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Abstract

Classification of multipartite states aims to obtain a set of oper-

ationally useful and finite entanglement classes under the action of

either local unitary (LU) or stochastic local operation and classical

communication (SLOCC). In this work, we propose a computation-

ally simple approach to find these classes by using higher order singu-

lar value decomposition (HOSVD) and the concurrency of three lines.

Since HOSVD simultaneously diagonalizes the one-body reduced den-

sity matrices (RDM) of multipartite states, the core tensor of multi-

partite states is the pure-state representation of such simultaneously

diagonalized one-body RDM. We identified the special core tensors

of three and four qubits, which are also genuinely entangled by de-

fault. The special core tensors are further categorized into families of

states based on their first n-mode singular values, σ
(i)2
1 . The current

proposal is limited to multi-qubit system, but it scales well with large

multi-qubit systems and produces a finite number of families of states.
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1 Introduction

Being a quantum resource under the local operation and classical communica-

tion (LOCC) paradigm [1,2], numerous efforts have been dedicated to under-

stand entanglement from various perspectives and mathematical tools [3–28].

To date, even though there is no single unified approach to describe mul-

tipartite entanglement, most discussions focus around the operational as-

pects of entanglement in quantum information processing tasks. Since the

local unitary (LU) or stochastic local operation and classical communication

(SLOCC) entanglement classes of multipartite states are claimed to be infi-

nite [29, 30], the current challenge in the classification of multipartite states

is to find a computationally simple approach that gives operationally mean-

ingful and finite classification results [31, 32].

Previously [33], we showed that higher order singular value decomposition

(HOSVD) [34,35] simultaneously diagonalizes the one-body reduced density

matrices of three qubits. Furthermore, by finding all the solutions to the all-

orthogonality conditions of three qubits, we recovered all the special states of

three qubits [4]. The first n-mode singular values, σ
(n)2
1 , where n = 1, 2, 3,

can be used to plot a LU entanglement polytope similar to that in [25].

However, as the number of variables grows exponentially with the increase in

the number of subsystems, solving the all-orthogonality conditions of multi-

partite states is not a feasible approach in generalizing the methodology to

multipartite systems.

Before we proceed further, we would like to point out that from our

previous results, some special states of three qubits are specific cases to a

more generic setting. For example, the bi-separable states C|AB with the

first n-mode singular values (σ
(1)2
1 , σ

(2)2
1 , σ

(3)2
1 ) = (σ

(1)2
1 , σ

(1)2
1 , 1)

∣

∣Bi-SepC|AB

〉

= t111 |111〉 + t221 |221〉

and the three-qubit states with (σ
(1)2
1 , σ

(2)2
1 , σ

(3)2
1 ) = (1

2
, 1

2
, σ

(3)2
1 ) are specific

cases to the following Slice states,

|S1〉 = t111 |111〉 + t112 |112〉 + t221 |221〉 + t222 |222〉 ,

t̄111t112 + t̄221t222 = 0,
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where σ
(3)2
1 > σ

(1)2
1 = σ

(2)2
1 . Therefore, our current work focuses on identify-

ing the generic special states of a multipartite system since the specific cases

are inclusive to the generic special states that we identified.

In this work, we propose a computationally simple approach to identify

the special states of multi-qubit core tensors. This is important because

core tensors are also the pure-state representation of multi-qubit states when

their one-body reduced density matrices (RDM) are simultaneously diago-

nalized. Based on the concurrency of three lines [36], we convert the problem

of finding solutions to the set of all-orthogonality conditions into the prob-

lem of satisfying a set of determinants to be zero. This conversion has the

added computational advantage in that satisfying the requirements for a set

of determinants to be zero is easier than finding the solutions to a set of

polynomial equations. To do so, we define a pair of conjugate concurrent

variables (CCV) so that the one-to-one correspondence between the alge-

braic manipulations of a set of simultaneous equations and the geometrical

idea based on the concurrency of three lines is preserved. Then, we describe

a general algorithm of this approach and demonstrate it with the case of four

qubits. Even though our approach is unable to identify the generalized GHZ

states, these states have a very recognizable form.

We structure our paper as follows. In Section 2, we provide the original

definitions of matrix unfolding and HOSVD. We show that matrix unfolding

is related to the RDM of multipartite states and HOSVD simultaneously

diagonalizes the one-body RDM of multipartite states. In Section 3, we

summarize our previous results on three qubits, and show that the derivation

from our previous work is equivalent to a geometrical concept in projective

geometry, called the concurrency of three lines. By solving the concurrency

of three lines for three qubits, we identify all the special three-qubit core

tensors using this new approach. Finally, we state a general algorithm for

this approach on multi-qubit core tensors in Section 4, and demonstrate it

with the case of four qubits.
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2 Matrix unfolding and higher order singular

value decomposition

2.1 Matrix unfolding

The Hilbert space of a composite quantum system is given by the tensor

product of its subsystems’ Hilbert spaces. Because of this, the probability

amplitudes of multipartite states are elements of higher order tensors, allow-

ing us to make use of tensor decomposition in the classification of multipartite

states [20, 23, 26, 33]. In order to write down higher order tensors in a way

that obeys the matrix-tensor multiplication rules, a formalism called matrix

unfolding [34] or matricization [35] of tensors was previously introduced.

Definition 1 (Matrix unfolding [34]). Let Ψ ∈ CI1 ⊗ . . .⊗CIn ⊗ . . .⊗CIN be

an Nth-order complex tensor. The n-th matrix unfolding, Ψ(n), is a matrix

of size In× (In+1× In+2× . . .× IN × I1× I2× . . .× In−1), whereby the tensor

element ψi1i2...in...iN will be at the position with row index in and column

index

(in+1 − 1)In+2In+3 . . . INI1I2 . . . In−1 + (in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1

+ . . .+ (iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1

+ . . .+ in−1. (1)

We redefine matrix unfolding by making use of the bra-ket notation.

Definition 2 (Matrix unfolding in bra-ket notation). Let Ψ ∈ CI1 ⊗ . . . ⊗

CIn ⊗ . . . ⊗ CIN be an Nth-order complex tensor. In the bra-ket notation,

the n-th matrix unfolding, Ψ(n), rewrites Ψ into the following matrix form,

Ψ(n) =
∑

i1...iN

ψi1...iN |in〉 〈in+1 . . . iN i1 . . . in−1| .

From Definition 2, we propose the following. The proof can be found in

Appendix A.1.

Proposition 1 (Matrix unfolding and reduced density matrices). The n-th

matrix unfolding Ψ(n) of an N -th order tensor Ψ ∈ CI1 ⊗ . . .⊗CIn ⊗ . . .⊗CIN
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is related to its one-body and (n− 1)-body reduced density matrices, ρn and

ρn+1 ...N 1 ...n−1 respectively, through the following relations,

Ψ(n)Ψ
†
(n) = ρn, (2)

ΨT
(n)Ψ̄(n) = ρn+1 ...N 1 ...n−1. (3)

2.2 Higher order singular value decomposition

Next, we introduce higher order singular value decomposition (HOSVD) [34]

and its matrix unfolding variant [23, 34].

Theorem 1 (Higher order singular value decomposition [34]). Let Ψ ∈ CI1⊗

. . . ⊗ CIn ⊗ . . . ⊗ CIN be an Nth-order complex tensor. There exists a core

tensor T of Ψ and a set of unitary matrices U (1), . . . , U (n), . . . , U (N) such

that

Ψ = U (1) ⊗ U (2) ⊗ . . .⊗ U (n) ⊗ . . .⊗ U (N)T . (4)

The core tensor T is also an Nth-order complex tensor of which the sub-

tensors Tin=α, obtained by fixing the n-th index to α, have the properties

of

1. All-orthogonality : Two subtensors Tin=α and Tin=β are orthogonal for

all possible values of n, α and β, subject to α 6= β:

〈Tin=α, Tin=β〉 =
∑

i1i2...in−1in+1...iN

t̄i1i2...in−1αin+1...iN ti1i2...in−1βin+1...iN

= 0 when α 6= β; (5)

2. Ordering :

|Tin=1| ≥ |Tin=2| ≥ . . . ≥ |Tin=In| ≥ 0 (6)

for all possible values of n,
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where ti1i2...iN is the element of the tensor T . The Frobenius norm of the

subtensors |Tin=i| is given as

|Tin=i| =
√

〈Tin=i, Tin=i〉

=

√

√

√

√

I1
∑

i1=1

. . .

In−1
∑

in−1=1

In+1
∑

in+1=1

. . .

IN
∑

iN=1

t̄i1...in−1iin+1...iN ti1...in−1iin+1...iN

=

√

√

√

√

I1
∑

i1=1

. . .

In−1
∑

in−1=1

In+1
∑

in+1=1

. . .

IN
∑

iN=1

∣

∣ti1...in−1iin+1...iN

∣

∣

2
. (7)

and is called the n-mode singular value of Ψ, σ
(n)
i .

Theorem 2 (Matrix unfolding of HOSVD [23, 34]). Let Ψ ∈ C
I1 ⊗ . . . ⊗

CIn ⊗ . . . ⊗ CIN be an Nth-order complex tensor and T be its core tensor.

The matrix unfolding of Ψ and T can be obtained as

Ψ(n) = U (n)T(n)(U
(n+1) ⊗ U (n+2) ⊗ . . .⊗ U (N) ⊗ U (1) ⊗ U (2) ⊗ . . .⊗ U (n−1))T ,

(8)

where Ψ(n) and T(n) are complex matrices of size In × (In+1 × In+2 × . . . ×

IN × I1 × I2 × . . .× In−1), and U (n) are unitary matrices of size In × In.

Due to Proposition 1, we state the following. The proof can be found in

Appendix A.2.

Theorem 3 (HOSVD and one-body reduced density matrices). Let Ψ ∈

C
I1 ⊗ . . .⊗C

In ⊗ . . .⊗C
IN be an Nth-order complex tensor and T be its core

tensor. HOSVD simultaneously diagonalizes the set of one-body reduced

density matrices of multipartite states in such a way that the n-mode singu-

lar values are ordered. The all-orthogonality conditions are the off-diagonal

terms of the set of one-body reduced density matrices.

3 Concurrency of three lines and three qubits

3.1 Classification of three qubits

In this section, we briefly discuss the methodology that we have used pre-

viously in [33]. The all-orthogonality conditions of three qubits are given

6



as

t̄111t211 + t̄121t221 + t̄112t212 + t̄122t222 = 0, (9)

t̄111t121 + t̄211t221 + t̄112t122 + t̄212t222 = 0, (10)

t̄111t112 + t̄211t212 + t̄121t122 + t̄221t222 = 0. (11)

By writing t̄111 and t222 in terms of other variables,

t111 = −
t̄221(t121t212 − t122t211) + t112(|t212|

2 − |t122|
2)

t212 t̄211 − t122t̄121
, (12)

t222 =
t̄112(t121t212 − t122t211) + t221(|t121|

2 − |t211|
2)

t̄212t211 − t̄122t121
, (13)

we obtain

(t̄221t121 − t̄212t112)(t̄112t212 + t̄121t221)

+ (t̄122t112 − t̄221t211)(t̄211t221 + t̄112t122)

+ (t̄212t211 − t̄122t121)(t̄211t212 + t̄121t122) = 0. (14)

After expanding equation (14), it is possible to separate the real and imagi-

nary parts,

|t112|
2 (|t122|

2 − |t212|
2) + |t121|

2 (|t221|
2 − |t122|

2)

+ |t211|
2 (|t212|

2 − |t221|
2) = 0, (15)

t̄112t̄221(t122t211 − t121t212) + t̄121 t̄212(t112t221 − t122t211)

+ t̄122 t̄211(t121t212 − t112t221) = 0. (16)

Equation (15) is the basis to our previous work since it provides explicit

relationship between the first n-mode singular values, σ
(i)2
1 , i.e.

|t112|
2
[

σ
(1)2
1 − σ

(2)2
1

]

+ |t211|
2
[

σ
(2)2
1 − σ

(3)2
1

]

+ |t121|
2
[

σ
(3)2
1 − σ

(1)2
1

]

= 0. (17)

On the other hand, equation (16) fixes a relative phase of the three-qubit

states. Since our results are based on the first n-mode singular values σ
(i)2
1 ,

7



the relative phase does not affect our results.

Example: Consider the following state |ψ1〉,

|ψ1〉 = t111 |111〉 + t112 |112〉 + t112 |121〉 + t122 |122〉

+ t211 |211〉 + t212 |212〉 + t212 |221〉 + t222 |222〉 ,

where it satisfies one of the bi-separable conditions A|BC, t121t212 = t112t221.

Hence, equation (16) is satisfied. The all-orthogonality conditions are

t̄111t211 + 2t̄112t212 + t̄122t222 = 0,

t̄111t112 + t̄211t212 + t̄112t122 + t̄212t222 = 0.

The state |ψ1〉 has the same property (σ
(2)2
1 = σ

(3)2
1 6= σ

(1)2
1 ) as the Slice state

|S3〉,

|S3〉 = t111 |111〉 + t122 |122〉 + t211 |211〉 + t222 |222〉

with all-orthogonality condition

t̄111t211 + t̄122t222 = 0.

Under a coarser classification procedure provided by equation (17), they be-

long to the same family of states.

3.2 Concurrency of three lines

Now, let L1, L2, L3 to be three lines intersecting at one point (x, y),

L1 ≡ a1x+ b1y + c1 = 0, (18)

L2 ≡ a2x+ b2y + c2 = 0, (19)

L3 ≡ a3x+ b3y + c3 = 0, (20)

where ai, bi, ci for i = 1, 2, 3 are some coefficients and x, y are indetermi-

nates. In order to find the solution (x, y) to the set of lines, we can substitute

x from L1 and y from L2 into L3 to get

a3(b1c2 − b2c1) + b3(a2c1 − a1c2) + c3(a1b2 − a2b1) = 0. (21)
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Equation (21) can be written into a more concise form as
∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

= 0, (22)

which is called the concurrency of three lines [36]. By comparison, it is obvi-

ous that the derivation in Section 3.1 is the same as the concurrency of three

lines, with (x, y) = (t̄111, t222). Since we did not specify the underlying field

when deriving equation (21), the concurrency of three lines can be applied

to complex field as long as the inherent properties of x and y (i.e. complex

conjugate of x and y) are not being used while solving the set of equations

algebraically [37].

The biggest advantage in using the concurrency of three lines is that it is

easier to find the solutions in the determinant form (22) in contrary to the

polynomial form (21). There are two ways for a determinant to be zero,

1. At least one row (column) of the determinant is zero.

2. At least one row (column) of the determinant is linearly dependent to

the other row (column).

However, the linear dependence between rows (columns) of a determinant

can always be decomposed into a combination of the former scenario, i.e. one

row (column) of the determinant is zero. For instance, the linear dependence

L1 = k′2L2 + k′3L3, where k′i = − ki
k1

and i = 2, 3 can be written as

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

k′2a2 k′2b2 k′2c2

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

k′3a3 k′3b3 k′3c3

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

0 0 0

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

0 0 0

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

k′2a2 k′2b2 k′2c2

0 0 0

a3 b3 c3

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

k′3a3 k′3b3 k′3c3

a2 b2 c2

0 0 0

∣

∣

∣

∣

∣

∣

∣

= . . .
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Therefore, we will be able to identify all unique solutions to equation (22)

by studying only the former scenario.

Furthermore, in order to simplify the computational process, we focus

only on the minimum requirement for a determinant to be zero, i.e. when

one row (column) of the determinant is zero. This consideration does not

generate generalized GHZ states, however it can be recognized as

|GHZ〉 = t1...1 |1 . . . 1〉 + t2...2 |2 . . . 2〉 . (23)

3.3 Conjugate concurrent variables

Since the inherent properties of x and y cannot be used while solving the

all-orthogonality conditions, we can make use of the concurrency of three

lines. We formalize this idea with the following definition.

Definition 3 (Conjugate concurrent variables). Let {Li} be a set of all-

orthogonality conditions. A pair of conjugate concurrent variables (x, y)

satisfies the following two criteria:-

1. The relative phase between the conjugate concurrent variables is pre-

served throughout the all-orthogonality conditions;

2. The pair of conjugate concurrent variables must exist in every all-

orthogonality conditions.

The first criterion is stated so that we do not make use of the inherent

properties of the conjugate concurrent variables (CCV). From equations (9)

to (11), there are four pairs of CCV: (t̄111, t222), (t̄112, t221), (t̄121, t212) and

(t̄122, t211). Meanwhile, (t̄111, t̄112) is not a pair of CCV because the relative

phase between t̄111 and t̄112 changes in equation (11). One has to make use

of the inherent property of t̄112 as a complex variable to be able to solve the

all-orthogonality conditions.

The second criterion is required so that the solutions that we found will

satisfy every all-orthogonality conditions. This implies that that the current

approach is limited to multi-qubit systems. For instance, if we consider the

10



all-orthogonality conditions of a (2 × 2 × 3)-system,

t̄111t211 + t̄112t212 + t̄113t213 + t̄121t221 + t̄122t222 + t̄123t223 = 0,

t̄111t121 + t̄211t221 + t̄112t122 + t̄212t222 + t̄113t123 + t̄213t223 = 0,

t̄111t112 + t̄121t122 + t̄211t212 + t̄221t222 = 0,

t̄111t113 + t̄121t123 + t̄211t213 + t̄221t223 = 0,

t̄112t113 + t̄122t123 + t̄212t213 + t̄222t223 = 0,

we can see that some of the variables do not exist in every all-orthogonality

conditions. Therefore, we say that a pair of CCV does not exist in this

(2 × 2 × 3)-system.

3.4 Special three-qubit core tensors by concurrency of

three lines

From equations (9) to (11), the concurrency of three lines for all-orthogonality

conditions of three qubits is given by
∣

∣

∣

∣

∣

∣

∣

t211 t̄122 t̄121t221 + t̄112t212

t121 t̄212 t̄211t221 + t̄112t122

t112 t̄221 t̄211t212 + t̄121t122

∣

∣

∣

∣

∣

∣

∣

= 0, (24)

where (x, y) = (t̄111, t222). The details of our calculations will be shown in

Appendix B. The results are summarized in Table 1.

From Table 1, we can see that by considering only the minimum require-

ments to satisfy equation (24), it is enough to recover all the generic special

states of three qubits besides the generalized GHZ states,

|GHZ〉 = t111 |111〉 + t222 |222〉 . (25)

Some of the special states that we have identified are not generic because of

the ordering property of higher order singular value decomposition (HOSVD).

As an example, if we study the following three-qubit state,

|ψ〉 = t121 |121〉 + t122 |122〉 + t211 |211〉 + t212 |212〉 ,

t̄211t212 + t̄121t122 = 0,

11



the first n-mode singular values are given as

σ
(1)2
1 = |t121|

2 + |t122|
2 = σ

(2)2
2 ,

σ
(2)2
1 = |t211|

2 + |t212|
2 = σ

(1)2
2 ,

σ
(3)2
1 = |t121|

2 + |t211|
2
.

Due to the ordering property, equality is possible only when (σ
(1)2
1 , σ

(2)2
1 , σ

(3)2
1 ) =

(1
2
, 1

2
, σ

(3)2
1 ). Therefore, it is not a generic special state of three qubits.

Table 1: Special three-qubit core tensors due to the concurrency of three

lines for all-orthogonality conditions of three qubits

Row (Column) checking States

1. Column 1 = 0 |B1〉 = t111 |111〉 + t122 |122〉 + t212 |212〉 + t221 |221〉

2. Column 2 = 0 |B2〉 = t112 |112〉 + t121 |121〉 + t211 |211〉 + t222 |222〉

3. Column 3 = 0 (Non-generic) (a) t112 = t221 = 0

|ψ〉 = t121 |121〉 + t122 |122〉 + t211 |211〉 + t212 |212〉 ,

t̄211t212 + t̄121t122 = 0

(b) t121 = t212 = 0

|ψ〉 = t112 |112〉+ t122 |122〉 + t211 |211〉 + t221 |221〉 ,

t̄211t221 + t̄112t122 = 0

(c) t122 = t211 = 0

|ψ〉 = t112 |112〉 + t121 |121〉 + t212 |212〉 + t221 |221〉 ,

t̄121t221 + t̄112t212 = 0

4. Row 1 = 0 (a) t111 = t222 = 0

Same as 3(c)

(b) t112 = t221 = 0

|S2〉 = t111 |111〉 + t121 |121〉 + t212 |212〉 + t222 |222〉 ,

t̄111t121 + t̄212t222 = 0

(c) t121 = t212 = 0

|S1〉 = t111 |111〉 + t112 |112〉 + t221 |221〉 + t222 |222〉 ,

t̄111t112 + t̄221t222 = 0

5. Row 2 = 0 (a) t111 = t222 = 0

Same as 3(b)

(b) t112 = t221 = 0

|S3〉 = t111 |111〉 + t122 |122〉 + t211 |211〉 + t222 |222〉 ,

t̄111t211 + t̄122t222 = 0

(c) t121 = t212 = 0

Same as 4 (c)

6. Row 3 = 0 (a) t111 = t222 = 0

Same as 3(a)

(b) t122 = t211 = 0

Same as 4 (b)

(c) t121 = t212 = 0

Same as 5 (c)

12



4 Four qubits and beyond

4.1 Generalization to multi-qubit states

For multi-qubit states, we can generalize our approach by the following al-

gorithm.

1. Select a pair of conjugate concurrent variables (CCV) and formulate

the concurrency of three lines accordingly;

2. Perform row (column) checking on the concurrency of three lines;

3. For a system of all-orthogonality conditions without a pair of CCV,

find its family of states;

4. For a system of all-orthogonality conditions with a pair of CCV, select

another pair of CCV and formulate the next iteration of concurrency

of three lines accordingly;

5. The process stops when at most two all-orthogonality conditions are

left.

There are n number of all-orthogonality conditions for n-qubit states. In

order to formulate the concurrency of three lines for the set of all-orthogonality

conditions, we need to exhaust all the possible combinations between the n

number of all-orthogonality conditions. This is a combinatorial problem of

selecting three out of n-th all-orthogonality conditions, therefore the num-

ber of simultaneous concurrency of three lines that we can form is given by
n!

3!(n−3)!
.

In order to explore all the minimum requirements for the set of concur-

rency of three lines to be true, we need to have at least n−2 number of rows

to be zero during the row checking. This is another combinatorial problem

of selecting n − 2 out of n rows, which requires n!
2!(n−2)!

of row checking in

total for one iteration. For column checking, we always need three checks

regardless of the number of simultaneous concurrency of three lines that we

have.
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n-qubit system

All-orthogonality conditions

Matrix unfoldings

Conjugate concurrent variables (CCV)

CCV Family of states

CCV

Concurrency of three lines

Row iterations

Column iterations

Row/Column iteration

False

True

Figure 1: Flowchart for the identification of special multi-qubit states

Since we explore every requirements to satisfy the concurrency of three

lines for the set of all-orthogonality conditions by going through several iter-

ations, the choice of CCV does not matter.
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4.2 Special four-qubit core tensors by concurrency of

three lines

The all-orthogonality conditions for four qubits are given as

t̄1111t2111 + t̄1112t2112 + t̄1121t2121 + t̄1122t2122 + t̄1211t2211 + t̄1212t2212

+ t̄1221t2221 + t̄1222t2222 = 0, (26)

t̄1111t1211 + t̄2111t2211 + t̄1112t1212 + t̄2112t2212 + t̄1121t1221 + t̄2121t2221

+ t̄1122t1222 + t̄2122t2222 = 0, (27)

t̄1111t1121 + t̄1211t1221 + t̄2111t2121 + t̄2211t2221 + t̄1112t1122 + t̄1212t1222

+ t̄2112t2122 + t̄2212t2222 = 0, (28)

t̄1111t1112 + t̄1121t1122 + t̄1211t1212 + t̄1221t1222 + t̄2111t2112 + t̄2121t2122

+ t̄2211t2212 + t̄2221t2222 = 0. (29)

We can formulate four concurrency of three lines from equations (26) to

(29). By selecting t̄1111 and t2222 as the pair of conjugate concurrent variables

(CCV), the first iteration is given by

∣

∣

∣

∣

∣

∣

∣

t2111 t̄1222 c1

t1211 t̄2122 c2

t1121 t̄2212 c3

∣

∣

∣

∣

∣

∣

∣

= 0, (30)

∣

∣

∣

∣

∣

∣

∣

t2111 t̄1222 c1

t1211 t̄2122 c2

t1112 t̄2221 c4

∣

∣

∣

∣

∣

∣

∣

= 0, (31)

∣

∣

∣

∣

∣

∣

∣

t2111 t̄1222 c1

t1121 t̄2212 c3

t1112 t̄2221 c4

∣

∣

∣

∣

∣

∣

∣

= 0, (32)

∣

∣

∣

∣

∣

∣

∣

t1211 t̄2122 c2

t1121 t̄2212 c3

t1112 t̄2221 c4

∣

∣

∣

∣

∣

∣

∣

= 0, (33)
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where

c1 = t̄1112t2112 + t̄1121t2121 + t̄1122t2122 + t̄1211t2211 + t̄1212t2212 + t̄1221t2221,

(34)

c2 = t̄2111t2211 + t̄1112t1212 + t̄2112t2212 + t̄1121t1221 + t̄2121t2221 + t̄1122t1222,

(35)

c3 = t̄1211t1221 + t̄2111t2121 + t̄2211t2221 + t̄1112t1122 + t̄1212t1222 + t̄2112t2122,

(36)

c4 = t̄1121t1122 + t̄1211t1212 + t̄1221t1222 + t̄2111t2112 + t̄2121t2122 + t̄2211t2212.

(37)

As mentioned in Section 4.1, we need to allow two rows to be zero in

order to minimally satisfy the simultaneous concurrency of three lines from

equations (30) to (33). We need to perform six row-checkings, i.e. rows

(1-2), (1-3), (1-4), (2-3), (2-4) and (3-4). The number of column checking we

need to perform is 3. To summarize, we performed a total of 73 of row and

column checking across 3 iterations for four qubits. We used Mathematica

to perform all the computational tasks.

Our results can be summarized as follows:-

Table 2: Special four-qubit core tensors due to the concurrency of three lines

for all-orthogonality conditions

Cases States

1. σ
(1)2
1 6= σ

(2)2
1 6= σ

(3)2
1 6= σ

(4)2
1 |ψ〉 = t1111 |1111〉+t1122 |1122〉+t1212 |1212〉+t1221 |1221〉+t2112 |2112〉

+t2121 |2121〉 + t2211 |2211〉 + t2222 |2222〉

|ψ〉 = t1112 |1112〉+t1121 |1121〉+t1211 |1211〉+t1222 |1222〉+t2111 |2111〉

+t2122 |2122〉 + t2212 |2212〉 + t2221 |2221〉

|ψ〉 = t1122 |1122〉+t1212 |1212〉+t1221 |1221〉+t2112 |2112〉+t2121 |2121〉

+t2211 |2211〉

|ψ〉 = t1111 |1111〉+t1122 |1122〉+t1212 |1212〉+t2112 |2112〉+t2221 |2221〉

|ψ〉 = t1111 |1111〉+t1122 |1122〉+t1221 |1221〉+t2121 |2121〉+t2212 |2212〉

|ψ〉 = t1111 |1111〉+t1212 |1212〉+t1221 |1221〉+t2122 |2122〉+t2211 |2211〉

|ψ〉 = t1112 |1112〉+t1211 |1211〉+t1222 |1222〉+t2121 |2121〉+t2212 |2212〉

|ψ〉 = t1121 |1121〉+t1212 |1212〉+t2111 |2111〉+t2122 |2122〉+t2221 |2221〉

|ψ〉 = t1112 |1112〉+t1221 |1221〉+t2121 |2121〉+t2211 |2211〉+t2222 |2222〉

|ψ〉 = t1121 |1121〉+t1212 |1212〉+t2112 |2112〉+t2211 |2211〉+t2222 |2222〉

|ψ〉 = t1122 |1122〉+t1211 |1211〉+t2112 |2112〉+t2121 |2121〉+t2222 |2222〉
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2. σ
(i)2
1 = σ

(j)2
1 , i 6= j (a) σ

(1)2
1 = σ

(2)2
1

|ψ〉 = t1111 |1111〉 + t1112 |1112〉 + t1121 |1121〉 + t1122 |1122〉

+t2211 |2211〉 + t2212 |2212〉 + t2221 |2221〉 + t2222 |2222〉 ,

t̄1111t1121 + t̄1112t1122 + t̄2211t2221 + t̄2212t2222 = 0,

t̄1111t1112 + t̄1121t1122 + t̄2211t2212 + t̄2221t2222 = 0

(b) σ
(1)2
1 = σ

(3)2
1

|ψ〉 = t1111 |1111〉 + t1112 |1112〉 + t1211 |1211〉 + t1212 |1212〉

+t2121 |2121〉 + t2122 |2122〉 + t2221 |2221〉 + t2222 |2222〉 ,

t̄1111t1211 + t̄1112t1212 + t̄2121t2221 + t̄2122t2222 = 0,

t̄1111t1112 + t̄1211t1212 + t̄2121t2122 + t̄2221t2222 = 0

(c) σ
(1)2
1 = σ

(4)2
1

|ψ〉 = t1111 |1111〉 + t1121 |1121〉 + t1211 |1211〉 + t1221 |1221〉

+t2112 |2112〉 + t2122 |2122〉 + t2212 |2212〉 + t2222 |2222〉 ,

t̄1111t1211 + t̄1121t1221 + t̄2112t2212 + t̄2122t2222 = 0,

t̄1111t1121 + t̄1211t1221 + t̄2112t2122 + t̄2212t2222 = 0

(d) σ
(2)2
1 = σ

(3)2
1

|ψ〉 = t1111 |1111〉 + t1112 |1112〉 + t1221 |1221〉 + t1222 |1222〉

+t2111 |2111〉 + t2112 |2112〉 + t2221 |2221〉 + t2222 |2222〉 ,

t̄1111t2111 + t̄1112t2112 + t̄1221t2221 + t̄1222t2222 = 0,

t̄1111t1112 + t̄1221t1222 + t̄2111t2112 + t̄2221t2222 = 0

(e) σ
(2)2
1 = σ

(4)2
1

|ψ〉 = t1111 |1111〉 + t1121 |1121〉 + t1212 |1212〉 + t1222 |1222〉

+t2111 |2111〉 + t2121 |2121〉 + t2212 |2212〉 + t2222 |2222〉 ,

t̄1111t2111 + t̄1121t2121 + t̄1212t2212 + t̄1222t2222 = 0,

t̄1111t1121 + t̄1212t1222 + t̄2111t2121 + t̄2212t2222 = 0

(f) σ
(3)2
1 = σ

(4)2
1

|ψ〉 = t1111 |1111〉 + t1122 |1122〉 + t1211 |1211〉 + t1222 |1222〉

+t2111 |2111〉 + t2122 |2122〉 + t2211 |2211〉 + t2222 |2222〉 ,

t̄1111t2111 + t̄1122t2122 + t̄1211t2211 + t̄1222t2222 = 0,

t̄1111t1211 + t̄1122t1222 + t̄2111t2211 + t̄2122t2222 = 0

3. σ
(i)2
1 = σ

(j)2
1 , σ

(k)2
1 = σ

(l)2
1 , (a) σ

(1)2
1 = σ

(2)2
1 , σ

(3)2
1 = σ

(4)2
1

i 6= j 6= k 6= l |ψ〉 = t1111 |1111〉 + t1122 |1122〉 + t2211 |2211〉 + t2222 |2222〉

(b) σ
(1)2
1 = σ

(3)2
1 , σ

(2)2
1 = σ

(4)2
1

|ψ〉 = t1111 |1111〉 + t1212 |1212〉 + t2121 |2121〉 + t2222 |2222〉

(c) σ
(1)2
1 = σ

(4)2
1 , σ

(2)2
1 = σ

(3)2
1

|ψ〉 = t1111 |1111〉 + t1221 |1221〉 + t2112 |2112〉 + t2222 |2222〉

4. σ
(i)2
1 = σ

(j)2
1 = σ

(k)2
1 , (a) σ

(1)2
1 = σ

(2)2
1 = σ

(3)2
1

i 6= j 6= k |ψ〉 = t1111 |1111〉 + t1112 |1112〉 + t2221 |2221〉 + t2222 |2222〉 ,

t̄1112t1111 + t̄2222t2221 = 0

(b) σ
(1)2
1 = σ

(2)2
1 = σ

(4)2
1

|ψ〉 = t1111 |1111〉 + t1121 |1121〉 + t2212 |2212〉 + t2222 |2222〉 ,

t̄1111t1121 + t̄2212t2222 = 0

(c) σ
(1)2
1 = σ

(3)2
1 = σ

(4)2
1

|ψ〉 = t1111 |1111〉 + t1211 |1211〉 + t2122 |2122〉 + t2222 |2222〉 ,

t̄1111t1211 + t̄2122t2222 = 0

(d) σ
(2)2
1 = σ

(3)2
1 = σ

(4)2
1

|ψ〉 = t1111 |1111〉 + t1222 |1222〉 + t2111 |2111〉 + t2222 |2222〉 ,

t̄1111t2111 + t̄1222t2222 = 0
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As expected, we did not recover the generalized GHZ states of four qubits

by using this approach, however it is recognized as

|GHZ〉 = t1111 |1111〉 + t2222 |2222〉 , (38)

with the first n-mode singular values σ
(1)2
1 = σ

(2)2
1 = σ

(3)2
1 = σ

(4)2
1 .

5 Conclusion

In this work, we discussed how the matrix unfolding of a multipartite state

is related to its reduced density matrices, and how the higher order singular

value decomposition (HOSVD) is related to the simultaneous diagonalization

of one-body reduced density matrices (RDM). While these results are not

new and have been discussed in the past (for example, the A-BC, B-AC and

C-AB bipartite decomposition of three qubits [38]; tensor flattening [32];

trace decomposition [15,16]; simultaneous diagonalization of one-body RDM

due to the momentum map and Cartan subalgebra [18]), we showed these

results from the perspectives of matrix unfolding and HOSVD.

From our previous work [33], we solved for the solutions to the set of all-

orthogonality conditions for three qubits and obtained some results equiv-

alent to the local unitary (LU) classification of three qubits [4]. Stemming

from the same methodology, we proposed a simpler coarse-grained method

to identify special multi-qubit core tensors by using the concurrency of three

lines. A detailed study on the special core tensors based on their entangle-

ment and geometrical properties is an interesting future direction we wish to

pursue.
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[28] A. Sawicki, T. Maciażek, K. Karnas, K. Kowalczyk-Murynka, M. Kuś,
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A Proofs to Proposition 1 and Theorem 3

A.1 Proposition 1

Proposition 1 (Matrix unfolding and reduced density matrices). The n-th

matrix unfolding Ψ(n) of an N -th order tensor Ψ ∈ C
I1 ⊗ . . .⊗C

In ⊗ . . .⊗C
IN

is related to its one-body and (n−1)-body reduced density matrices through

the following relations respectively,

Ψ(n)Ψ
†
(n) = ρn, (39)

ΨT
(n)Ψ̄(n) = ρn+1 ...N 1 ...n−1. (40)

Proof. First, we generalize the partial trace operation to multipartite states

Trn(|i1 . . . iN 〉 〈j1 . . . jN |)

= |i1 . . . in−1in+1 . . . iN 〉 〈j1 . . . jn−1jn+1 . . . jN |Tr(|in〉 〈jn|)

= |i1 . . . in−1in+1 . . . iN 〉 〈j1 . . . jn−1jn+1 . . . jN | 〈in|in〉〈jn|in〉

= 〈jn|in〉 |i1 . . . in−1in+1 . . . iN〉 〈j1 . . . jn−1jn+1 . . . jN |

= δinjn |i1 . . . in−1in+1 . . . iN〉 〈j1 . . . jn−1jn+1 . . . jN | (41)

such that the (n− 1)-body reduced density matrix is given by

ρ1 ...n−1n+1...N

=
∑

I

∑

J

ψi1...in...iN ψ̄j1...in...jN |i1 . . . in−1in+1 . . . iN 〉 〈j1 . . . jn−1jn+1 . . . jN | ,

where I and J are the index sets.

Permutation matrices can act on the (n−1)-body reduced density matrix

so that the labeling of qubits can be rearranged. Particularly, we want a cyclic

permutation in such a way that qubits labeled 1 to n − 1 are permuted to
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the back,

Pπ (ρ1 ...n−1n+1...N)PT
π

= ρn+1 ...N 1 ...n−1

=
∑

I

∑

J

ψi1...in...iN ψ̄j1...in...jNPπ |i1 . . . in−1in+1 . . . iN〉 〈j1 . . . jn−1jn+1 . . . jN |P
T
π

=
∑

I

∑

J

ψi1...in...iN ψ̄j1...in...jN |in+1 . . . iN i1 . . . in−1〉 〈jn+1 . . . jNj1 . . . jn−1|

= ΨT
(n)Ψ̄(n),

where Pπ is the matrix for the desired permutation and Ψ(n) is the n-th

matrix unfolding of Ψ.

In addition, one can perform partial trace operation N − 1 times on N -

partite states to obtain a set of one-body reduced density matrices. From

equation (41), every time an n-partial trace operation is performed, a Kro-

necker delta δinjn will be produced. Thus, the one-body reduced density

matrices will have the following generic form,

ρn =
∑

I

∑

J

ψi1...in...iN ψ̄i1...jn...iN |in〉 〈jn| = Ψ(n)Ψ
†
(n). (42)

A.2 Theorem 3

Theorem 3 (HOSVD and one-body reduced density matrices). Let Ψ ∈

CI1 ⊗ . . . ⊗ CIn ⊗ . . . ⊗ CIN be an Nth-order complex tensor and T be its

core tensor. HOSVD simultaneously diagonalizes the set of one-body reduced

density matrices of multipartite states in such a way that the n-mode singular

values are ordered.

Proof. From equation (42), the summation of the two index sets I and J is

between two subtensors Ψin and Ψjn. Due to Theorem 2, we can write

Ψ(n)Ψ
†
(n) = ρn = U (n)T(n)T

†
(n)U

(n)† = U (n)ρdnU
(n)†, (43)

where ρdn = T(n)T
†
(n) is the n-th diagonalized one-body reduced density ma-

trix. The one-body reduced density matrix is diagonalized because when

24



in = jn, we obtain the square of n-mode singular values, σ
(n)2
i , whereas when

in 6= jn, we have the all-orthogonality conditions, which are zero due to

HOSVD.

B Special three-qubit core tensors by concur-

rency of three lines

By definition, the all-orthogonality conditions of three qubits are

t̄111t211 + t̄121t221 + t̄112t212 + t̄122t222 = 0, (44)

t̄111t121 + t̄211t221 + t̄112t122 + t̄212t222 = 0, (45)

t̄111t112 + t̄211t212 + t̄121t122 + t̄221t222 = 0. (46)

By writing t̄111 and t222 in terms of other unknowns, we can reformulate the

solutions to the above all-orthogonality conditions in the form of concurrency

of three lines,

∣

∣

∣

∣

∣

∣

∣

t211 t̄122 t̄121t221 + t̄112t212

t121 t̄212 t̄211t221 + t̄112t122

t112 t̄221 t̄211t212 + t̄121t122

∣

∣

∣

∣

∣

∣

∣

= 0, (47)

where (x, y) = (t̄111, t222). Now, we study all possible solutions to the above

determinant.

B.1 Column 1 = 0: t112 = t121 = t211 = 0

We have

t̄122t222 = 0, (48)

t̄212t222 = 0, (49)

t̄221t222 = 0. (50)

Let t222 = 0, we have |B1〉 = t111 |111〉 + t122 |122〉 + t212 |212〉 + t221 |221〉.
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B.2 Column 2 = 0: t122 = t212 = t221 = 0

We have

t̄111t211 = 0, (51)

t̄111t121 = 0, (52)

t̄111t112 = 0. (53)

Let t111 = 0, we have |B2〉 = t112 |112〉 + t121 |121〉 + t211 |211〉 + t222 |222〉.

B.3 Column 3 = 0

We have

t̄121t221 + t̄112t212 = 0, (54)

t̄211t221 + t̄112t122 = 0, (55)

t̄211t212 + t̄121t122 = 0, (56)

in addition to the original all-orthogonality conditions that have to be satis-

fied, which are reduced to

t̄111t211 + t̄122t222 = 0, (57)

t̄111t121 + t̄212t222 = 0, (58)

t̄111t112 + t̄221t222 = 0. (59)

From equations (57) and (59), since we are looking for minimum require-

ments to satisfy the set of equations, we have to let t111 = t222 = 0. From

equations (54) and (55), we have

t̄112

t221
= −

t̄121

t212
= −

t̄211

t122
, (60)

but

t̄121

t212
= −

t̄211

t122
(61)

from equation (56). In order to resolve this contradiction, we consider the

following possibilities:-
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1. t112 = t221 = 0

|ψ〉 = t121 |121〉+t122 |122〉+t211 |211〉+t212 |212〉 , t̄211t212+ t̄121t122 = 0;

σ
(1)2
1 = σ

(3)2
1 = |t121|

2 + |t122|
2
, σ

(2)2
1 = σ

(1)2
2 = |t211|

2 + |t212|
2.

From the ordering property of higher order singular value decompo-

sition, since σ
(2)2
1 is the largest 2-mode singular value, the only way

σ
(2)2
1 = σ

(1)2
2 can be satisfied is when σ

(2)2
1 = 1

2
, resulting to σ

(1)2
1 =

σ
(2)2
1 = σ

(3)2
1 = 1

2
. This is not a generic special state that we are

looking for.

2. t121 = t212 = 0

|ψ〉 = t112 |112〉+t122 |122〉+t211 |211〉+t221 |221〉 , t̄211t221+ t̄112t122 = 0;

σ
(1)2
1 = σ

(2)2
1 = |t112|

2 + |t122|
2
, σ

(3)2
1 = σ

(1)2
2 = |t211|

2 + |t221|
2.

From the ordering property of higher order singular value decompo-

sition, since σ
(3)2
1 is the largest 3-mode singular value, the only way

σ
(3)2
1 = σ

(1)2
2 can be satisfied is when σ

(3)2
1 = 1

2
, resulting to σ

(1)2
1 =

σ
(2)2
1 = σ

(3)2
1 = 1

2
. This is not a generic special state that we are

looking for.

3. t122 = t211 = 0

|ψ〉 = t112 |112〉+t121 |121〉+t212 |212〉+t221 |221〉 , t̄121t221+ t̄112t212 = 0;

σ
(1)2
1 = σ

(2)2
1 = |t112|

2 + |t121|
2
, σ

(3)2
1 = σ

(2)2
2 = |t121|

2 + |t221|
2.

From the ordering property of higher order singular value decompo-

sition, since σ
(3)2
1 is the largest 3-mode singular value, the only way

σ
(3)2
1 = σ

(2)2
2 can be satisfied is when σ

(3)2
1 = 1

2
, resulting to σ

(1)2
1 =

σ
(2)2
1 = σ

(3)2
1 = 1

2
. This is not a generic special state that we are

looking for.

B.4 Row 1 = 0

We have

t̄112t212 + t̄121t221 = 0, (62)

t̄111t121 + t̄212t222 = 0, (63)

t̄111t112 + t̄221t222 = 0. (64)
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From equations (63) and (64), we have

t̄111

t222
= −

t̄212

t121
= −

t̄221

t112
, (65)

but

t̄212

t121
= −

t̄221

t112
(66)

from equation (62). In order to resolve this contradiction, we consider the

following possibilities:-

1. t111 = t222 = 0

|ψ〉 = t112 |112〉+t121 |121〉+t212 |212〉+t221 |221〉 , t̄121t221+ t̄112t212 = 0;

σ
(1)2
1 = σ

(2)2
1 = |t112|

2 + |t121|
2
, σ

(3)2
1 = σ

(2)2
2 = |t121|

2 + |t221|
2.

From the ordering property of higher order singular value decompo-

sition, since σ
(3)2
1 is the largest 3-mode singular value, the only way

σ
(3)2
1 = σ

(2)2
2 can be satisfied is when σ

(3)2
1 = 1

2
, resulting to σ

(1)2
1 =

σ
(2)2
1 = σ

(3)2
1 = 1

2
. This is not a generic special state that we are

looking for.

2. t112 = t221 = 0

|S2〉 = t111 |111〉+t121 |121〉+t212 |212〉+t222 |222〉 , t̄111t121+t̄212t222 = 0.

3. t121 = t212 = 0

|S1〉 = t111 |111〉+t112 |112〉+t221 |221〉+t222 |222〉 , t̄111t112+t̄221t222 = 0.

B.5 Row 2 = 0

We have

t̄211t221 + t̄112t122 = 0, (67)

t̄111t211 + t̄122t222 = 0, (68)

t̄111t112 + t̄221t222 = 0. (69)

From equations (68) and (69), we have

t̄111

t222
= −

t̄122

t211
= −

t̄221

t112
, (70)
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but

t̄122

t211
= −

t̄221

t112
(71)

from equation (67). In order to resolve this contradiction, we consider the

following possibilities:-

1. t111 = t222 = 0

|ψ〉 = t121 |121〉+t122 |122〉+t211 |211〉+t212 |212〉 , t̄211t212+ t̄121t122 = 0;

σ
(1)2
1 = σ

(3)2
1 = |t121|

2 + |t122|
2
, σ

(2)2
1 = σ

(1)2
2 = |t211|

2 + |t212|
2.

From the ordering property of higher order singular value decompo-

sition, since σ
(2)2
1 is the largest 2-mode singular value, the only way

σ
(2)2
1 = σ

(1)2
2 can be satisfied is when σ

(2)2
1 = 1

2
, resulting to σ

(1)2
1 =

σ
(2)2
1 = σ

(3)2
1 = 1

2
. This is not a generic special state that we are

looking for.

2. t122 = t211 = 0

|S3〉 = t111 |111〉+t122 |122〉+t211 |211〉+t222 |222〉 , t̄111t211+t̄122t222 = 0.

3. t122 = t211 = 0

|S1〉 = t111 |111〉+t112 |112〉+t221 |221〉+t222 |222〉 , t̄111t112+t̄221t222 = 0.

B.6 Row 3 = 0

We have

t̄211t212 + t̄121t122 = 0, (72)

t̄111t211 + t̄122t222 = 0, (73)

t̄111t121 + t̄212t222 = 0. (74)

From equations (73) and (74), we have

t̄111

t222
= −

t̄122

t211
= −

t̄212

t121
, (75)

but

t̄122

t211
= −

t̄212

t121
(76)
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from equation (72). In order to resolve this contradiction, we consider the

following possibilities:-

1. t111 = t222 = 0

|ψ〉 = t112 |112〉+t122 |122〉+t211 |211〉+t221 |221〉 , t̄211t221+ t̄112t122 = 0;

σ
(1)2
1 = σ

(2)2
1 = |t112|

2 + |t122|
2
, σ

(3)2
1 = σ

(1)2
2 = |t211|

2 + |t221|
2.

From the ordering property of higher order singular value decompo-

sition, since σ
(3)2
1 is the largest 3-mode singular value, the only way

σ
(3)2
1 = σ

(1)2
2 can be satisfied is when σ

(3)2
1 = 1

2
, resulting to σ

(1)2
1 =

σ
(2)2
1 = σ

(3)2
1 = 1

2
. This is not a generic special state that we are

looking for.

2. t122 = t211 = 0

|S2〉 = t111 |111〉+t121 |121〉+t212 |212〉+t222 |222〉 , t̄111t121+t̄212t222 = 0.

3. t121 = t212 = 0

|S3〉 = t111 |111〉+t122 |122〉+t211 |211〉+t222 |222〉 , t̄111t211+t̄122t222 = 0.
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