractional ideal I such that O ⊆ OL(I). Right
fractional O-ideals are defined similarly.

Two fractional ideals I, J are said to be in the same right class if I = αJ for some α ∈ B×
p,∞, in

which case we write I ∼R J . The relation ∼R defines an equivalence relation on the set of fractional
ideals, and a class of an ideal I is denoted by [I]R. Left equivalence classes are defined similarly.
For an order O ⊂ Bp,∞, the right class set of O is defined as the isomorphism classes of invertible
right O-ideals, i.e.,

ClR(O) = {[I]R : I an invertible O-ideal}.
Since the mapping I 7→ I defines a bijection between left and right classes we often simply write
Cl(O) instead of ClR(O).
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5.1.3 Hecke operators.

Denote byMk(Γ0(N)) the space of modular forms of weight k with respect to the subgroup Γ0(N),
and denote by Sk(Γ0(N)) the space of cuspforms of weight k with respect to Γ0(N). For an integer
n with (n,N) = 1, the n-th Hecke operator on Mk(Γ0(N)) is the linear operator

Tn : Mk(Γ0(N)) −→ Mk(Γ0(N))

f(z) 7−→ 1

nk−1

∑

ad=n
0≤b<d

1

dk
f

(

az + b

d

)

We will always assume that (n,N) = 1, since this is what we are interested in, and also the theory
is a bit simpler in this case. From the definition, we see that Tn preserves the subspace Sk(Γ0(N)).
The Hecke operators for Mk(Γ0(N)) satisfy

Tmn = TmTn (m,n) = 1,

Tpr+1 = TprTp − pk−1Tpr−1 p prime.
(8)

For a modular form f , let an(f) be the n-th coefficient of the q-expantion of f . Then for f ∈
Mk(Γ0(N)) and prime p we have

an(Tpf) =

{

anp(f) + pk−1an/p(f) if p | n,
anp(f) if p ∤ n.

(9)

It follows that for coprime integers m,n we have am(Tnf) = amn(f), and in particular, a1(Tnf) =
an(f). Define T := Z[{Tn}n≥1], the algebra generated by all the Hecke operators. Then T is
a commutative ring called the Hecke algebra. Since T is commutative, there are elements f ∈
Sk(Γ0(N)) that are simultaneous eigenvectors for all element in T. In particular, for any such f
we have Tnf = λnf for some λn ∈ C×. We refer to such f as an eigenfunction. If f is normalized,
i.e., a1(f) = 1, it is called an eigenform. The coefficient of the q-expansion of an eigenform satisfy
important identities induced by (8). More precisely, let f =

∑

n anq
n be an eigenform, and assume

Tnf = λnf . Then we have an = λn, and using (8) we obtain

amn = aman (m,n) = 1,

apr+1 = aprap − pk−1apr−1 p prime.
(10)

Let dµ(z) = dxdy/y2, z = x+ iy ∈ H be the hyperbolic measure, and let VΓ0(N) be volume of the
modular curve X(Γ0(N))) with respect to dµ(z). The space Sk(Γ0(N)) can be made into an inner
product space using the Petersson inner product

〈f, g〉 = 1

VΓ0(N)

∫

X(Γ0(N))
f(z)g(z)(Im(z))kdµ(z).

The Hecke operators Tn are Hermitian with respect to this inner product, i.e., 〈Tnf, g〉 = 〈f, Tng〉.
This means there exists a basis of Sk(Γ0(N)) consisting of Hecke eigenforms.

One can also define a set of Hecke operators on ideal classes of a quaternion order as follows.
Let O ⊂ Bp,∞ be an order and let Cl(O) be the (right) class set of O. Define the formal divisor
group

M =
⊕

I∈Cl(O)

Z.[I] (11)
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For an integer n > 0, n 6= p, the n-th Hecke operator on M is defined by

Tn : M −→ M

[I] 7−→
∑

J⊆I
nrd(JI−1)=n

[J ],

where the sum is over all invertible right O-ideals contained in I. In the basis of the ideal classes
in Cl(O), the Hecke operator Tn is represented by the Brandt matrix B(n) which can be explicitly
computed as follows. Let h = #Cl(O) be the class number of O, and fix a set I1, I2, . . . , Ih of
representatives of the ideal classes in Cl(O). Let Oi = OL(Ii), and let wi be the number of units
in Oi. The n-th Brandt matrix is defined by

B(n)ij =
1

wi
#{α ∈ IjI

−1
i : nrd(α) = n nrd(IjI

−1
i )}. (12)

The Hecke operators Tn also satisfy the relations (8). Moreover, we can define an inner product
on M with respect to which the Tn are Hermitian: 〈[Ii], [Ij ]〉 = δi,jwi/2 where δi,j = 1 if i = j,
and δi,j = 0 otherwise. We will also call this inner product the Petersson inner product. Similar
to the case of modular forms, there is a set of elements of MR = M ⊗Z R that are simultaneous
eigenvectors for all Hecke operators. We also call these element Hecke eigenforms. The element

φE =
h
∑

j=1

2w−1
j [Ij ]

of MR is called the Eisenstein eigenform. We have TnφE = σ′(n), where σ′(n) =
∑

d|n,(p,d)=1 d.
The sub-T-module of MR orthogonal to φE is called the space of cuspforms. For any cuspform
φ =

∑h
j=1 αj [Ij ] we have

∑h
j=1 αj = 0.

5.2 The quantum money scheme

Let us briefly review the quantum money scheme presented in [14]. The parameters of the scheme
are fixed as follows:

• A prime p ∈ O(2κ) where κ is the security parameter.

• The quaternion algebra Bp,∞ over Q ramified at p and ∞.

• A maximal order O ⊂ Bp,∞ of discriminant p.

• A set of Hecke operators Tnj where nj = poly(κ), 1 ≤ j ≤ s and s = poly(κ).

Let I1, I2, . . . , Id be distinct representatives of the ideal classes in Cl(O), where d = #Cl(O). In
the above specific setup we have d = ⌊p/12⌋. Let M be the formal divisor group on Cl(O) defined
in (11). For simplicity, we will let MC denote M ⊗Z C. Let {φi}1≤i≤d be a set of eigenforms in MC

that are a basis of MC, and let {|φi〉}1≤i≤d be the corresponding quantum states. This means that
for φi =

∑

i αi[Ii], we have

|φi〉 =
1√
α

d
∑

j=1

αj |Ij〉

where α2 =
∑

j|αj |2. A banknote in the quantum money scheme consists of
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1. A money state of the form |φi〉|φi〉 for some 1 ≤ i ≤ d,

2. A serial number, which is a tuple (bj)1≤j≤s of approximate eigenvalues of the Tnj correspond-
ing to the eigenform φi.

3. A classical digital signature of the serial number (bj)1≤j≤s.

The verification of a banknote is done by

1. Verifying the signature of the serial number

2. Using phase estimation on the operators eiTnj and the eigenstate |φi〉 to recover an approxi-
mate serial number and compare against (bj)1≤j≤s.

It takes more than a few pages to give a precise account on the implementation of the above
scheme. Here, we briefly explain two main points.

Hamiltonian simulation. To prepare an eigenstate |φi〉 we start from the uniform superposition
|φ〉 = ∑

I∈Cl(O)|I〉 (normalization omitted). Then we use phase estimation on the operators Uj =

eiTnj to project onto an eigenstate |φi〉. Since the matrices of the operators Tnj are sparse, standard
Hamiltonian simulation techniques can be used to implement the unitaries Uj. However, for an

integer t > 0, the cost of simulating U t
j = eiTnj t depends linearly on t. More precisely, the simulation

cost depends linearly on st‖Tnj‖max [4], where s is the sparsity degree of Tnj , i.e., the maximum
number of nonzero entries in any row, and ‖Tnj‖max is the largest entry of Tnj in absolute value.
This means, using phase estimation, we can approximate the eigenvalues of the Tnj only to accuracy
1/poly(κ).

Projecting onto an eigenstate. To be able to project onto a single eigenstate, we cannot use only one
of the Tnj , since in that case we would need an exponentially accurate phase estimation. However,
if we run a polynomially accurate phase estimation for all the Tnj , we might be able to project onto
a random eigenstate |φi〉. For this to hold, one needs to make some heuristic assumptions on the
distribution of the eigenvalues of the Heck operators. Such distributions are already studied in the
literature [13, 20, 5], but a formal treatment of the running time of the above projection based on
these distributions is nontrivial.

5.3 Cryptanalysis

In this section, we analyze the assumption behind the scheme in Section 5.2. We use the connection
between quaternion orders and modular forms to translate the problem to the space of modular
forms. The connection is provided by the theory of theta series.

5.3.1 From quaternions to modular forms.

Let m = 2k > 0 be an integer and let Q : Zm → Z be an integral positive definite quadratic form.
The theta series associated to Q is a function ΘQ : H → C defined by

ΘQ(z) =
∑

x∈Zm

qQ(x) =

∞
∑

n=0

rQ(n)q
n, q = e2πiz .
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The integers rQ(n) = #{x ∈ Zm : Q(x) = n} are called the representation numbers of Q. Now, let
O ⊂ Bp,∞ be a maximal order as in Section 5.2. For any two ideals Ii, Ij ⊆ O define the mapping

Qi,j : IjI
−1
i −→ Z

α 7−→ nrd(α) nrd(IiI
−1
j )

(13)

This is a positive definite quadratic form. Using these quadratic forms we can define the morphism

Θ : MC ×MC −→ M2(Γ0(p))

([Ii], [Ij ]) 7−→
∑

α∈IjI
−1

i

qQi,j(α) = 1 + 2

∞
∑

n=1

〈Tn[Ii], [Ij ]〉qn,

where q = e2πiz, z ∈ H. The last equality follows from the definition of Brandt matrices (12).
Eichler [10] proved that the spaces MC and M2(Γ0(p)) are isomorphic as Hecke modules, see also
[15, 16]. More precisely,

Theorem 5.1 (Eichler). The map Tn 7→ Tn of Hecke operators over MC and M2(Γ0(p)) defines an
isomorphism of Hecke algebras. Moreover, the morphism Θ defines a nondegenrate Hecke bilinear

map,

Θ(Tn[Ii], [Ij ]) = Θ([Ii], Tn[Ij ]) = TnΘ([Ii], [Ij ]),

such that the traces of Tn on MC and Tn on M2(Γ0(p)) agree.

If we fix one of the arguments of Θ we get a homomorphism MC → M2(Γ0(p)). The following
lemma explain what the image of Θ is for some specific arguments.

Lemma 5.2. Let φ =
∑d

j=1 αj [Ij ] be an eigenform. Then for any integer 1 ≤ k ≤ d the modular

form Θ([Ik], φ) is a Hecke eigenfunction. Moreover, Θ([Ik], φ) 6= 0 if and only if αk 6= 0.

Proof. The first part follows from Theorem 5.1. More precisely, for any k and n

TnΘ([Ik], φ) = Θ([Ik], Tnφ) = Θ([Ik], λnφ) = λnΘ([Ik], φ).

For the second part, expanding Θ([Ik], φ) gives

Θ([Ik], φ) = Θ

(

[Ik],

d
∑

j=1

αj [Ij]

)

=

d
∑

j=1

αjΘ([Ik], [Ij ]) (by linearity of Θ)

=

d
∑

j=1

αj

(

1 + 2

∞
∑

n=1

〈Tn[Ik], [Ij ]〉qn
)

(by definition)

=

d
∑

j=1

αj + 2

∞
∑

n=1

〈Tn[Ik], φ〉qn (by linearity of 〈 , 〉) (14)

If φ is the Eisenstein eigenform φE then αk 6= 0 and 〈Tn[Ik], φ〉 = σ′(n)αk 6= 0, so Θ([Ik], φ) 6= 0
and the statement is true. So assume that φ is a cuspform. If αk = 0 then

〈Tn[Ik], φ〉 = 〈[Ik], Tnφ〉 = λn〈[Ik], φ〉 = λnαk = 0 (15)

for all n ≥ 1. It follows from (14) and (15) that Θ([Ik], φ) = 0. If αk 6= 0 then 〈[Ik], φ〉 6= 0 and
again we see from (14) that Θ([Ik], φ) 6= 0.
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A direct consequence of Lemma 5.2 is that the dimension of the image of the homomorphism
Θ([Ik],−) : MC → M2(Γ0(p)) depends on the coefficients 〈[Ik], φj〉 being zero or not for different
eigenforms φj. In fact, using the technique in [25], one can prove that

dimC Θ([Ik],MC) = |Σ(k)|

where Σ(k) = {j : 〈[Ik], φj〉 6= 0}. Therefore, one would expect that for a random 1 ≤ k ≤ d,
〈[Ik], φ〉 6= 0 with high probability, or equivalently, that dimCΘ([Ik],MC) is not too small. We now
outline our reduction.

5.3.2 The reduction

Suppose we are given the quantum state

|φ〉 = 1√
α

d
∑

j=1

αj |Ij〉

which represents a random eigenform φ =
∑d

j=1 αj[Ij ]. Since φj is random, it is a cuspform with
overwhelming probability. For a random k, we assume, by the above remarks, that αk 6= 0. Let
f(q) = Θ([Ik], φ)/αk ∈ M2(Γ0(p)). Then, by Lemma 5.2, f(q) is a Hecke eigenfunction. A closer
look at (14) shows that f(q) is in fact an eigenform with eigenvalues the same as the eigenvalues
of φ. Therefore, we have the identity

f(q) =

d
∑

j=1

αj

αk
Θ([Ik], [Ij ]) (16)

of modular forms. Let f(q) =
∑∞

n=1 anq
n so that a1, a2, . . . are the eigenvalues of f . The idea is

to build a system of linear equations, where αj are the unknowns, by equating the coefficients of
qn on both sides of (16) for different values of n. For any n ≥ 1 we get an equation

an =
α1

αk
〈Tn[Ik], [I1]〉+

α2

αk
〈Tn[Ik], [I2]〉+ · · ·+ αd

αk
〈Tn[Ik], [Id]〉. (17)

Let n1, n2, . . . , nd be a set of positive integers. Gathering linear equations of the form (17) for all
the ni we obtain a system

Aα = a (18)

where a is the column vector [an1
, an2

, . . . , and
]T , α is the column vector [α1/αk, α2/α2, . . . , αd/αk]

T

and the matrix A = (〈Tni [Ik], [Ij ]〉)i,j . The quantum state representing the vectors a and α are

|a〉 = 1
√

∑d
j=1 a

2
nj

d
∑

j=1

anj |j〉 and

|α〉 = 1
√

∑d
j=1 α

2
j/α

2
k

d
∑

j=1

αj

αk
|Ij〉 =

1√
α

d
∑

j=1

αj|Ij〉 = |φ〉,

respectively. Suppose there is a quantum algorithm A that can efficiently approximate the operation
A−1. Then one could compute an approximate copy of |φ〉 as |φ〉 = A−1|a〉. Therefore, assuming
access to A, the problem is reduced to the following
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Problem 5.3. Generate (an approximation of) the state |a〉 for an appropriate choice of distinct
integers n1, n2, . . . , nd.

The main obstacle to solving Problem 5.3 is that since d is exponentially large, the ni will be
exponentially large as i becomes large regardless of which set of the ni we choose. Recall that an is
an eigenvalue of |φ〉 for any n ≥ 1. The best classical algorithm for computing an has complexity
poly(p log n) [6], which is polynomial in log n but exponential in log p = O(κ), where κ is the
security parameter. Another possible approach is to use phase estimation to directly compute an,
since we know that

eiTn |φ〉 = eian |φ〉.
This would also fail because of the following reason. It is known that |an| ≤ σ0(n)

√
n [7], where

σ0(n) is the number of positive divisors of n. However, the value |an| can be exponentially large in
κ. This means we need to perform phase estimation with exponential accuracy. But we can only
simulate eiTnt for time t that is bounded by poly(κ).

To solve this problem, the idea is to use phase estimation but for a specific set of integers ni
such that we can exploit the relations (10) between the ani ’s. More precisely, let s = ⌈log d⌉ and let
C = {ℓ1, ℓ2, . . . , ℓs} be a set s distinct primes of size poly(κ), say the first s primes 2, 3, 5, . . . , ℓs.
Then we choose the ni to be the set

{ni}1≤i≤d := {ℓb11 ℓb22 · · · ℓbss : (b1, . . . , bs) ∈ {0, 1}s}. (19)

Explicitly, if j = b1b2 · · · bs is the binary representation of j then we set nj = ℓb11 ℓ
b2
2 · · · ℓbss .

Theorem 5.4. Given the quantum state |φ〉 representing an eigenform φ, let f(q) =
∑∞

n=1 anq
n

be the modular form, defined by (16), that corresponds to φ. Let {ni}1≤i≤d be the set of integers

defined in (19), and let

|a〉 = 1
√

∑d
j=1 a

2
nj

d
∑

j=1

anj |j〉.

For any constant c > 0, there is a polynomial time quantum algorithm that can prepare a state |ã〉
such that ‖|a〉〈a| − |ã〉〈ã|‖1 ≤ 1/κc.

Proof. For any prime ℓ ∈ C we can use phase estimation on the operator eiTℓ and the eigenstate
|φ〉 to compute an approximate eigenvalue ãℓ such that |aℓ − ãℓ| ≤ 1/sκc. Now, using the single
qubit operation

R̃ℓ =
1

√

1 + ã2ℓ

[

1 −ãℓ
ãℓ 1

]

we can generate the single qubit state

|ψ̃ℓ〉 := R̃ℓ|0〉 =
1

√

1 + ã2ℓ

(|0〉+ ãℓ|1〉).

Tensoring these states together for all ℓ ∈ C we obtain the state |ã〉 := ⊗

ℓ∈C |ψ̃ℓ〉. Now, for any nj
we can write nj = ℓb11 ℓ

b2
2 · · · ℓbss where b1b2 · · · bs is the binary representation of j. Therefore, using

the relations (10) we have anj = ab1ℓ1 · · · a
bs
ℓs
. So we can rewrite the state |a〉 as

|a〉 =
( s
∏

j=1

(1 + a2ℓ )

)−1/2
∑

(b1,...,bs)∈{0,1}s

ab1ℓ1 · · · a
bs
ℓs
|b1, . . . , bs〉
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=
⊗

ℓ∈C

1
√

1 + a2ℓ

(|0〉 + aℓ|1〉)

Let |ψℓ〉 = (|0〉 + aℓ|1〉)/
√

1 + a2ℓ . Then

‖|ψℓ〉〈ψℓ| − |ψ̃ℓ〉〈ψ̃ℓ|‖1 =
√

1− |〈ψℓ|ψ̃ℓ〉|2 ≤
1

sκc
,

and we have

‖|a〉〈a| − |ã〉〈ã|‖1 =
∥

∥

∥

∥

⊗

ℓ∈C

|ψℓ〉〈ψℓ| −
⊗

ℓ∈C

|ψ̃ℓ〉〈ψ̃ℓ|
∥

∥

∥

∥

1

≤
∑

ℓ∈C

‖|ψℓ〉〈ψℓ| − |ψ̃ℓ〉〈ψ̃ℓ|‖1

≤ 1

κc
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