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Abstract The magnetic Otto thermal machine based on a two-spin-1/2 XYZ
working fluid in the presence of an inhomogeneous magnetic field and anti-
symmetric Dzyaloshinsky–Moriya (DM) and symmetric Kaplan–Shekhtman–
Entin-Wohlman–Aharony (KSEA) interactions is considered. Its possible modes
of operation are found and classified. The efficiencies of engines at maximum
power are estimated for various choices of model parameters. There are cases
when these efficiencies exceed the Novikov value. New additional points of local
minima of the total work are revealed and the mechanism of their occurrence
is analyzed.

Keywords Quantum thermodynamics · Quantum adiabaticity · Otto cycle ·
Carnot and Novikov efficiencies · Nonclassical correlations

1 Introduction

In 1955 Prokhorov and Basov [1,2,3], and later Bloembergen [4] proposed
a three-level maser scheme with electromagnetic pump to obtain population

E. I. Kuznetsova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian
Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
E-mail: kuznets@icp.ac.ru

M. A. Yurischev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian
Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
E-mail: yur@itp.ac.ru

S. Haddadi
School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-
5531, Tehran, Iran
and
Saeed’s Quantum Information Group, P.O. Box 19395-0560, Tehran, Iran
E-mail: saeed@ssqig.com

http://arxiv.org/abs/2301.07987v1


2 Elena I. Kuznetsova et al.

inversion, which could lead to negative absorption. This scheme turned out
to be very effective and was successfully implemented in masers [5,6,7] (and
then in laser [8]). Shortly after, Scovil and Schulz-DuBois came to a conclusion
that “three-level masers can be regarded as heat engines”, and showed that
“the limiting efficiency of a 3-level maser is that of a Carnot engine” [9] (see
also [10,11,12,13,14,15]). The induced (stimulated) emission in such a picture
plays a role of the work output of heat engine, which operates between a hot
pump temperature and a low relaxation bath temperature. So a three-level
maser, as interpreted by Scovil and Schulz-DuBois, was the first example of a
quantum heat engine and has become an important step in the development
of quantum thermodynamics.

Quantum thermodynamics, which grew out of the classical Carnot theory
[16], is based on the quantum-mechanical principles and deals with conditions
of conservation and conversion of such forms of energy as heat and mechani-
cal work [17,18,19,20,21] (for a historical review see, e.g., [22]). Its important
branch is the study of quantum cyclic heat engines that produce work us-
ing quantum matter as a working medium. There are many thermodynamic
cycles [23,24]. One of the most known among them is the Carnot cycle. It
consists of isentropic compression and expansion and isothermal heat addition
and rejection. All the processes that compose the ideal Carnot engine can be
reversed, in which case it becomes a heat pump or refrigerator. The Carnot
cycle provides an upper limit to the efficiency that any thermodynamic engine
can achieve when converting heat to work, or vice versa.

Another important cycle is the Otto one. It is an idealized thermodynamic
cycle that describes the operation of a spark-ignited piston engine in automo-
biles. The Otto cycle consists of four processes (strokes): two adiabatic ones,
where there is no heat exchange and two isochoric ones, where there is no work
exchange. Below, we will study magnetic quantum Otto cycles in which the
“expansion” and “compression” of energy levels of the thermally isolated work-
ing fluid are performed during isochoric processes where work is the change
in the average energy due to a change in external control parameters of the
Hamiltonian of the system.

The magnetic Otto cycles and heat machines operating on spin quan-
tum fluid have been studied by many researches (see Ref. [25] and references
therein). As a working substance one takes spin magnetic systems with Heisen-
berg pair and multi-spin non-local collective interactions. Much attention has
been paid to cases when spin working medium involves Dzyaloshinsky-Moriya
(DM) couplings [26,27,28]. However, we are motivated to extend such studies
and include in the consideration also Kaplan–Shekhtman–Entin-Wohlman–
Aharony (KSEA) interactions [29,30], which are symmetric in contrast to the
DM ones.

The structure of the paper is as follows. In Sect. 2, we briefly review quan-
tum Otto cycles composed of two quantum adiabatic stages and two isochoric
coupling to thermal baths (reservoirs). In Sect. 3, we describe the model of
working medium used. Sect. 4 is devoted to the description of results obtained
and their discussion. Finally, our main results are summarized in Sect 5.
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2 Preliminaries

Before we start presenting our results, we should provide some necessary def-
initions and expressions used in this paper.

Let there be a system with Hamiltonian H , and its density operator ρ sat-
isfies, say, the quantum Liouville–von Neumann or Lindblad master equation,
or has a thermal equilibrium Gibbs form. Here we will consider the latter case,
that is

ρ =
1

Z
exp(−βH), (1)

where Z = Tr exp(−βH) is the partition function and β = 1/kBT , wherein
T is the temperature, and the Boltzmann constant kB is assumed to be equal
to one for simplicity. The operator ρ satisfies the following conditions: ρ† = ρ,
ρ ≥ 0, and Trρ = 1. Next, F = −T lnZ is the Helmholtz free energy and
S = −∂F/∂T denotes the entropy of the system.

The internal energy of the system is given as (see, e.g., [19])

U = 〈H〉 =
∑

n

pnEn, (2)

where En are the energy levels and the density-matrix eigenvalues

pn(T ) =
1

Z(T )
exp(−En/T ) (3)

represent the occupation probabilities of energy levels at the temperature T .
From here, in accord with the first law of thermodynamics, it follows that
during infinitesimal process the energy change equals [31]

dU =
∑

n

(Endpn + pndEn) = δQ+ δW, (4)

where
δQ =

∑

n

Endpn (5)

equals the heat transferred and

δW =
∑

n

pndEn (6)

is the work done.
Note that positive heat, Q > 0, means that heat is transferred to the

working body, and its negative sign Q < 0 means that heat, on the contrary,
leaves the body. Similarly for the work. Positive amount of work, δW > 0,
corresponds to the work done on a given body by external forces, while negative
work, δW < 0, means that the body itself does work on some external object.

A cycle of the quantumOtto heat machine consists of four steps (see Fig. 1),
namely, two adiabatic processes, where there is no heat exchange and two so-
called isochoric (isomagnetic) ones, where there is no work exchange [17,19].
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Fig. 1 (Color online) Quantum Otto cycle in the En− pn plane. The cycle consists of two
adiabatic (AB and CD) and two isochoric (BC and DA) processes

All processes are assumed to be sufficiently slow (quasistatic) and the quan-
tum adiabatic theorem holds [32,33,34,35,36,37]. According to this theorem,
the level populations are invariant during the course of a quantum adiabatic
process and, consequently, the von Neumann entropy remains unchanged. On
the other hand, the classical adiabatic process is in equilibrium and character-
ized by a certain temperature at any given time, but not necessarily require
that the occupation probabilities remain constant. The corresponding temper-
atures can be found, for example, from the Gibbs entropy invariance condition
[25,38]. Notice that the classical adiabatic theorem is a sequence of quantum
adiabatic theorem, but the converse is not true in general.

Next, the cycle node with the lowest temperature Tc can naturally be
referred to the cold bath, and the node with the highest temperature Th to
the hot one. Accordingly, the heat from or to the cold and hot baths will be
denoted as Qc and Qh, respectively.

Let us now consider in detail the Otto cycle shown in Fig. 1. It includes
four following strokes.

First stroke (AB). The working medium at thermal equilibrium with the
cold bath in A at the temperature TA = Tc is isolated from thermal reser-
voir and undergoes an adiabatic compression (magnetization). Energy level
parameters (spacings between energy levels) are increased, but the occupation
probabilities stay unchanged. The work WA→B = Win is performed on the
working medium during this step:

WA→B =
∑

n

∫ B

A

pndEn =
∑

n

pAn (E
f
n − Ei

n), (7)

where Ei
n and Ef

n are the initial and final values of energy levels, respectively,
and pAn = pn(TA) is the occupation probability by the temperature at the
point A.
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Second stroke (BC). The system is brought into thermal contact with the
hot bath C under unchanged its energy structure. This process is irreversible,
and the occupation probabilities change to new equilibrium values. Only heat
QB→C = Qh is transformed in this step:

QB→C =
∑

n

∫ C

B

Ef
ndpn =

∑

n

Ef
n(p

C
n − pBn ), (8)

where pBn = pn(TA) and pCn = pn(TC) are initial and final values of the occu-
pation probabilities.

Third stroke (CD). This is another adiabatic (demagnetization) process re-
ducing the energy gaps to initial values. Here, the external control parameters
of system are changes back to the initial values and the occupation probabili-
ties remain fixed. Only work WC→D = Wout is performed by working medium
and no heat is exchanged:

WC→D =
∑

n

∫ D

C

pndEn =
∑

n

pCn (E
i
n − Ef

n). (9)

Fourth stroke (DA). The system is brought into thermal contact with the
cold bath at node A. Again, no work is done, only heat Qc is rejected during
this isochoric process:

QD→A =
∑

n

∫ A

D

Ei
ndpn =

∑

n

Ei
n(p

A
n − pDn ). (10)

Since energy is conserved in a cyclic process, the balance condition is sat-
isfied:

WA→B +QB→C +WC→D +QD→A = 0 (11)

or

W +Qh +Qc = 0, (12)

where

W = WA→B +WC→D (13)

is the total work. If W < 0, the thermodynamical machine produces mechan-
ical work |W | = Qh + Qc with energy absorption Qh > 0 and energy release
Qc < 0, i.e., corresponds to a heat engine; see Fig. 2. The resulting work W is
performed during the exchange of heat Qh and Qc between the working fluid
and the hot and cold baths.

Instead of drawing, we will further depict the engine as {◦←↑←•} (where
the filled circle represents a hot bath and the open circle represents cold bath)
or just like {←↑←} (left - cold bath, right- hot bath).

The efficiency of heat engine is defined as

η =
|W |
Qh

. (14)
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Fig. 2 (Color online) Schematic layout of a heat engine. The arrows show the energy flows

In particular, the efficiency of an ideal Carnot cycle is given by the well-known
expression

ηC = 1− Tc

Th
, (15)

which is the upper bound for any thermodynamic cycles.
A heat engine acts by transferring energy from a warm region to a cool

region of space and, in the process, converting some of that energy to mechan-
ical work. The cycle may also be reversed. Then the system may be worked
upon by an external force, and in the process, it can transfer thermal energy
from a cooler system to a warmer one, thereby acting as a refrigerator or heat
pump ({→↓→}) rather than a heat engine. In this case, the operation of a
heat machine is characterized by a coefficient of performance (CoP), which is
defined as

CoP =
Qc

W
. (16)

This completes the preliminary section, and now we move on to the de-
scription of the working substance.

3 Working medium

As a working medium, we consider a two-site spin-1/2 system with the Hamil-
tonian

H = Jxσ
x
1σ

x
2 + Jyσ

y
1σ

y
2 + Jzσ

z
1σ

z
2 +Dz(σ

x
1σ

y
2 − σy

1σ
x
2 ) + Γz(σ

x
1σ

y
2 + σy

1σ
x
2 )

+ B1σ
z
1 +B2σ

z
2 , (17)

where σα
i (i = 1, 2; α = x, y, z) are the Pauli matrices, B1 and B2 the z-

components of external magnetic fields applied at the first and second qubits
respectively, (Jx,Jy,Jz) the vector of interaction constants of the Heisenberg
part of interaction, Dz the z-component of Dzyaloshinsky vector, and Γz the
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strength of KSEA interaction. Thus, this model contains seven real indepen-
dent parameters: B1, B2, Jx, Jy, Jz, Dz, and Γz.

In open matrix form, the Hamiltonian (17) reads

H =









Jz +B1 +B2 . . Jx − Jy − 2iΓz

. −Jz +B1 −B2 Jx + Jy + 2iDz .

. Jx + Jy − 2iDz −Jz −B1 +B2 .
Jx − Jy + 2iΓz . . Jz −B1 −B2









(18)
with the dots which are put instead of zero entries. This Hermitian matrix has
X form. Its eigenvalues are equal to

E1,2 = Jz ± R1, E3,4 = −Jz ±R2, (19)

where

R1 = [(B1+B2)
2+(Jx−Jy)2+4Γ2

z]
1/2, R2 = [(B1−B2)

2+(Jx+Jy)
2+4D2

z]
1/2.
(20)

Thus, the energy spectrum of the working medium consists of two pairs of
levels with energy shifts R1 and R2. Therefore, instead of seven parameters,
the spectrum is determined by only three quantities: Jz , R1, and R2. Note that
Γz occurs only in R1, whileDz only in R2, i.e., R1 is the effective Γz-parameter,
and R2, on the contrary, is the parameter determined by Dz.

The Gibbs density matrix is given by Eq. (1) and the partition function
Z =

∑

n exp(−βEn) for the considered model is expressed as

Z = 2[e−βJz cosh(βR1) + eβJz cosh(βR2)]. (21)

Therefore, the Gibbs entropy equals

S(T ; Jz, R1, R2) = −
1

Z

[

R1 − Jz
T

exp

(

R1 − Jz
T

)

− R1 + Jz
T

exp

(

−R1 + Jz
T

)

+
R2 + Jz

T
exp

(

R2 + Jz
T

)

− R2 − Jz
T

exp

(

−R2 − Jz
T

)]

+ lnZ. (22)

On the other hand, using Eq. (3), the von Neumann entropy

S = −〈ln ρ〉 = −Trρ ln ρ = −
∑

n

pn ln pn (23)

again leads to the Gibbs entropy expression (22).
Finally, using the general relations (7)–(10) and also (3) and (19), as well

as taking into account the quantum adiabatic theorem, we arrive at equations
for a heat engine with the considered working medium. For the adiabatic
(isentropic) strokes, the equations are given as

Win =
[

(Jf
z − J i

z)
(

cosh
Ri

1

Tc
e−Ji

z/Tc − cosh
Ri

2

Tc
eJ

i
z/Tc

)

− (Rf
1 −Ri

1) sinh
Ri

1

Tc
e−Ji

z/Tc

−(Rf
2 −Ri

2) sinh
Ri

2

Tc
eJ

i
z/Tc

]

/
(

cosh
Ri

1

Tc
e−Ji

z/Tc + cosh
Ri

2

Tc
eJ

i
z/Tc

)

, (24)
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and

Wout =
[

(J i
z − Jf

z )
(

cosh
Rf

1

Th
e−Jf

z /Th − cosh
Rf

2

Th
eJ

f
z /Th

)

− (Ri
1 −Rf

1 ) sinh
Rf

1

Th
e−Jf

z /Th

−(Ri
2 −Rf

2 ) sinh
Rf

2

Th
eJ

f
z /Th

]

/
(

cosh
Rf

1

Th
e−Jf

z /Th + cosh
Rf

2

Th
eJ

f
z /Th

)

. (25)

The net work done during a cycle is W = Win +Wout.

Similarly for the isochoric strokes. The quantities of heat exchanged be-
tween working agent and hot and cold reservoirs, respectively, are

Qh =
[(

Jf
z cosh

Rf
1

Th
−Rf

1 sinh
Rf

1

Th

)

e−Jf
z /Th −

(

Jf
z cosh

Rf
2

Th

+Rf
2 sinh

Rf
2

Th

)

eJ
f
z /Th

]

/
(

cosh
Rf

1

Th
e−Jf

z /Th + cosh
Rf

2

Th
eJ

f
z /Th

)

−
[(

Jf
z cosh

Ri
1

Tc
−Rf

1 sinh
Ri

1

Tc

)

e−Ji
z/Tc −

(

Jf
z cosh

Ri
2

Tc

+Rf
2 sinh

Ri
2

Tc

)

eJ
i
z/Tc

]

/
(

cosh
Ri

1

Tc
e−Ji

z/Tc + cosh
Ri

2

Tc
eJ

i
z/Tc

)

, (26)

and

Qc =
[(

J i
z cosh

Ri
1

Tc
−Ri

1 sinh
Ri

1

Tc

)

e−Ji
z/Tc −

(

J i
z cosh

Ri
2

Tc

+Ri
2 sinh

Ri
2

Tc

)

eJ
i
z/Tc

]

/
(

cosh
Ri

1

Tc
e−Ji

z/Tc + cosh
Ri

2

Tc
eJ

i
z/Tc

)

−
[(

J i
z cosh

Rf
1

Th
−Ri

1 sinh
Rf

1

Th

)

e−Jf
z /Th −

(

J i
z cosh

Rf
2

Th

+Ri
2 sinh

Rf
2

Th

)

eJ
f
z /Th

]

/
(

cosh
Rf

1

Th
e−Jf

z /Th + cosh
Rf

2

Th
eJ

f
z /Th

)

. (27)

The presented equations make it possible to investigate the quantum Otto
heat engine in the general and various interesting special cases. Although, non-
classical correlations are initially present in the quantum state ρ with Hamil-
tonian (17), transition to the diagonal energy representation, where the heat
engine is analyzed, completely destroys any quantumness of correlations.

4 Results and discussion

Using the above equations, we will now study the operation of the quantum
Otto machine in different modes.
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Fig. 3 (Color online) Otto cycles of thermal machine in the case Jz = R2 = 0 for Rf
1
≥

Ri
1
(a) and Rf

1
≤ Ri

1
(b). The green trapezoids correspond to engine cycles, and the blue

ones represent refrigerator cycles. Other details are described in the text

4.1 A three-level system

Let us start with a simple case, namely, when Jz = 0 and one of Ri (i = 1, 2)
is also equal to zero. Without loss of generality, we set R2 = 0. In this case,
the energy spectrum consists of three levels: doublet E1,2 = ±R1 and doubly-
degenerate zero-energy level E3,4 = 0.

It is important to note that here the energy levels are invariant under the
scale transformation Ef

n = qEi
n, where q is independent of n. This property is

necessary and sufficient condition that the quantum adiabatic theorem reduces
to its classical counterpart [36]. Thus, this is the case when the system is
quantum but the adiabaticity condition is classical, i.e., quantum state at each
point of the quantum adiabatic process is the state of thermal equilibrium with
respect to the Hamiltonian at the given point.

On the other hand, the Gibbs entropy (22) for the case under discussion
reduces to

S(T/R1) = 2
[

ln 2 + ln
(

cosh
R1

2T

)

− R1

2T
tanh

R1

2T

]

, (28)

i.e., it is a function of only one variable. Then the adiabaticity condition is
R1/T = const and, therefore, adiabatic curves in the plane R1−T are straight
lines passing through the origin of the coordinate system.

Otto cycles in the plane R1− temperature are shown in Fig. 3. If the final
value of R1 is equal to the initial value, Rf

1 = Ri
1, then the cycle contracts

into a segment of a horizontal straight line from temperature Tc to Th (AE in
Fig. 3a and ED in Fig. 3b).

When Rf
1 starts to increase, the cycle ABCD appears that goes clockwise

and has adiabatic AB and CD and isochoric BC and DA strokes (green
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Fig. 4 (Color online) Regions of different operating modes (regimes) in the plane (Ri
1
, Rf

1
)

for the quantum Otto thermal machine with nonzero R1 and Jz = R2 = 0 by Tc = 1

and Th = 2. Here, 1 is the diagonal straight line Rf
1

= Ri
1
, 2 and 3 are the boundaries

Rf
1

= (Th/Tc)Ri
1
and Rf

1
= (Tc/Th)R

i
1
, respectively. Regions I and III (blue) correspond

to the refrigeration regime, while the regions II and IV (green) represent the heat engine.
The ‘+’ symbol has coordinates (2.86075,4.06548) and marks the position of minimum of W
(= −0.148615), and the ‘×’ symbol has mirror coordinates (4.06548,2.86075) which mark
the position of maximum of W (= 0.148615) in the region III

trapezoid I in Fig. 3a). The nodes A and C correspond here to the cold and
hot reservoirs: TA = Tc and TC = Th. The adiabaticity conditions allow us to
express the temperatures of other two nodes through the temperatures of the
cold and hot reservoirs: TB = TcR

f
1/R

i
1 and TD = ThR

i
1/R

f
1 . Because of this,

the net work performed during the whole cycle is given as

W = (Rf
1 −Ri

1)
(

tanh
Rf

1

2Th
− tanh

Ri
1

2Tc

)

. (29)

This work equals zero, if Rf
1 = Ri

1 or Rf
1 = (Th/Tc)R

i
1.

On the other hand, Qh and Qc are given as

Qh = Rf
1

(

tanh
Ri

1

2Tc
− tanh

Rf
1

2Th

)

. (30)

and

Qc = Ri
1

(

tanh
Rf

1

2Th
− tanh

Ri
1

2Tc

)

. (31)

Both Qh and Qc equal zero at the same boundary Rf
1 = (Th/Tc)R

i
1 as W .

Below this line, Qh > 0 and Qc < 0. As a result, the region 0 < Rf
1 <
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0 1 2 3 4 5 6
0

1

2

3

4

5

6

R1
i

R
1f

Fig. 5 (Color online) Qualitative structure of isolines for the total work W (Ri
1
, Rf

1
); here

Jz = R2 = 0, and bath temperatures Tc = 1 and Th = 2. The region between the red

(Rf
1
= 2Ri

1
) and green (Rf

1
= Ri

1
) lines corresponds to the engine mode. The symbol “+”

indicates the position of local minimum of the function W (Ri
1
, Rf

1
)

(Th/Tc)R
i
1 corresponds to the heat engine regime; see green domain II in Fig. 4.

The structure of isolines of net work W in this domain is depicted in Fig. 5.
Taking into account the definition (14) and Eqs. (29)–(30), we get the

efficiency of the given Otto heat engine

η = 1− Ri
1

Rf
1

. (32)

Since Rf
1 < (Th/Tc)R

i
1, the value found is less than Carnot’s efficiency (15).

This agrees with the Carnot theorem (principle) known from classical ther-
modynamics. According to this theorem, no heat engine operating on a cycle
between two heat reservoirs can be more efficient than a reversible heat engine
operating between the same two reservoirs regardless of the working substance
employed or the operation details; Carnot’s efficiency (15) is the upper limit
that does not depend on the design of the engine (see, e.g., [39], Chapt. 44).

The efficiency (32) is zero at Rf
1 = Ri

1. When Rf
1 reaches the value of

(Th/Tc)R
i
1, the Otto cycle is reduced to a section of straight line between

points A and F , as shown in Fig. 3a. The efficiency of such a “cycle” reaches a
Carnot efficiency of 50%, however, the total work W , Eq. (29), vanishes here.

Further, if Rf
1 > (Th/Tc)R

i
1, the cycle transforms into a trapezoid AB′C′D′

shown in Fig. 3a by a blue region II. Note first of all, that the direction of
such a cycle was changed to opposite. Moreover, the minimum temperature
now is at the node D′ and equals T ′

c = (Ri
1/R

f
1 )Th, while the maximum one
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is at node B′ and equals T ′
h = (Rf

1/R
i
1)Tc. It is clear that T ′

c < Tc, T
′
h > Th

and T ′
h/T

′
c > Th/Tc. Hence, the total work

W = (Rf
1−Ri

1)
(

tanh
Rf

1

2Th
−tanh Ri

1

2Tc

)

= (Rf
1−Ri

1)
(

tanh
Ri

1

2T ′
c

−tanh Rf
1

2T ′
h

)

> 0.

(33)
The values of heat of cold and hot strokes are given as

Qc ≡ QD′→A = Ri
1

(

tanh
Rf

1

2Th
− tanh

Ri
1

2Tc

)

= Ri
1

(

tanh
Ri

1

2T ′
c

− tanh
Rf

1

2T ′
h

)

> 0

(34)
and

Qh ≡ QB′→C′ = Rf
1

(

tanh
Ri

1

2Tc
− tanh

Rf
1

2Th

)

= Rf
1

(

tanh
Rf

1

2T ′
h

− tanh
Ri

1

2T ′
c

)

< 0.

(35)
This regime corresponds to the refrigerator mode (blue region I in Fig. 4).

We discuss now the cases when Rf
1 is less than Ri

1. If (Tc/Th)R
i
1 < Rf

1 <
Ri

1, typical cycle can be represented by a trapezoid ABCD shown in Fig. 3b
as blue region I. The cycle runs counterclockwise and cold and hot nodes are
B and D, respectively. The total work and heat are given by expressions

W = (Ri
1 −Rf

1 )
(

tanh
Rf

1

2Tc
− tanh

Ri
1

2Th

)

> 0, (36)

Qc = Rf
1

(

tanh
Rf

1

2Tc
− tanh

Ri
1

2Th

)

> 0 (37)

and

Qh = Ri
1

(

tanh
Ri

1

2Th
− tanh

Rf
1

2Tc

)

< 0. (38)

This is again the cooling mode of Otto’s thermal machine: {→↓→}. For ex-
ample, the coefficient of performance at the point of maximum total work in
this case (see Fig. 4, the point marked with the symbol “×”) reaches the value
CoP = 2.37.

When Rf
1 = (Tc/Th)R

i
1, the “cycle” is a straight-line section DF . Here,

W = Qc = Qh = 0.
Finally, if Rf

1 < (Tc/Th)R
i
1 then the cycle is DA′B′C′ shown as the green

trapezoid II in Fig. 3b. In this case W < 0, Qc < 0 and Qh > 0 and therefore
the heat engine regime is realized here. In Fig. 4, the corresponding area is
labeled IV and shown in green.

As mentioned above, the efficiency of the discussed Otto engine can reach
the upper limit, namely, the Carnot efficiency. However, in this case, the total
work performed is zero and therefore such an “engine” is useless. It is of interest
to find the efficiency of engines at their maximum power (work per cycle).

In 1957, Novikov [40] considered a generalized Carnot engine taking into
account the heat loss from the hot bath to the working fluid ({←↑← ⊳},



Quantum Otto heat engines on XYZ spin working medium with DM and KSEA 13

Table 1 Coordinates (Ri
1
and Rf

1
) of a minimum of the work W , its value at the minimum,

efficiency at maximum power, and Carnot and Novikov efficiencies by Tc = 1 and different
values of Th

Th Ri
1

Rf
1

W ηmp ηC ηN

3 3.16836 5.59152 -0.454983 43.3% 66.7% 42.3%
2.5 3.02699 4.83933 -0.289598 37.5% 60% 36.8%
2 2.86075 4.06548 -0.148615 29.6% 50% 29.3%
1.5 2.65857 3.25929 -0.044155 18.43% 33.3% 18.35%

where the triangle ⊳ denotes a lossy heat conductor) and derived a remarkable
formula for the efficiency at maximum power of such an engine (Eq. (7) in
Ref. [40] and Eq. (6) in Ref. [41])

ηN = 1−
√

Tc/Th. (39)

(In connection with the problem of optimal efficiency of engines, see Ref. [42].)
More later, in 18 years, Curzon and Ahlborn [43,44] (see also [45,46]) consid-
ered a Carnot engine with losses both from the hot bath to the working fluid
and from the working fluid to the cold bath, {⊳ ←↑← ⊳}, and obtained the
same result for the efficiency. This gave an impetus to the development of
endoreversible thermodynamics [19,47].

It turned out that efficiency (39) is the benchmark for the efficiency ηmp

of any real running engine at maximum power. Therefore, it is interesting to
compare the efficiency at maximal power of the Otto engine with the Novikov
efficiency. The efficiency for the engine operating between bath temperatures
Tc = 1 and Th = 2 at the point with the maximum work done (|W | = 0.148615,
see Figs. 4 and 5) equals 29.6%. This is less than Carnot’s efficiency of 50%,
but larger than Novikov’s efficiency equaled 29.3%. A similar picture is also
valid for other temperatures presented in Table 1. As seen from Table 1, both
the useful work and efficiency grow with increasing the temperature difference
of reservoirs. Note that these ηmp values are well reproduced by Novikov’s
formula, and moreover, they are somewhat greater than it provides. A similar
increase in efficiency at maximum power has recently been obtained for a
photonic engine [48].

Thus, the Otto thermal machine on a spin working substance with Jz = 0
and one of the two R1 and R2 equal to zero can operate either as an engine
or as a refrigerator. The efficiency at maximum output power is limited from
above by the Carnot bound, and from below by the Novikov efficiency.

4.2 Two local minima of net work done

In this section, we extend the case described above and consider the parameter
R2 as constant, not equal to zero. So Jz = 0, R2 = const, and R1 ∈ [Ri

1, R
f
1 ].
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From Eqs. (24) and (25), it follows that the net work done during a cycle
is given as

W = (Rf
1−Ri

1)
[

sinh
Rf

1

Th
/
(

cosh
Rf

1

Th
+cosh

R2

Th

)

−sinh Ri
1

Tc
/
(

cosh
Ri

1

Tc
+cosh

R2

Tc

)]

.

(40)
Next, in accordance with Eqs. (26) and (27), the heat Qh is

Qh =
Rf

1 sinh(R
i
1/Tc) +R2 sinh(R2/Tc)

cosh(Ri
1/Tc) + cosh(R2/Tc)

− Rf
1 sinh(R

f
1/Th) +R2 sinh(R2/Th)

cosh(Rf
1/Th) + cosh(R2/Th)

(41)
and similarly for Qc:

Qc =
Ri

1 sinh(R
f
1/Th) +R2 sinh(R2/Th)

cosh(Rf
1/Th) + cosh(R2/Th)

− Ri
1 sinh(R

i
1/Tc) +R2 sinh(R2/Tc)

cosh(Ri
1/Tc) + cosh(R2/Tc)

.

(42)
The boundaries separating the regions with W > 0 and W < 0 are found

from condition W = 0. It is obvious from (40), that one boundary is again the
diagonal

Rf
1 = Ri

1, (43)

while the other boundary is determined by the relation

Rf
1 = Th ln

[

1

1− γ

(

γ cosh
R2

Th
+

√

1 + γ2 sinh2
R2

Th

)]

, (44)

where

γ = sinh
Ri

1

Tc
/
(

cosh
Ri

1

Tc
+ cosh

R2

Tc

)

. (45)

It is clear that Rf
1 = 0 at Ri

1 = 0. For small Ri
1, the dependence (44) behaves

like
Rf

1 ≈ κRi
1, (46)

where

κ =
Th

Tc

(cosh[R2/(2Th)]

cosh[R2/(2Tc)]

)2

. (47)

For κ = 1, these two boundaries touch near small Ri
1. On the other hand,

when Ri
1 →∞, the function Rf

1 of Ri
1, Eq. (44), satisfies the linear asymptotic

law

Rf
1 ≈ Th ln

(cosh(R2/Th)

cosh(R2/Tc)

)

+
Th

Tc
Ri

1. (48)

Thus, for large Ri
1, the values of R

f
1 again follow, as in the previous subsection,

a linear dependence Rf
1 = (Th/Tc)R

i
1, but now shifted.

For bath temperatures Tc = 1 and Th = 2, the slope coefficient (47) reaches

the critical value κc = 1 at R
(c)
2 = 4 ln

[

1
2

(

1+
√
5√

2
+
√√

5− 1
)]

≃ 2.12255. When

R2 < R
(c)
2 , the engine mode has only one local minimum of the work W (see
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Fig. 6 Regions with W < 0 (between lines 1 and 2) and with W > 0 (outside the

previous region) in the plane (Ri
1
, Rf

1
). Bath temperatures are Tc = 1 and Th = 2. Dotted

line Rf
1

= (Th/Tc)Ri
1

is shown for a comparison with the case R2 = 0. (a), R2 = 1.8,
the black circle (•) has coordinates (4.32922, 5.51837) and indicates the local minimum of
work (W = −0.09977). (b), R2 = 2.9, black circle (•) has coordinates (5.62759, 6.82585)
and shows the minimum W = −0.08299, while the symbol plus (+) marks additional local
minimum (W = −0.00366) at the point (1.31298, 1.15942)

Fig. 6a). Here, both Ri
1 and Rf

1 are greater than R2, and therefore there is no
energy level crossing.

However, for R2 > R
(c)
2 , the curve 2 forms a loop, inside which the second

minimum appears (see Fig. 6b). In it, Ri
1 and Rf

1 are less than R2, which
means that again there is no energy level crossing. Engine efficiencies, defined
by Eq. (14), in two minima shown in Fig. 6b are η• = 26.3% and η+ = 0.58%.
Both of these values are less than Novikov’s efficiency of 29.3%.

So, the presence of two minimums of optimal engine operating modes at
once is a rather interesting situation, but it is not yet clear where and how it
can be used in practice.

4.3 Three-parameter energy spectrum

We now turn to the quantum Otto machine, the working body of which is
described by the Hamiltonian (17) with all interactions. The energy levels are
characterized by three parameters Jz, R1, and R2.

Let the longitudinal exchange coupling Jz vary within J i
z and Jf

z , while the

parametersR1 and R2 remain unchanged during a cycle, that is Ri
1 = Rf

1 = R1

and Ri
2 = Rf

2 = R2. Equations (24) and (25) for the net work done take the
form

W = (Jf
z − J i

z)
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×
[(

cosh
R1

Tc
e−Ji

z/Tc − cosh
R2

Tc
eJ

i
z/Tc

)

/
(

cosh
R1

Tc
e−Ji

z/Tc + cosh
R2

Tc
eJ

i
z/Tc

)

−
(

cosh
R1

Th
e−Jf

z /Th − cosh
R2

Th
eJ

f
z /Th

)

/
(

cosh
R1

Th
e−Jf

z /Th + cosh
R2

Th
eJ

f
z /Th

)]

.

(49)

The boundaries separating the regions with W > 0 and W < 0 are given here
like

Jf
z = J i

z (50)

and

Jf
z =

Th

Tc
J i
z +

1

2
Th ln

(

cosh(R1/Th) cosh(R2/Tc)

cosh(R1/Tc) cosh(R2/Th)

)

. (51)

These straight lines intersect at a point defined by the presented equations.
Taken into account Eq. (26), the heat Qh for the case under consideration

is reduced to

Qh = A1 −
[(

Jf
z cosh

R1

Tc
−R1 sinh

R1

Tc

)

e−Jf
z /Tc −

(

Jf
z cosh

R2

Tc

+R2 sinh
R2

Tc

)

eJ
f
z /Tc

]

/
(

cosh
R1

Tc
e−Jf

z /Tc + cosh
R2

Tc
eJ

f
z /Tc

)

, (52)

where

A1 =
[(

Jf
z cosh

R1

Th
−R1 sinh

R1

Th

)

e−Jf
z /Th −

(

Jf
z cosh

R2

Th

+R2 sinh
R2

Th

)

eJ
f
z /Th

]

/
(

cosh
R1

Th
e−Jf

z /Th + cosh
R2

Th
eJ

f
z /Th

)

. (53)

Putting Qh = 0, we get the expression for the boundary in an explicit form

J i
z =

1

2
Tc ln

(

cosh(R1/Tc)

cosh(R2/Tc)
· J

f
z −R1 tanh(R1/Tc)−A1

Jf
z +R2 tanh(R2/Tc) +A1

)

. (54)

Another heat, Qc, is equal to

Qc = A2 −
[(

J i
z cosh

R1

Th
−R1 sinh

R1

Th

)

e−Ji
z/Th −

(

J i
z cosh

R2

Th

+R2 sinh
R2

Th

)

eJ
i
z/Th

]

/
(

cosh
R1

Th
e−Ji

z/Th + cosh
R2

Th
eJ

i
z/Th

)

, (55)

where

A2 =
[(

J i
z cosh

R1

Tc
−R1 sinh

R1

Tc

)

e−Ji
z/Tc −

(

J i
z cosh

R2

Tc

+R2 sinh
R2

Tc

)

eJ
i
z/Tc

]

/
(

cosh
R1

Tc
e−Ji

z/Tc + cosh
R2

Tc
eJ

i
z/Tc

)

. (56)
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Fig. 7 (Color online) Regions of operation modes in the Ji
z-J

f
z plane for quantum Otto

thermal machine with R1 = 0.7, R2 = 2 and bath temperatures Tc = 1 and Th = 1.5:
I (green), engine; II (blue), refrigerator; III (yellow), heater; IV (violet), accelerator. Lines
1–4 are the boundaries separating the listed regions

Setting Qc = 0, we obtain an explicit expression for the fourth boundary

Jf
z =

1

2
Th ln

(

cosh(R1/Th)

cosh(R2/Th)
· J

i
z −R1 tanh(R1/Th)−A2

J i
z +R2 tanh(R2/Th) +A2

)

. (57)

Thus, mathematical tools are ready, and we can proceed to study the op-
erating modes of a heat engine.

Consider, for instance, a spin working medium with parameters R1 = 0.7
and R2 = 2, which is located between the thermal reservoirs at temperatures
Tc = 1 and Th = 1.5. Lines 1, 2, 3 and 4, defined by Eqs. (50), (51), (54) and
(57), divide the plane J i

z-J
f
z into several regions, as drawn in Fig. 7. Regions

corresponding to different modes of operation are marked here with Roman
numerals and additionally colored. The boundaries separating the regions are
marked with Arabic numerals 1-4. It is noteworthy that curves 3 and 4 do not
intersect each other and do not intersect lines 1 and 2.

Finding the signs of Qc, W and Qh in each such region made it possible to
determine that there are only four different types of regions, see again Fig. 7.
Firstly, the region I with Qc < 0, W < 0 and Qh > 0 naturally corresponds
to engine mode, which is denoted as {←↑←}. Secondly, the region II with
Qc > 0, W > 0 and Qh < 0, which is identified with a refrigerator or heat
pump, and for clarity we depict it in the form {→↓→}. Then the region III,
where W > 0 and both Qh and Qc are less than zero; this is a heater that is
represented as {←↓→}. Finally, the region IV in which W and Qh are grater



18 Elena I. Kuznetsova et al.

Fig. 8 (Color online) Operation modes for a quantum Otto cycle in the plane Ji
z-J

f
z .

The regions corresponding to each operation mode are marked as I, heat engine - green;
II, refrigerator - blue; III, heater - yellow; and IV, accelerator - violet. Lines 1 and 2 are the
boundaries W = 0, while the curves 3 and 4 result from conditions Qh = 0 and Qc = 0,
respectively. Straight lines 1 and 2 are the boundaries W = 0, and curves 3 and 4 follow
from the conditions Qh = 0 and Qc = 0, respectively. Parameters R1 = 3 and R2 = 0.05.
Temperatures of thermal reservoirs are Tc = 1 and Th = 2

than zero while Qc < 0, that is {←↓←}; this is the so-called accelerator or
cold-bath heater [12,49,50].

The total work output W (J i
z, J

f
z ), Eq. (49), has a local minimum Wmin =

−0.030259 at the point (0.659225, 0.976325). The hot heat (52) at this point is
Qh = 0.343863. Therefore, in accord with Eq. (14), the efficiency at maximal
power equals ηmp = 8.8%. This value is less than Novikov’s efficiency equal to
18.4%.

A similar scheme of regions for the operating modes is shown in Fig. 8. It
corresponds to the following parameter values: R1 = 3, R2 = 0.05, Tc = 1,
and Th = 2. According to Eqs. (50) and (51), the boundaries 1 and 2 intersect
at the point (1.45295, 1.45295). Above this point, the total work output has
minimumal value of W = −0.044432 at the point (2.79285, 3.35601). The heat
Qh at this point equals 0.168719. Therefore the efficiency of heat engine is
26.3%. Moreover, below of the intersection point, the work W (J i

z, J
f
z ) has

the second local minimum. It is located at (−0.104884,−0.762864) and equals
W = −0.119575. Here Qh = 0.63495 and hence ηmp = 18.8%. Both these
efficiencies are less than ηN = 29.3%.

Next, Fig. 9 shows the operating mode areas for the following parameters:
R1 = 1.3, R2 = 0.8, Tc = 1, and Th = 2.5. The picture here is similar to the
previous two cases.
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Fig. 9 (Color online) The same as in Figs. 7 and 8, but for R1 = 1.3, R2 = 0.8, Tc = 1
and Th = 2.5

Table 2 Operating modes of the Otto machine depending on signs Qc, W and Qh

mode Qc W Qh scheme

engine − − + {←↑←}
refrigerator + + − {→↓→}
heater − + − {←↓→}
accelerator − + + {←↓←}

Concluding this subsection, we can state the following. Only four different
operating modes were observed for the thermal machine under study. They
are listed in Table 2. Although there are eight (23 = 8) different combinations
of signs for Qc, W and Qh, the regimes {→↓←} and {←↑→} are prohibited
by the first law of thermodynamics (12). Moreover, as noted in Ref. [51], the
variants (Qc > 0,W > 0, Qh < 0) and (Qc > 0,W > 0, Qh > 0), or in our
notation {→↑→} and {→↑←}, contradict the second law of thermodynamics
(
∮

δQ/T ≥ 0 or dS ≥ 0). As seen from Figs. 7–9, the operating mode regions
alternate in the following order: engine-accelerator-heater-refrigerator.

5 Concluding remarks

In the present paper, we have examined a two-qubit Heisenberg XYZ model
with DM and KSEA interactions under a non-uniform external magnetic field
as the working substance of a quantum Otto thermal machine. Equations (19)
and (20) show, firstly, that the KSEA interaction affects the operation of the
machine only through the collective parameter R1, and DM interaction only
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through R2, and secondly, the roles of DM and KSEA interactions change
places when the longitudinal exchange constant Jz changes the antiferromag-
netic behavior to ferromagnetic.

Combining analytical and numerical analysis, we have found regions in the
parameter space for possible operating modes of the thermal machine. Only
such four modes as a heat engine, refrigerator (heat pump), heater or dissipator
(when work is converted into the heat of both baths at once) and a thermal
accelerator or cold-bath heater (fast defrost regime) are acceptable.

The engine and refrigerator mode regions can directly border each other
(Fig. 4) or they are separated by areas with accelerator and heater regimes
(Figs. 7 and 8).

We have found and investigated the efficiency of the heat engine at maxi-
mum output power. Remarkably, cases have been discovered where there are
two local extrema of the total work; their appearance is due to splitting the
engine mode region into two subregions. Optimal efficiency has been observed
not only less than the Novikov efficiency, but also greater than it for cer-
tain choices of model parameters. However, the Carnot efficiency was never
exceeded.
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