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Generalized uncertainty principle and quantum non-locality
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The emergence of the generalized uncertainty principle and the existence of a non-zero minimal
length are intertwined. On the other hand, the Heisenberg uncertainty principle forms the core of
the EPR paradox. Subsequently, here, the implications of resorting to the generalized uncertainty
principle (or equally, the minimal length) instead of the Heisenberg uncertainty principle on the
quantum non-locality are investigated through focusing on the Franson experiment in which the
uncertainty relation is the backbone of understanding and explaining the results.

I. INTRODUCTION

Certainly, quantum non-locality (QNL) is one of the
most intriguing subjects in physics rooted in the famous
paper by Einstein, Podolsky, and Rosen (EPR) [1]. Ba-
sically, there is a deep connection between QNL and the
Heisenberg uncertainty principle (HUP) [1–4]. Indeed,
this property has been obtained since people could reach
quantum energy levels. The quality of the validity of the
Schrödinger equation (or equally, the quantum mechan-
ics) decreases as the energy of a system increases, and at
high energy levels, quantum mechanical interpretations
should be replaced by those of the quantum field theory.
Therefore, it is significant challenge to study the quality
of non-locality in high energy physics to answer the ques-
tion of whether there is a change in QNL with increasing
energy or not? In this regard, the effects of special rela-
tivity and curved spacetime on the behavior of QNL have
extensively been studied [5–13].

Despite the success of general relativity, the relation
between quantum mechanics and gravity is still mysteri-
ous [14], and attempts to find a quantum gravity scenario
continue [15, 16]. One common feature of quantum grav-
ity (QG) scenarios is the existence of a non-zero minimum
length, also expectable in Newtonian gravity [17]. Addi-
tionally, the existence of such a non-zero minimum length
naturally leads to the generalized uncertainty principle
(GUP) [16] meaning that the quantum mechanical com-
mutators of operators should change if one wants to re-
cover GUP. Therefore, this correspondence is a great mo-
tivation to replace GUP with HUP, which stimulates us
to study the implications of this replacement on QNL.

In general, when the quantum features of gravity are
considered, canonical operators x and p are replaced with
their generalized counterpartsX and P , respectively, and
up to the first order of the GUP parameter β, we can
write Pi = pi(1 + βf(p)) in the position representation
where X = x. In order to get an insight into the impli-
cations of QG (GUP) on the current physics, one may
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estimate the effects of QG as the perturbations to the
quantum mechanics, classical mechanics, and quantum
field theory [16, 18–26].

As it has been argued, QNL is the result of HUP (the
result of the non-commutative of operators) [1–4]. De-
pendency of the square of Bell’s operators to the com-
mutators is a bright signal from it [27, 28]. This point
has been addressed in Ref. [29] where, considering the ef-
fects of GUP on angular momentum algebra, it is shown
that the Bell’s operators square of two partite systems
changes. Based on this paper, the Bell operator and
thus its expectation value do not change as this operator
consists of operators with eigenvalues ±1, and hence, it
remains unchanged. Therefore, while the Bell’s operator
does not change, its square changes, an incompatibility.
Indeed, compared to the square of Bell’s operator, the
role of commutators (or equally, HUP) in the original
Bell’s inequality is not obvious and it is figured in the
coincidence rate version appeared in the Franson exper-
iment [3, 30, 31]. Finally, the fundamental question of
whether GUP affects Bell’s inequality and QNL or not
still needs to be studied.

Consequently, in order to answer the mentioned ques-
tion, we focus on the Franson experiment where the role
of HUP is vital to interpret the results. The paper is
structured as follows. After providing a general remarks
on the Franson experiment in section (II), the implica-
tions of the existence of a minimal length on its outcome
are addressed in Sec. (III). A summary has also been
presented in the last section.

II. FRANSON EXPERIMENT

There is a three levels quantum mechanical system in
the Franson setup, such that the highest energy level has
energy E1 and relatively long lifetime τ1, the interme-
diate state of energy E2 and lifetime τ2 ≪ τ1, and the
ground state energy E3 of very long lifetime τ3 (τ1 < τ3)
[3]. These states are labeled with states ϕ1, ϕ2, and ϕ3,
respectively [3]. In the Franson experiment, uncertainty
in the position of photons is reflected in their transit time
difference ∆T satisfying τ2 ≪ ∆T ≪ τ1 (See Ref. [3] for
more info about the setup). Finally, the fields at the
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detectors D1 and D2 are written as [3]

ϕk (x1, t) =
1

2
ϕk,0 (x1, t) +

1

2
eiφ1ϕk,0 (x1, t−∆T ) , (1)

and

ϕk (x2, t) =
1

2
ϕk,0 (x2, t) +

1

2
eiφ2ϕk,0 (x2, t−∆T ) , (2)

respectively. Here, φ1, and φ2 store the information re-
lated to the phase shifts due to the half-silvered mirrors
D1 and D2, respectively, and ∆T is assumed to be the
same for both photons [3]. In Ref. [3], Rc (the coincidence
rate between two detectors) is evaluated by

Rc = (3)

η1η2

〈

0
∣

∣

∣
ϕ†
k (x1, t)ϕ

†
k (x2, t)ϕk (x2, t)ϕk (x1, t)

∣

∣

∣
0
〉

,

where η1, η2 denote the efficiency of the corresponding
detectors, and we can briefly write

Rc =
1

16
η1η2〈0|A

†A|0〉, (4)

in which

A = ϕk,0 (x1, t)ϕk,0 (x2, t)

+ eiφ1eiφ2ϕk,0 (x1, t−∆T)ϕk,0 (x2, t−∆T) . (5)

Whenever ∆T ≪ τ1, the amplitude of detecting a pair
of particles at time t −∆T will be approximately equal
to the amplitude of detecting a pair of particles at time
t, and in fact, they have only a constant phase difference
causing [3]

ϕk,0 (x1, t)ϕk,0 (x2, t) =
∑

k1,k2

ck1
ck2

ei(k1·x1−ω1t)ei(k2·x2−ω2t), (6)

ϕk,0 (x1, t−∆T )ϕk,0 (x2, t−∆T ) =
∑

k1,k2

ck1
ck2

ei(ω1+ω2)∆T × ei(k1·x1−ω1t)ei(k2·x2−ω2t),

where ck1
, ck2

are the expansion coefficients in the Fourier
transformation and can be determined by evaluation
of system. Energy conservation yields ω1 + ω2 =
(E1 − E3) /~ + ∆ω, where E1 and E3 are the unper-
turbed energies of initial and final states, respectively.
∆ω ∼ 1

τ1
+ 1

τ3
(the uncertainty in ω1 +ω2), and its value

is much less than the individual uncertainty of ωi since
τ2 is relatively short [3], and thus

ϕk,0 (x1, t−∆T )ϕk,0 (x2, t−∆T ) (7)

= ei(E1−E3)∆T/~ϕk,0 (x1, t)ϕk,0 (x2, t) ,

leading to

Rc =
1

16
R0

[

1 + e−i(∆E∆T/~+φ1+φ2)
]

×
[

1 + ei(∆E∆T/~+φ1+φ2)
]

, (8)

in which R0 = 〈0|
∑

k1,k2
c†k1

c†k2
ck1

ck2
|0〉 is the coinci-

dence rate with the half-silvered mirrors removed (shorter
length) and ∆E = E1 − E3. Finally, one finds [3]

Rc =
1

4
R0 cos

2

(

∆E∆T/~+ φ1 + φ2

2

)

=
1

4
R0 cos

2 (φ′
1 − φ′

2) , (9)

where

φ′
1 = φ1/2, (10)

φ′
2 = − (φ2 +∆E∆T/~) /2.

III. FRANSON EXPERIMENT IN THE

PRESENCE OF MINIMUM LENGTH

In this section, we intend to study the implications
of the quantum features of gravity on Eq. (9) and thus
QNL using the perturbation theory. Now, suppose that
the quantum gravity modifications to the two emitted
photons in Franson experiment have been considered. It
means that the Hamiltonian of atoms and thus their en-
ergy levels are also perturbed by the modifications of
the QG scenarios, and thus we have ĤGUP = Ĥ + βĤp,

where Ĥp refers to the perturbed Hamiltonian in the
GUP frame, and EGUP = E + βEp for the energy levels.
Ep can be determined using the perturbation theory (up
to the desired level).
Therefore, in the language of quantum field theory and

due to the existence of minimal length, the field operator
of each photon is modified as ϕGUP

k (x) = ϕk(x)+βϕp
k(x),

where the index p denotes the correction terms in the
GUP framework [16, 24]. The time evolution of ϕGUP

k (x)
is obtained by

ϕGUP
k (x, t) = eiĤGUPt/~ϕGUP

k (x)e−iĤGUPt/~

= ϕk(x, t)− iβΓk(x, t) + βϕp
k(x, t)

+ O(β2), (11)

where Γk(x, t) = [ϕk(x, t), Ĥp]t/~.
For the counterparts of Eqs. (1) and (2), similar to the

above argument, and by following the Franson approach,
the field corresponding to the ith photon, at the detector
Di can be written as
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ϕGUP
k (xi, t) =

1

2
ϕGUP
k,0 (xi, t)

+
1

2
eiφ1ϕGUP

k,0 (xi, t−∆T) . (12)

Finally, the corresponding coincidence rate RQG
c is

achieved by

RQG
c = η′1η

′
2〈0|ϕ

GUP,†
k (x1, t)ϕ

GUP,†
k (x2, t)

× ϕGUP
k (x2, t)ϕ

GUP
k (x1, t) |0〉, (13)

summarized into

RQG
c = η′1η

′
2〈0|B

†B|0〉, (14)

in which

B = ϕk(x2, t)ϕk(x1, t) (15)

+
1

2
β

[

ϕp
k,0(x2, t)ϕk(x1, t) + eiφ2ϕp

k,0(x2, t−∆T)ϕk,0(x1, t)

− iΓk,0(x2, t)ϕk,0(x1, t)− ieiφ2Γk,0(x2, t−∆T)ϕk,0(x1, t)

+ ϕk(x2, t)ϕ
p
k,0(x1, t) + eiφ1ϕk(x2, t)ϕ

p
k,0(x1, t−∆T)

− iϕk(x2, t)Γk,0(x1, t)− ieiφ1ϕk,0(x2, t)Γk,0(x1, t−∆T)

]

.

Using the Fourier expansion, one can write

ϕp
k,0 (x1, t)ϕ

p
k,0 (x2, t) =

∑

k1,k2

c′k1
c′k2

ei(k1·x1−ω1t)ei(k2·x2−ω2t), (16)

and

Γk,0 (x1, t) Γk,0 (x2, t) =
∑

k1,k2

c′′k1
c′′k2

ei(k1·x1−ω1t)ei(k2·x2−ω2t), (17)

leading to

ϕp
k,0 (x1, t−∆T )ϕp

k,0 (x2, t−∆T ) = (18)
∑

k1,k2

c′k1
c′k2

ei(ω1+ω2)∆Tei(k1·x1−ω1t)ei(k2·x2−ω2t).

Here, c′k1
, c′k2

and c′′k1
, c′′k2

are the corresponding coeffi-
cients in the Fourier expansion.
In this manner, the corresponding energy conservation

leads to

ω1 + ω2 = ∆E/~+ β∆Ep/~, (19)

where ∆E = E3 − E1, and ∆Ep = E3,p − E1,p which
yields

RQG
c =

1

16

(

R0 + 2β(R′
1 +R′

2)

)

×
[

1 + e−i(∆E∆T/~+β∆Ep∆T/~+φ1+φ2)
]

×
[

1 + ei(∆E∆T/~+β∆Ep∆T/~+φ1+φ2)
]

, (20)

and thus

RQG
c =

1

4
RGUP

0 cos2
(

∆E∆T/~+ β∆Ep∆T/~+ φ1 + φ2

2

)

=
1

4
RGUP

0 cos2 (Φ′
1 − Φ′

2) , (21)

where RGUP
0 = R0 +2β(R′

1 +R′
2) is the coincidence rate

of the shorter length near to the Planck scale, and

R′
1 = 〈0|

∑

k1,k2

c†k1
c†k2

ck1
c′k2

|0〉,

R′
2 = 〈0|

∑

k1,k2

c†k1
c†k2

c′k1
ck2

|0〉,

Φ′
1 = φ1/2, (22)

Φ′
2 = − (φ2 +∆E∆T/~+ β∆Ep∆T/~) /2.

It is obvious that, at the limit of β −→ 0, the desired
results obtained in quantum mechanics are recovered.
Therefore, the coincidence rate stores the effects of QG,
and indeed, the existence of minimum length affects the
spectrum of the coincidence rate and thus the spectrum
of the expectation value of Bell’s operator.

IV. SUMMARY

It seems that the existence of a non-zero minimal
length is unavoidable leading to GUP (or equally, mod-
ified commutators algebra) [16, 17]. Consequently, mo-
tivated by the deep connection between HUP and the
EPR paradox leading to the emergence of QNL, and also
Ref. [29], showing that the square of Bell’s operators
formed by angular momentum operators, changes when
HUP is replaced by GUP, we tried to clarify the relation
between QNL and GUP. In order to achieve this goal,
we resorted to the Franson experiment in which the un-
certainty principle plays a crucial role in describing the
results, and obtained that GUP affects the coincidence
rate spectrum.
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