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Abstract

Optimal control of two-qubit quantum systems attracts high interest due to ap-
plications ranging from two-qubit gate generation to optimization of receiver for
transferring coherence matrices along spin chains. State preparation and manipula-
tion is among important tasks to study for such systems. Typically coherent control,
e.g. a shaped laser pulse, is used to manipulate two-qubit systems. However, the
environment can also be used — as an incoherent control resource. In this article,
we consider optimal state manipulation for a two-qubit system whose dynamics is
governed by the Gorini–Kossakowski–Sudarshan–Lindblad master equation, where
coherent control enters into the Hamiltonian and incoherent control into both the
Hamiltonian (via Lamb shift) and the superoperator of dissipation. We exploit two
physically different classes of interaction with coherent control and optimize the
Hilbert–Schmidt overlap between final and target density matrices, including opti-
mization of its steering to a given value. We find the conditions when zero coherent
and incoherent controls satisfy the Pontryagin maximum principle, and in addition,
when they form a stationary point of the objective functional. Moreover, we find
a case when this stationary point provides the globally minimal value of the over-
lap. Using upper and lower bounds for the overlap, we develop one- and two-step
gradient projection methods operating with functional controls.

Keywords: quantum control, two-qubit open quantum system, coherent control,
incoherent control, Pontryagin maximum principle, gradient projection methods

1 Introduction

Developing methods of quantum control is crucial for modern quantum technologies [1–10].
In particular, quantum control is used for fast gate generation and modeling basic oper-
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ations for quantum computing [11–21]. Various control problems for two-qubit and four-
level open quantum systems were considered, e.g., in [22–31]. Optimal control theory was
used to derive an optimization algorithm that determines the best entangling two-qubit
gate for a given physical model [32]. Transfer of the two-qubit quantum information in
spin chain with the length N was studied [33]. Controllability of special four-level closed
quantum systems was studied for systems with degenerate transitions [34, 35] or with
degenerate energy levels [36, 37]. Optimization of few qubit systems was used for trans-
ferring coherence matrices over spin chains [38]. System–field couplings were exploited
to elucidate electronic quantum coherence effects in two-qubit systems for the model of
photosynthesis [39]. Various optimal control methods were adapted for quantum con-
trol problems including the Pontryagin maximum principle (PMP) [2, 40, 41], gradient
flows [42]), Hamilton–Jacobi–Bellman equation [43], Krotov method [3, 44] (more refer-
ences in the survey [45]), etc. Other systems, such as three-level, are also of special
interest [46], etc. For open quantum systems, a general approach based on gradient opti-
mization over complex Stiefel manifolds was developed for solving problems which appear
in quantum technologies, for which explicit analytical expressions for gradient and Hes-
sian of quantum control objectives and the corresponding optimization techniques were
developed and various examples were studied including cases with constraints [47, 48].

Closed quantum systems can be driven by coherent control, e.g. by shaped laser
light. In open quantum systems, coherent control can appear in the Hamiltonian [8] or
in both Hamiltonian and dissipative part of the master equation [49]. Open quantum
systems, in addition to coherent control, can be driven by various forms of incoherent
control which can be realized, e.g., by tailored environment as proposed in [50, 51]. An-
other approach is to use back-action of non-selective quantum measurements, either alone
or in combination with coherent control [52–54]. Various forms of incoherent control
and engineered reservoirs were used for superabsorption of light [55], control of non-
Markovian [56, 57] and Markovian open quantum systems [58], control of dissipation in
cavity QED [59], incoherent control in a Bose-Hubbard dimer [60], photoionization of
atoms under noise [61], generating quantum coherence through an autonomous thermo-
dynamic machine [62], studying decoherence [63], controlling optical signals with quantum
heat-engine [64], suppression of decoherence via quantum Zeno effect [65], optimization of
up-conversion hues in phosphor [66], Landau-Zener transitions [67], environment-assisted
quantum walks were applied for photosynthetic energy transfer [68], etc. An approximate
controllability for generic N -level quantum systems driven by coherent and incoherent
controls was established [51]. The two-level case was rigorously studied recently [69].
Various control problems for coherent and incoherent control of one-qubit open quantum
systems were studied, e.g. in [69–72]. The Gradient Ascent Pulse Engineering (GRAPE)
approach for two-qubit quantum systems with time dependent coherent and incoherent
controls was developed [31].

In this work, we consider two-qubit systems driven by incoherent control which, in
general, is piecewise continuous function of time. The control objectives correspond to
maximizing or minimizing the Hilbert–Schmidt overlap between the final density matrix
and a given target density matrix, or steering the overlap as close as possible to a given
admissible value. For the problems of maximizing the overlap, we derive the conditions
for the target density matrix under which zero coherent and incoherent controls satisfy
the PMP and, in addition, are singular. For these problems, we derive the gradients of
the objective functionals and develop the one-step gradient projection method (GPM-1)
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using the works [73–75] and the two-step GPM (GPM-2) using the works [75–78] and
that the heavy-ball method, as known, can significantly accelerate the one-step gradient
optimization by using the results of the two last iterations for making the next update.

The structure of this work is the following. In Sect. 2, we overview the incoherent
control method. Sect. 3 contains description of the model and formulation of the control
problems. In Sect. 4, we formulate the PMP for these problems (Theorem 1), analytically
solve the system for zero coherent and incoherent controls (Subsect. 4.2) and, for the
problems of optimizing the overlap, derive conditions when zero coherent and incoherent
controls satisfy the PMP (Theorem 2), derive conditions when these controls form a sta-
tionary point (Theorem 3), and give an analytical example when these singular controls
are exactly optimal (Subsect. 4.6). Sect. 5 describes GPM-1 and GPM-2 for various ob-
jective criteria. The numerical results are provided in Sect. 6. The Conclusion Sect. 7
summarizes the work.

2 Incoherent Control by the Environment

As mentioned above, various forms of using the environment for control were considered
by many researchers. In this work, we use the incoherent control method which was
proposed in [50]. As it is known in the theory of open quantum systems, master equation
for the reduced density matrix of a quantum system interacting with the environment is
determined by (1) the system Hamiltonian, (2) the interaction Hamiltonian between the
system and the environment and (3) state of the environment. In general, the system-
bath interaction is fixed once the system and bath are prepared. However, state of the
environment can be not fixed and used for control. Therefore even if the interaction
Hamiltonian between the system and the environment is fixed, one can vary the coefficients
of the master equation by changing the state of the environment. This is the key idea of
incoherent control.

The natural environment is formed by physical particles surrounding the controlled
system. Depending on the particular situation, they can be photons, phonons, surround-

Figure 1: Planck density of black-body radiation for β = 1 and its Gaussian filtering with

f(ω) = exp
(
− (ω−ω1)2

2σ2

)
+ exp

(
− (ω−ω2)2

2σ2

)
, where ω1 = 2, ω2 = 6 and variance σ2 = 0.25.
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ing gas, spins, etc. Typically state of the environment is considered as thermal. Time-
independent frequency distribution of thermal photons with inverse temperature β has
the famous Planck form, which in the Planck system of units which we use in this work
(where reduced Planck constant ~, speed of light c, and Boltzmann constant kB equal

one), is nω =
1

π2

ω3

exp (βω) − 1
. But thermal form is a very limiting assumption and more

general non-equilibrium forms of the state of the environment can be used. If temperature
is varied, so that β = β(t), then spectral density becomes time-dependent,

nω(t) =
1

π2

ω3

exp (β(t)ω) − 1
.

Variation of temperature is only the simplest option to vary nω(t) and generally spectral
density can be made non-equilibrium and time-dependent with some other shapes nω(t).
Such non-thermal shapes can be obtained, e.g., by filtering black-body radiation, using
light-emission diodes, etc, see Fig. 1. Of course, not always state of the environment can
be easily variable experimentally. It can be relatively easy done for photons, more difficult
for phonons, and perhaps more difficult for a quantum gas. Experimental realization in
any particular case is important and beyond the scope of our consideration.

This incoherent control approach can be applied to various system-environment
models. For example, in [50] it was applied to master equations with dissipators of
the forms which were derived in the WCL and LDL limits known in theory of open
quantum systems. However, incoherent control method is not limited to these two forms
of the master equation and has a general character — it is any control when state of the
incoherent environment surrounding the system is used as a control resource.

Physically incoherent control can be implemented by using time-dependent spectral
density of incoherent photons or phonons nω(t). This density is considered as a function of
both transition frequency ω and time t. Of course, not for all transition frequencies this
spectral density can easily be experimentally made arbitrary, so practical applicability
depends on the exact type of the environment (photons or phonons), spectrum of the
system, and experimentally available techniques to generate various nω. For photons,
their spectral density generally can also include dependence on polarization α, so that
incoherent control can be a function of ω, α, and t. Here, we do not use this option.

Since incoherent control has physical meaning of density of particles of the environ-
ment, mathematically it should be a non-negative quantity. In addition, one can require
that total density of particles of the environment at any time moment is finite, so that

nω(t) ≥ 0,

∞∫

0

nω(t)dω < ∞ ∀t ≥ 0.

Incoherent control allows to make decoherence rates in the master equation time-
dependent (see page 3 in [50]) as

ρ̇t = −i[Hc(t), ρt] +
∑

γij(t)Dij(ρt). (1)

The time-dependent decoherence rates for transition between levels i and j with transition
frequency ωij are expressed via n(t), so that

γij(t) = π
∫

dkδ(ωij − ωk)|g(k)|2(nωij
(t) + κij)
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where κij = 1 for i > j and κij = 0 otherwise, ωk is the dispersion law for the bath (e.g.,
ω = |k|c for photons, where k is photon momentum), and g(k) describes coupling of the
system to k-th mode of the bath. The magnitude of the decoherence rates affects the
speed of decay of off-diagonal elements of the system density matrix and determines the
values of the diagonal elements towards which the diagonal part of the system density
matrix evolves. It can be used, for example, for approximate generation of various density
matrices [51].

3 Control System and Objective Functionals

We study the system of two-qubits evolving under coherent and incoherent controls [29,31].
We consider both coherent and incoherent controls as piecewise continuous functions. Let
H = C2 ⊗C2 be the Hilbert space of the two-qubit system. Density matrix ρ(t) is a 4 × 4
positive semi-definite matrix with unit trace, ρ(t) ∈ C4×4, ρ(t) ≥ 0, Trρ(t) = 1. System’s
dynamics is governed by the master equation of the form (1)

ρ̇(t) = −i
[
HS + εHeff,n(t) + Hu(t), ρ(t)

]
+ εLn(t)(ρ(t)), ρ(t) = ρ0. (2)

Here HS is the free two-qubit Hamiltonian, Heff,n(t) is the two-qubit effective Hamiltonian
(Lamb shift), which is determined by incoherent control n = (nω1, nω2), Hu(t) = V u(t) is
coupling to coherent control u via interaction operator V , Ln(t)(ρ(t)) is the superoperator
of dissipation depending on n, ε > 0 describes strength of the coupling between the
system and its environment, ρ0 is the initial state which can be either pure or mixed. We
denote the complete control c = (u, n1, n2). The notation [A, B] = AB − BA denotes the
commutator of matrices A and B.

The free and effective Hamiltonians are:

HS = HS,1 + HS,2 =
ω1

2
(σz ⊗ I2) +

ω2

2
(I2 ⊗ σz) , (3)

Heff,n(t) =
2∑

i=1

Heff,n(t),i = Λ1nω1(t) (σz ⊗ I2) + Λ2nω2(t) (I2 ⊗ σz) (4)

where σz =

(
1 0
0 −1

)
is Z Pauli matrix, I2 is the 2×2 identity matrix, σz⊗I2 =

(
I2 02

02 −I2

)
,

I2 ⊗σz =

(
σz 02

02 σz

)
, 02 is the 2×2 zero matrix. Incoherent controls n1 = nω1 and n2 = nω2

represent density of particles of the environment at frequencies ω1 and ω2 and can be
adjusted independently. We denote n = (n1, n2). By the physical meaning, one has

n1(t) ≥ 0, n2(t) ≥ 0 for all t ∈ [0, T ]. (5)

The interaction operator Hu(t) = V u(t) is considered in general with arbitrary Her-
mitian matrix V and in particular, as in [29], we consider the following two versions:

V = V1 = σx ⊗ I2 + I2 ⊗ σx =

(
σx I2

I2 σx

)
, V = V2 = σx ⊗ σx =

(
02 σx

σx 02

)
, (6)
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where σx =

(
0 1
1 0

)
is X Pauli matrix. In the case V = V1, the same coherent control u

addresses each qubit independently, while in the case V = V2, the control u acts to couple
the qubits via XX coupling.

The superoperator of dissipation acts on density matrix as

Ln(t)(ρ(t)) = Ln(t),1(ρ(t)) + Ln(t),2(ρ(t)), (7)

Ln(t),j(ρ(t)) = Ωj(nωj
(t) + 1)

(
2σ−

j ρσ+
j − σ+

j σ−
j ρ − ρσ+

j σ−
j

)

+ Ωjnωj
(t)
(
2σ+

j ρσ−
j − σ−

j σ+
j ρ − ρσ−

j σ+
j

)
, j = 1, 2, (8)

where Λj > 0 and Ωj > 0 are some constants and σ±
1 = σ± ⊗ I2, σ±

2 = I2 ⊗ σ± with

σ+ =

(
0 0
1 0

)
, σ− =

(
0 1
0 0

)
. The notation {A, B} = AB + BA denotes anti-commutator

of matrices A and B.
The objective which we study is the Hilbert–Schmidt overlap between ρ(T ),

evolved with some admissible control c, and a given target density matrix ρtarget:
F (ρ(T ), ρtarget) := 〈ρ(T ), ρtarget〉 = Tr(ρ(T )ρtarget). We consider the problems of maxi-
mizing and minimizing the overlap, and steering the overlap to a given value M ∈ (0, 1):

J(c) = F (ρ(T ); ρtarget) = 〈ρ(T ), ρtarget〉 → sup / inf, (9)

JM,1(c) = |F (ρ(T ); ρtarget) − M | = |〈ρ(T ), ρtarget〉 − M | → inf, (10)

JM,2(c) = (F (ρ(T ); ρtarget) − M)2 = (〈ρ(T ), ρtarget〉 − M)2 → inf . (11)

We use the realification of density matrix as performed in [29]. Then the system (2)
with (3,4), (7,8), and with interaction V = V1 or V = V2 is reduced to a system of linear
ordinary differential equations for real vector representing real and imaginary parts of the
matrix elements of density matrix. Hermiticity of density matrix gives that

ρ =




ρ1,1 ρ1,2 ρ1,3 ρ1,4

ρ∗
1,2 ρ2,2 ρ2,3 ρ2,4

ρ∗
1,3 ρ∗

2,3 ρ3,3 ρ3,4

ρ∗
1,4 ρ∗

2,4 ρ∗
3,4 ρ4,4


 =




x1 x2 + ix3 x4 + ix5 x6 + ix7

x2 − ix3 x8 x9 + ix10 x11 + ix12

x4 − ix5 x9 − ix10 x13 x14 + ix15

x6 − ix7 x11 − ix12 x14 − ix15 x16


 . (12)

Here xj ∈ R, j = 1, 16. The condition Trρ = 1 implies the linear dependence

x1 + x8 + x13 + x16 = 1. (13)

For the two variants of V , as in [29] we have the corresponding two bilinear homo-
geneous dynamical systems with a given initial state:

ẋ(t) = (A + Buu(t) + Bn1n1(t) + Bn2n2(t)) x(t), x(0) = x0. (14)

Here 16×16 matrices A, Bu, Bn1 , Bn2 are found after substituting (12) in (2); x0 is found
from a given ρ0.

The criterion [79] (Theorem 7.2) for a Hermitian matrix to be positive semidefinite
implies that ρ is positive semidefinite if and only if the determinant of each principal
submatrix of ρ is nonnegative. By construction, solutions of the master equation and of
the system (14) satisfy these conditions.
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The problems (9–11) in terms of (12) are:

J(c) = F(x(T ); xtarget) = 〈x(T ), β ◦ xtarget〉 → sup / inf, (15)

JM,1(c) = |F(x(T ); xtarget) − M | = |〈x(T ), β ◦ xtarget〉 − M | → inf, (16)

JM,2(c) = (F(x(T ); xtarget) − M)2 = (〈x(T ), β ◦ xtarget〉 − M)2 → inf , (17)

where β = (1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1), and “◦” denotes the Hadamard
product.

The terminal function JM,1 is not continuously differentiable, but it describes exactly
the difference between the overlap and M . The subdifferential ∂(|y − M |) is −1 for
y < M , 1 for y > M , and [−1, 1] for y = M . On one hand, a possible way for the
nonsmooth objective functional JM,1(c) is to develop nonsmooth optimization based on the
corresponding tools (subgradients, etc.) [80]. On another hand, we can make smoothing
of (16) by introducing the following auxiliary objective functional with some 0 < θ ≪ 1,
in analogy with [81, Sec. 8]:

Jθ
M,1(c) =





−F(x(T ); xtarget) + M,

if F(x(T ); xtarget) < M − θ;

F(x(T ); xtarget) − M,

if F(x(T ); xtarget) > M + θ;

1

2

(
(F(x(T ); xtarget) − M)2

θ
+ θ

)
,

if |F(x(T ); xtarget) − M | ≤ θ





→ inf . (18)

This piecewise defined terminal function is already continuously differentiable.
For the system (14) and the control problems (15), (17), and (18), consider the

objective functional I(c) to be minimized, which is either J − J(c) (J is some upper
bound for the overlap), or J(c), or JM,2(c), or Jθ

M,1(c).
In post-optimization analysis, in addition to optimized controls u, n1, n2 and the

corresponding solution ρ, one can study evolution of F (ρ(t); ρtarget) with time. By analogy,
define the function F θ

M,1(ρ(t); ρtarget) of t by taking in (18) x(t) instead of x(T ). For ρ(t),
consider the von Neumann entropy S(ρ), purity P (ρ), Uhlmann–Jozsa fidelity UJ(ρ1; ρ2)
[71, 82], quantum relative entropy D(ρ1; ρ2) (quantum analog of the Kullback–Leibler
divergence) [83,84], Petz–Rényi relative entropy Dα(ρ1; ρ2) [84], where we use ρ(t) instead
of ρ and ρ1, and ρtarget instead of ρ2:

S(ρ(t)) = −Tr (ρ(t) log ρ(t)) = −
∑

λi(t)6=0

λi(t) log λi(t) ∈ [0, log dimH], (19)

P (ρ(t)) = Trρ2(t) = 〈ρ(t), ρ(t)〉 =
∑

i,j

|ρij(t)|
2 ∈ [1/ dim H, 1] , (20)

UJ(ρ(t); ρtarget) =

(
Tr

√√
ρ(t)ρtarget

√
ρ(t)

)2

∈ [0, 1], (21)

D(ρ(t); ρtarget) = Tr (ρ(t)(log ρ(t) − log ρtarget)) ≥ 0, (22)

Dα(ρ(t); ρtarget) =
1

α − 1
log Tr

(
ρα(t)ρ1−α

target

)
≥ 0, α ∈ (0, 1) ∪ (1, ∞), (23)
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where λi(t) are eigenvalues of ρ(t). In our case the dimension of the Hilbert space is
dim H = 4. The von Neumann entropy is minimal at pure states where it equals to
zero; its maximum value is reached at the completely mixed quantum state ρ = I/dimH;
in our case log dimH = log 4 ≈ 1.386. The maximal value 1 of purity is obtained at
any pure state and the minimum value 1/dimH is obtained at the completely mixed
state. One has UJ(ρtarget; ρtarget) = 1, D(ρtarget; ρtarget) = 0, Dα(ρtarget; ρtarget) = 0, and
D(ρ(t); ρtarget) = lim

α→1
Dα(ρ(t); ρtarget).

4 Pontryagin Maximum Principle and Zero Controls

4.1 Pontryagin Maximum Principle

The Pontryagin function [85] for our problem is h(p, x, u, n1, n2) =
〈p, (A + Buu + Bn1n1 + Bn2n2) x〉 = Kuu + Kn1n1 + Kn2n2 + h(p, x), where p, x ∈ R16

and u, n1, n2 ∈ R (i.e. here p, x, u, n1, n2 are real values and not functions), the switching
functions are Ku = ∂h

∂u
= 〈p, Bux〉, Knj = ∂h

∂nj
= 〈p, Bnj

x〉, j = 1, 2; h = 〈p, Ax〉. The
conjugate system is

ṗ(t) = −
(
AT + BT

u u(t) + BT
n1

n1(t) + BT
n2

n2(t)
)

p(t), (24)

where the transversality condition for the problems of maximization (s = 1) and mini-
mization (s = −1) of J(c) is:

p(T ) = s∇F(x; xtarget)
∣∣∣
x=x(T )

= sβ ◦ xtarget. (25)

Here the function x is the solution of (14) with the same control c that is used in (24).
For the problem of minimizing JM,2(c):

p(T ) = −2 (F(x(T ); xtarget) − M) β ◦ xtarget. (26)

For the problem of minimizing Jθ
M,1(c):

p(T ) =





β ◦ xtarget, F(x(T ); xtarget) < M − θ;

−β ◦ xtarget, F(x(T ); xtarget) > M + θ;
F(x(T );xtarget)−M

θ
β ◦ xtarget, F(x(T ); xtarget) ∈ [M − θ, M + θ].

(27)

If only the constraints (5) are used, then c(t) ∈ Q∞ := R × [0, ∞)2. Following
the PMP theory, the Pontryagin function should be maximized in the variables u, n1, n2

for each t. Thus, in addition to the constraint (5), we consider the constraints umin ≤
u(t) ≤ umax, nj(t) ≤ nmax, ∀t ∈ [0, T ], for some umin < 0 < umax, and nmax ∈ (0, ∞).
Then c(t) ∈ Qcompact := [nmin, nmax] × [0, nmax]2 for any t ∈ [0, T ]. Correspondingly,
we consider the functional classes P C([0, T ]; Q∞) and P C([0, T ]; Qcompact) of piecewise
continuous controls.

Theorem 1 (PMP — first-order necessary condition for optimality). Consider for the
system (14) with control c = (u, n1, n2) ∈ P C([0, T ]; Qcompact) and the problems of
maximizing or minimizing J(c) and minimizing JM,2(c) or Jθ

M,1, with fixed final time T ,
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initial state x0 and target state xtarget. If c∗ = (u∗, n∗
1, n∗

2) is optimal control for some
of these problems, then there exists a continuous vector function p∗ which satisfies the
conjugate system (24) with the corresponding in (25–27) transversality condition, where
u = u∗, n1 = n∗

1, n2 = n∗
2, x = x∗, and the following maximization conditions are satisfied

for any t ∈ [0, T ]:

max
u∈[umin,umax]

Ku(p∗(t), x∗(t))u = Ku(p∗(t), x∗(t))u∗(t), (28)

max
nj∈[0,nmax]

Knj (p∗(t), x∗(t))nj = Knj (p∗(t), x∗(t))n∗
j(t), j = 1, 2. (29)

Here x∗ is the solution of the system (14) with control c = c∗.

4.2 Evolution of the Quantum System with Zero Controls

If in (2) coherent control u = 0, then the operator Hu(t) = V u(t) ≡ 0 and the systems
(2), (14) do not depend on the form of V . For the control c = c with u = n1 = n2 = 0,
(14) becomes ẋ = Ax, x(0) = x0 whose solution is x = eAtx0.

Consider the following parameterized initial and target states:

ρ0 = diag(a1, a2, a3, a4), ρtarget = diag(b1, b2, b3, b4) (30)

s.t. aj , bj ≥ 0, j = 1, 2, 3, 4,
4∑

j=1

aj = 1,
4∑

j=1

bj = 1. (31)

The inequalities provide positive semi-definiteness and unit trace of the matrices. For (30),
one has

x0 = (a1, six zeros, a2, four zeros, a3, 0, 0, a4), (32)

xtarget = (b1, six zeros, b2, four zeros, b3, 0, 0, b4). (33)

The solution of the system (14) with (32) and c = c is

x1 = a1 + a2 − a2e−2εΩ2t + e−2ε(Ω1+Ω2)t(e2εΩ1t − 1)(a3e2εΩ2t + a4(e2εΩ2t − 1)),

x8 = e−2εΩ2t(a2 + a4 − a4e−2εΩ1t), x13 = e−2εΩ1t(a3 + a4 − a4e
−2εΩ2t),

x16 = a4e
−2ε(Ω1+Ω2)t, xj = 0, j ∈ 1, 16 \ {1, 8, 13, 16}. (34)

Consider the initial state x0 = (1, fifteen zeros), which corresponds to the pure
state ρ0 = diag(1, 0, 0, 0). Then the system (14) has the solution x1(t) ≡ 1 and xi(t) ≡ 0,
i = 2, 16. The vector Ax becomes zero, the system (14) remains in this x0 for an arbitrarily
long time. The point x = (1, fifteen zeros) is singular for (14).

If ρ0 6= diag(1, 0, 0, 0), then for the system (14) we have

lim
t→∞

ρ(t) = diag
(

lim
t→∞

xi(t)
)

i=1,8,13,16
= diag




4∑

j=1

aj , 0, 0, 0


 = diag(1, 0, 0, 0). (35)

The terminal function F(x; xtarget) with x = x(t), t → ∞ satisfies:

lim
t→∞

〈x(t), β ◦ xtarget〉 = lim
t→∞

∑

i=1,8,13,16

bixi(t) = (a1 + a2 + a3 + a4)b1. (36)

9



4.3 PMP. When Zero Coherent and Incoherent Controls Satisfy

PMP

For the system (14) with the initial state (32), consider the problems of maximizing and
minimizing J(c) with xtarget of the form (33). Consider the conjugate system (24, 25).
For the control c = c, this system becomes ṗ = −AT p, p(T ) = sβ ◦ xtarget = sxtarget. Its
solution is:

p1 = b1s, p8 = e−2εΩ2T
(
b2e2εΩ2t + b1

(
−e2εΩ2t + e2εΩ2T

))
s,

p13 = e−2εΩ1T
(
b3e2εΩ1t + b1

(
−e2εΩ1t + e2εΩ1T

))
s,

p16 = e−4ε(Ω1+Ω2)T
(
b2

(
−e2ε(Ω1+Ω2)(t+T ) + e2ε(2Ω1T +Ω2t+Ω2T )

)
+ e2ε(Ω1+Ω2)T

(
− b3e2ε(Ω1+Ω2)t

+ b4e2ε(Ω1+Ω2)t + b3e2ε(Ω1t+Ω2T ) + b1

(
e2εΩ1t − e2εΩ1T

)(
e2εΩ2t − e2εΩ2T

)))
s,

pj = 0, j ∈ 1, 16 \ {1, 8, 13, 16}.

This system does not depend on aj , j = 1, 2, 3, 4 and, because u = 0, on V .
For any initial state x0 of the form (32), s ∈ {±1}, the system’s parameters (Ω1,

etc.), and T > 0, the switching function Ku is

Ku(x(t), p(t)) = 0 ∀t ∈ [0, T ]. (37)

In this sense, the control u = u = 0 as a component of c is singular.
Consider the two cases of ρ0: 1) ρ0 = diag(1, 0, 0, 0), i.e. a1 = 1, a2 = a3 = a4 = 0 in

(32) (for u = n1 = n2 = 0, the corresponding point x0 = (1, fifteen zeros) is singular for
(14)); 2) ρ0 = 1

4
I4 (completely mixed quantum state), i.e. a1 = a2 = a3 = a4 = 1

4
in (32).

A) Case when ρ0 = diag(1, 0, 0, 0). For zero controls, one gets that the functions
x1 = 1 and xi = 0, i = 2, 16. The switching functions become

Kn1(x(t), p(t)) = −2(b1 − b3)se2εΩ1(t−T )εΩ1, (38)

Kn2(x(t), p(t)) = −2(b1 − b2)se2εΩ2(t−T )εΩ2. (39)

For (28,29), where instead of u∗(t), n∗
i (t), x∗(t), p∗(t) we consider u(t), ni(t), x(t), p(t),

our goal is to formulate sufficient conditions for b1, b2, b3, b4 satisfying (31) to make the
switching functions non-positive for any t ∈ [0, T ] with any T ∈ (0, ∞). Thus, for (38,
39) consider the algebraic system

(b1 − b3)s ≥ 0, (b1 − b2)s ≥ 0 s.t. (31). (40)

This system is solved via the function Reduce in Wolfram Mathematica. For s = 1 (the
problem of maximizing the overlap), the logical condition is

((
b1 = 0 ∧ b2 = 0 ∧ b3 = 0

)
∨
(
0 < b1 ≤

1

3
∧ 0 ≤ b2 ≤ b1 ∧ 0 ≤ b3 ≤ b1

)

∨
(1

3
< b1 <

1

2
∧ b3 ≥ 0 ∧

((
2b1 + b2 > 1 ∧ b1 ≥ b2 ∧ b1 + b2 + b3 ≤ 1

)

∨
(
b1 ≥ b3 ∧ b2 ≥ 0 ∧ 2b1 + b2 ≤ 1

)))
∨
(1

2
≤ b1 ≤ 1

∧
((

b2 ≥ 0 ∧ b1 + b2 < 1 ∧ b3 ≥ 0 ∧ b1 + b2 + b3 ≤ 1
)

10



∨
(
b1 + b2 = 1 ∧ b3 = 0

))))
∧ b1 + b2 + b3 + b4 = 1. (41)

Here “∧” is logical “AND” and “∨” is logical ”OR”. These conditions provide non-
positiveness of Kni for any t ∈ [0, T ] and, together with (37), provide satisfaction of the
PMP conditions (28, 29) in the class P C([0, T ]; Qcompact). This result does not depend on
V in Hu(t) = V u(t).

For s = −1 (the problem of minimizing the overlap), we obtain from (40):

((
b1 = 0 ∧

((
0 ≤ b2 < 1 ∧ b3 ≥ 0 ∧ b2 + b3 ≤ 1

)
∨
(
b2 = 1 ∧ b3 = 0

)))

∨
(
0 < b1 ≤

1

3
∧
((

b1 ≤ b2 ∧ 2b1 + b2 < 1 ∧ b1 ≤ b3 ∧ b1 + b2 + b3 ≤ 1
)

∨
(
2b1 + b2 = 1 ∧ b1 + b2 + b3 = 1

))))
∧ b1 + b2 + b3 + b4 = 1. (42)

These conditions in combination with (37) provide satisfaction of (28, 29).
B) Case when ρ0 = 1

4
I4. The switching functions Knj , j = 1, 2 become

Kn1(x(t), p(t)) = −
(
e2εΩ1t − 1

) ((
2e2εΩ2T − 1

)
(b1 − b3) + b2 − b4

)
sΩ1E, (43)

Kn2(x(t), p(t)) = −
(
e2εΩ2t − 1

) ((
2e2εΩ1T − 1

)
(b1 − b2) + b3 − b4

)
sΩ2E, (44)

where E = εe−2ε(Ω1+Ω2)T . Our goal is to make Knj ≤ 0, j = 1, 2 for any t ∈ [0, T ]. There
is freedom of choice how to use (43,44) for constructing the corresponding inequality
constraints. For s = 1, if we consider the system

b1 − b3 ≥ 0, b2 − b4 ≥ 0, b1 − b2 ≥ 0, b3 − b4 ≥ 0 s.t. (31),

then the explicit solution is derived, but the result is quite cumbersome. Therefore, for
s = 1 let take the following simpler algebraic system:

b1 − b3 = 0, b2 − b4 ≥ 0, b1 − b2 = 0, b3 − b4 ≥ 0 s.t. (31) (45)

whose solution is

1

4
≤ b1 ≤

1

3
∧ b1 = b2 ∧ b1 = b3 ∧ b1 + b2 + b3 + b4 = 1. (46)

Here the problem of maximizing J(c) describes partial purification of the system’s final
state. By analogy with (45), for s = −1 consider the system

b1 − b3 = 0, b2 − b4 ≤ 0, b1 − b2 = 0, b3 − b4 ≤ 0 s.t. (31)

whose solution is

0 ≤ b1 ≤
1

4
∧ b1 = b2 ∧ b1 = b3 ∧ b1 + b2 + b3 + b4 = 1. (47)

C) The obtained above results about the conditions under which the control c =
c = 0 satisfies the PMP (Theorem 1), for the two cases of ρ0 are summarised as the next
theorem formulated in the terms of density matrices.
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Theorem 2 Consider the system (2) with control c ∈ P C([0, T ]; Qcompact) and with the
two cases of initial state ρ0: (1) pure ρ0 = diag(1, 0, 0, 0); (2) completely mixed ρ0 = 1

4
I4.

Consider the problems of maximizing and minimizing J(c) with the target state ρtarget =
diag(b), where b = (b1, b2, b3, b4). Then the control c = c = 0 satisfies the PMP in the class
P C([0, T ]; Qcompact) for any arbitrary given Hermitian V , system’s parameters (Ω1 > 0,
etc.), umin < 0 < umax and nmax > 0, any T > 0, if vector b is as follows:

• for ρ0 = diag(1, 0, 0, 0): for the problem of maximizing J(c) if b satisfies (41); for
the problem of minimizing J(c) if b satisfies (42);

• for ρ0 = 1
4
I4: for the problem of maximizing J(c) if b satisfies (46); for the problem

of minimizing J(c) if b satisfies (47).

4.4 Lower and Upper Bounds for the Overlap

In the general theory of optimal control, an important problem is to establish whether
a control that satisfies the PMP is indeed globally optimal. For the objective 〈ρ(T ), ρtarget〉
the lower and upper bounds are obviously known as the extremal values in the finite-
dimensional optimization problems 〈ρ, ρtarget〉 → min and 〈ρ, ρtarget〉 → max, correspond-
ingly, over all density matrices, as e.g. in [48, p. 2]) and are discussed below in our
terms.

For a diagonal target density matrix ρtarget = diag(b1, b2, b3, b4), one has 〈ρ, ρtarget〉 =
4∑

j=1
bjρj,j and F(x; xtarget) = 〈x, β ◦ xtarget〉 =

∑
j=1,8,13,16

xjxtarget,j → min or max s.t. (13)

and xj ≥ 0, j = 1, 8, 13, 16. Hence for the diagonal case the minimal and maximal
values of the overlap 〈ρ, ρtarget〉 are equal to the minimal and maximal eigenvalues of ρtarget,
correspondingly. The problem of maximizing the overlap 〈ρ, ρtarget〉 with a non-diagonal

ρtarget is reduced to the diagonal case via diagonalization ρtarget = Uρdiag
targetU

† with diagonal

ρdiag
target and unitary U , and using the equalities max

ρ
Tr(ρρtarget) = max

ρ
Tr(ρUρdiag

targetU
†) =

max
ρ

Tr(U †ρUρdiag
target) = max

ρ
Tr(ρρdiag

target) where the last equality holds because the set of

all density matrices is invariant under the unitary transformation ρ → U †ρU . Similar
analysis can be done for the problem of minimizing the overlap. Thus, for general ρtarget

the minimal and maximal bounds of the objective can be chosen as the minimal and
maximal eigenvalues of ρtarget.

One can expect a case when for a given final time T it is not possible to at least
approximately reach such an bound (lower or upper) with any control from the class
P C([0, T ]; Q∞) or P C([0, T ]; Qcompact). However, if one maximizes the objective with
some ρtarget and T and obtains that the objective reaches the upper bound with a good
precision, then it allows to conclude that the maximization problem is globally solved at
least approximately.

4.5 When Zero Coherent and Incoherent Controls Form a Sta-

tionary Point

An admissible control c̃ = (ũ, ñ1, ñ2) is called first-order singular (we also write “singular”)
[86] at some subset Ω ⊆ [0, T ] with mes Ω > 0, if h(x̃(t), p̃(t), u, n1, n2) does not depend on
the variables u, n1, n2 at Ω, i.e. h(x̃(t), p̃(t), u, n1, n2) −h(x̃(t), p̃(t), ũ(t), ñ1(t), ñ2(t)) ≡ 0,
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t ∈ Ω. Because the function h is linear in u, nj , this definition means that Ku(u(t)−ũ(t))+
2∑

j=1
Knj (nj(t) − ñj(t)) ≡ 0 and all the functions Ku(x̃(t), p̃(t)) ≡ 0, Knj (x̃(t), p̃(t)) ≡ 0.

In other words, the function h(x̃(t), p̃(t), u, n1, n2) to be maximized with respect to the
variables u, n1, n2 does not depend on these variables. Because the problem is linear
in controls, the definition of a control being singular at the whole time range (i.e. for
Ω = [0, T ]) coincides with the definition of a stationary point of J(c) in terms of the
switching functions.

Set ρ0 = diag(1, 0, 0, 0). Below we find the conditions which provide all the switching
functions to be zero at the whole [0, T ] for the control c = c. Using (40), consider the
algebraic system b1 − b3 = 0, b1 − b2 = 0 s.t. (31). Solving this system, we derive the
following compound condition for both s = ±1:

0 ≤ b1 ≤
1

3
∧ b1 = b2 = b3 ∧ b4 = 1 − 3b1. (48)

Then using (37) we obtain the next theorem in terms of density matrices.

Theorem 3 (Zero control as a stationary point of J(c)). Consider the system (2) with
ρ0 = diag(1, 0, 0, 0), c ∈ P C([0, T ]; Qcompact) or c ∈ P C([0, T ]; Q∞). Consider the prob-
lems of maximizing and minimizing J(c) with the target state ρtarget = diag(b1, b2, b3, b4).
Then the control c = c = 0 is a stationary point of J(c) in P C([0, T ]; Qcompact) ⊂
P C([0, T ]; Q∞) for any given Hermitian V , system’s parameters (Ω1 > 0, etc.), umin <
0 < umax and nmax > 0 (these bounds are used if Q = Qcompact), any T > 0, if vector
(b1, b2, b3, b4) satisfies the condition (48).

Comparing Theorems 2 and 3 allows to show the effect from the controls’ constraints.
One can expect a case when the control c = c = 0 is not a stationary point of J(c), but,
following Theorem 2, it may turn out that this control is a candidate for being optimal.

4.6 Analytical Study When Zero Singular Coherent and Inco-

herent Controls Are Exactly Optimal

In regard to Theorems 2, 3, consider ρ0 = diag(1, 0, 0, 0) and ρtarget = 1
5
diag(1, 1, 1, 2)

which satisfy (48), i.e. the control c = 0 is a stationary point of J(c). As (34) shows, c
gives x1(t) ≡ a1 = 1, xj(t) ≡ 0, j = 2, 16 and, therefore, we analytically obtain J(c) =
〈x(T ), β ◦ xtarget〉 = a1xtarget,1 = b1 = 1/5 for any T . For this ρtarget, we using Subsect. 4.4
obtain that the lower and upper bounds of J(c) are 1/5 and 2/5, correspondingly.

For the problem of minimizing J(c) we obtain that the stationary point c = 0
provides J(c) = 1/5 that is exactly equal to the upper bound for any T > 0, Hermitian V ,
etc. This means that c = 0 is exactly globally optimal, J(c) is the globally minimal value
of J(c).

For the problem of maximizing J(c) we see that the value J(c) at the stationary
point c = 0 is two times smaller than the upper bound for any T . We perform the following
numerical illustration for T = 2. Set the controls u = 10 sin t, n1 = n2 = 0, t ∈ [0, 2], the
values ε = 0.1, ω1 = 1, ω2 = Ωj = 0.5, Λj = 0.05, j = 1, 2. Solving numerically (14), we
obtain J(c) ≈ 0.37 > J(c) = 0.2. In our problem, PMP is not a sufficient condition for
optimality.
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5 Gradient Projection Methods

Consider the objective functional I(c) to be minimized, where, as it is introduced in
Sect. 3, I(c) is either J − J(c), or J(c), or JM,2(c), or Jθ

M,1(c). In terms of sequential

updates of controls, one sets an initial admissible guess c = c(0) = (u0), n
(0)
1 , n

(0)
2 ) and aims

to construct such a sequence c(0), c(1), . . . , c(k), . . . , c(M) that the corresponding values
of I(c) should either monotonically decrease (I(c(k+1)) < I(c(k)) or decrease in general.
Consider a current control c(k), k ≥ 0 and an arbitrary admissible control c. At them,
using the corresponding general result from the theory of optimal control [73,74], we have
the expansion

I(c) − I(c(k)) =
〈
grad I(c(k)), c − c(k)

〉
L2

+ r = −

T∫

0

[
Ku(p(k)(t), x(k)(t))(u(t) − u(k)(t))

+
2∑

j=1

Knj (p(k)(t), x(k)(t))(nj(t) − n
(k)
j (t))

]
dt + r, (49)

grad I(c(k))(t) = −hc(p, x, c)
∣∣∣
p=p(k)(t), x=x(k)(t), c=c(k)(t)

=
(
Ku(p(k)(t), x(k)(t)), Knj (p(k)(t), x(k)(t)), j = 1, 2

)
.

where r is the remainder, grad I(c(k)) is the gradient of I(c) at c(k), and this gradient is
the vector-function defined at the whole [0, T ].

For the problem of minimizing I(c), consider the following iterative process of GPM-
2 starting from an admissible c(0):

c(k+1)(t) = PrQ

(
c(k)(t) − α(k) grad I(c(k))(t) + β

(
c(k)(t) − c(k−1)(t)

))
, (50)

where Q = Q∞ or Q = Qcompact; if k = 0, then we use α(0) > 0, β = 0, and if k > 0, then
we use α(k) > 0, β ∈ (0, 1); the orthogonal projection PrQ maps any point outside of Q
to a closest point in Q, and leaves unchanged points in Q. In details, we have

u(1)(t) = PrQu

(
u(0)(t) + α(0)Ku(p(0)(t), x(0)(t))

)
, (51)

n
(1)
j (t) = PrQnj

(
n

(0)
j (t) + α(0)Knj (p(0)(t), x(0)(t))

)
, (52)

u(k+1)(t) = PrQu

(
u(k)(t) + α(k)Ku(p(k)(t), x(k)(t)) + β(u(k)(t) − u(k−1)(t))

)
, (53)

n
(k+1)
j (t) = PrQnj

(
n

(k)
j (t) + α(k)Knj (p(k)(t), x(k)(t)) + β(n

(k)
j (t) − n

(k−1)
j (t))

)
, (54)

where k ≥ 1; j = 1, 2; Qu = R or Qu = [umin, umax], Qnj
= [0, ∞) or Qnj

= [0, nmax];

the parameters α(k) > 0 (k = 0, 1, 2, . . . ) and β ∈ (0, 1) should be adjusted. E.g., one
can try to fix α(k) > 0 to be appropriate for the whole set of iterations. An another rule
is α(k) = α̂/(kσ + 1), where α̂, σ > 0. As (51, 52) show, the first iteration of GPM-2
coincides with the first iteration of GPM-1. Note the inertial terms β(u(k)(t) − u(k−1)(t))

and β(n
(k)
j (t) − n

(k−1)
j (t)) in (53, 54). Also note that (50) has the same sign “−” before

the gradient both for the problems of minimizing and maximizing, because the difference
between these two problems is taken into account in (25). In general, we do not expect
that GPM-1 and GPM-2 give I(c(k+1)) < I(c(k)) at each iteration.
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Consider the stopping criterion |I(c(k+1))−I(c(k))| < εstop,1 ≪ 1. Together with this,
for the problem of minimizing I = Jθ

M,1(c), additionally consider the stopping criterion
Jθ

M,1 < εstop,2 ≪ 1. For minimizing I = Jθ
M,1(c), we use JM,1(c) in the stopping criterion

JM,1(c) < εstop,3.

By the construction, 1
T

T∫
0

4∑
j=1

ρj,j(t)dt = 1
T

T∫
0

∑
j=1,8,13,16

xj(t)dt = 1. Set

ℵ :=
1

T

T∫

0

∑

i,j=1,2,3,4, i<j

|ρi,j(t)|
2dt =

1

T

T∫

0

∑

j=2,15\{8,13}

x2
j (t)dt

≈
1

T

∑

j∈2,15\{8,13}

x2
j (tq)∆t =

1

K

∑

j∈2,15\{8,13}

x2
j (tq),

where ∆t = T/K with a sufficiently large K ∈ N.

6 Numerical Results with GPM-1 and GPM-2

Consider either V = V1 or V = V2 defined in (6). As in Subsect. 4.6, use ε = 0.1,
ω1 = 1, ω2 = Ωj = 0.5, Λj = 0.05, j = 1, 2. The described below numerical experiments
were carried out without reduction to finite-dimensional optimization. They use our
implementation of GPM in Python using solve_ivp from SciPy, etc. As an option,
take Q = Q∞. In the stopping criteria, take εstop,1 = 10−8 (in Subsect. 6.1–6.3) and
εstop,j = 10−4, j = 2, 3 (in Subsect. 6.3). It is interesting to analyze various mathematical
aspects, e.g., convergence of {c(k)} to zero in Subsect. 6.1, 6.2 with respect to Theorem 2.

6.1 Maximizing the Overlap for Mixed ρtarget

Consider ρ0 = 1
4
I4 and ρtarget = 1

10
diag(7, 1, 1, 1). The entropy S(ρtarget) ≈ 0.94 is about

68 % of the entropy of the completely mixed state ρ0. Consider V = V1. For this ρtarget,
using Subsect. 4.4 we obtain that the upper bound for J(c) is 0.7. For this ρ0 = 1

4
I4,

c = c = 0, and T = 70, using (34) we compute that J(c) ≈ 0.6994, i.e. sufficiently close
to 0.7. This is consistent with (35) and (36). For the problem of maximizing J(c), we use
the objective I(c) := 0.6995 − J(c) to be minimized.

Take T = 70. Set c(0) formed by n
(0)
1 = n

(0)
1 = 10, u(0) = 0 that give I(c(0)) ≈ 0.43.

We use GPM-1, GPM-2 with this c(0) and fixing α(k) = 105, β = 0.9. For computing
needs, consider the uniform time grid with the step T/N with N = 1000. Piecewise
constant interpolation for u, nj is used. After solving 73 Cauchy problems (for (14, 24)),
GPM-2 provides I ≈ 6 · 10−4, i.e. near 0.1 % of I(c(0)), ℵ ≈ 0. Fig. 2 shows the results
obtained with GPM-2. As Fig. 2(a) shows, ρ(T ) is not close to ρtarget. For comparing,
use GPM-1 (i.e. β = 0 for all k in (50)) with α(k) = 105 for all k. For the same εstop,1,
GPM-1 gives also I ≈ 6 · 10−4 at the cost of 87 Cauchy problems. Thus, GPM-2 with
β = 0.9 is faster than GPM-1 for the same fixed α(k).

6.2 Maximizing the Overlap for Pure ρtarget

Consider ρ0 = 1
4
I4, V = V1. Instead of ρtarget = diag(0.7, 0.1, 0.1, 0.1) whose von Neumann

entropy is 0.94, consider ρtarget = diag(1, 0, 0, 0) whose von Neumann entropy is zero (as
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Figure 2: The results of GPM-2 for the problem of maximizing J(c) with ρ0 = 1
4
I4

and ρtarget = 1
10

diag(7, 1, 1, 1): (a) the functions ρj,j (j = 1, 2, 3, 4) of t, where ρ1,1 ≈ 1
and ρj,j ≈ 0 (j = 2, 3, 4) at t = T ; (b) evolution at the optimized c of: the overlap
F (ρ(t); ρtarget) reaching the upper bound 0.7 with a good precision at t = T , squared
distance ‖ρ(t)−ρtarget‖

2, purity reaching ≈ 0.998 at t = T , von Neumann entropy reaching
≈ 0.008 at t = T , Uhlmann–Jozsa fidelity, quantum relative entropy, Petz–Rényi relative
entropy with α = 0.1, 0.8, 5; (c) monotonous decrease of I versus the index k over
the iterations of GPM-2 in the log10 scale; (d) monotonous decrease of L2-norm for n1

versus k.

the linear entropy 1 − P (ρtarget)). For this ρtarget, using Subsect. 4.4 we compute that the
upper bound for J(c) is 1 (instead of 0.7). This is consistent with (35) and (36).

Define I(c) = 1 − J(c), take T = 100. For storing controls in computer, [0, T ] is

divided into N = 1000 pieces of the equal length. Set n
(0)
1 = n

(0)
1 = 10 and u(0) = 0

that give J(c(0)) ≈ 0.27, I(c(0)) ≈ 0.73. We use GPM-1, GPM-2 with this c(0) and fixing
α(k) = 105, β = 0.9. At the cost of solving 119 Cauchy problems, GPM-2 gives I(c) ≈
5 · 10−5, ℵ ≈ 0. Fig. 3(a) shows the numerically optimized functions ρj,j (j = 1, 2, 3, 4)
which are similar to the functions shown in Fig. 2(a). In contrast to Fig. 2(b), we see
in Fig. 3(b) that F (ρ(t); ρtarget) ≈ 1 at t = T and ‖ρ(t) − ρtarget‖

2 ≈ 0 at t = T . We
mean that, in contrast to the previous case with non-pure ρtarget, here the overlap reaches
approximately 1 and the distance reaches approximately 0 at the appropriate T . Here
maximizing 〈ρ(T ), ρtarget〉 gives also approximate steering ρ0 → ρtarget. For comparing,
we use GPM-1 with the same α(k). At the cost of solving 141 Cauchy problems, GPM-1
gives I(c) ≈ 5 · 10−5, i.e. GPM-2 with β = 0.9 is faster than GPM-1.
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Figure 3: The results of the GPM-2 for maximizing the overlap 〈ρ(T ), ρtarget〉 with maxi-
mally mixed ρ0 = 1

4
I4 and pure state ρtarget = diag(1, 0, 0, 0).

Table 1: About the work of GPM-2 for the problems of maximizing the overlap for the
two variants of (ρtarget, T ) (Subsect. 6.1, 6.2)

Data and Results
Case (ρtarget, T )

(mixed, 70) (pure, 100)

(J(c(0)), I(c(0))) – initial values ≈ (0.27, 0.43) ≈ (0.27, 0.73)

J for defining I(c) = J − J(c) 0.6995 1

(α(k), β) (105, 0.9) (105, 0.9)

Number of solving the Cauchy problems 73 119

I(c) at the obtained c ≈ 6 · 10−4 ≈ 5 · 10−5

ℵ at the obtained c ≈ 0 ≈ 0

Corresponding Fig. and Subsec. Fig. 2, Subsect. 6.1 Fig. 3, Subsect. 6.2

S(ρ(T )) ≈ 0 at the obtained c Yes Yes

〈ρ(T ), ρtarget〉 ≈ 1 at the obtained c No Yes

Table 1 summarizes the information about the work of GPM-2 from Subsect. 6.1, 6.2.
With respect to the noticeably different resulting values of I in these cases, note that the
stopping criterion with εstop,1 = 10−8 is used.

6.3 Steering the Overlap to a Given Value

Consider the pure states ρ0 = diag(0, 1, 0, 0) and ρtarget = diag(0, 0, 1, 0), the operator V
being either V1 or V2, and T being either 0.5 or 0.1, i.e. we have the four cases of (V, T ).
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For the problem of steering 〈ρ(T ), ρtarget〉 to M = 0.5, we use I = Jθ
M,1(c) with θ = 10−4.

As (18) shows, if |F(x(T ); xtarget) − M | ≤ θ we use the quadratic function majorizing
values of JM,1(c). GPM-2 is used with α(k) = α̂/(kσ + 1), where σ = 1.5, β = 0.92 are
for all the computations, while α̂ is specified for each of the four cases. Set u(0) = sin t,
n

(0)
1 = n

(0)
2 = 0. For storing u, n1, n2 in computer, divide [0, T ] into N = 500 parts for

T = 0.5 and into N = 100 parts for T = 0.1, use piecewise constant interpolation. The
values of α̂ and the results of GPM-2 are shown in Table 2, Fig. 4, 5. We see that GPM-2
provides Jθ

M,1 sufficiently close to 0 in each of the four cases.

Table 2: About the work of GPM-2 for the problem of steering the overlap (Subsect. 6.3)

Data and Results
Case (V, T )

(V1, 0.5) (V1, 0.1) (V2, 0.5) (V2, 0.1)

I(c(0)) – initial value ≈ 0.5 ≈ 0.5 ≈ 0.5 ≈ 0.5

α̂ in the formula for α(k) 1 100 1 5

JM,1(c) at the obtained c ≈ 6 · 10−5 ≈ 5 · 10−5 ≈ 6 · 10−5 ≈ 6 · 10−5

Number of solving
the Cauchy problems

169 243 345 275

ℵ at the obtained c ≈ 0.21 ≈ 0.21 ≈ 0.11 ≈ 0.12

Corresponding Fig.
Fig. 4,
left col.

Fig. 5,
left col.

Fig. 4,
right col.

Fig. 5,
right col.

For V = V1, comparing the left columns in Figs. 4, 5, we see that the resulting ρj,j

for the same j ∈ {1, 2, 3, 4} are similar to each other for both variants of T , and that for
the smaller T one has increasing in all the obtained controls’ values. In Fig. 4, comparing
the results for V = V1 (left column) with the results for V = V2 (right column) obtained
for the same T = 0.5, we see the significant differences in the obtained controls, etc. This
was a reason for using T = 0.1 for V = V2. The corresponding results are shown in the
right column in Fig. 5, where the graphs of ρj,j (j = 1, 2, 3, 4), F θ

M,1(ρ(t); ρtarget), and
P (ρ(t)) at the obtained c are significantly more accurate. These observations remind the
importance of comparing various numerically optimized control processes with respect to
their structures.

7 Conclusions

In this article, we consider optimal state manipulation for a two-qubit system whose
dynamics is governed by the Gorini–Kossakowski–Sudarshan–Lindblad master equation,
where coherent control enters into the Hamiltonian and incoherent control into both
the Hamiltonian (via Lamb shift) and the superoperator of dissipation. We exploit two
physically different classes of interaction with coherent control and consider the Hilbert–
Schmidt overlap 〈ρ(T ), ρtarget〉 between final (ρ(T )) and target (ρtarget) density matrices.
We consider the problems of maximizing and minimizing the overlap and the problem
of steering the overlap to a given admissible value. For the problems of optimizing the
overlap, Theorem 1 contains the PMP, Theorem 2 contains conditions for ρ0 and ρtarget
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Figure 4: The results of the GPM-2 for minimizing Jθ
M,1(c), where ρ0 = diag(0, 1, 0, 0),

ρtarget = diag(0, 0, 1, 0), V is either V1 or V2, and T = 0.5.

such that zero coherent and incoherent controls satisfy the PMP, and Theorem 3 gives
conditions for ρ0 and ρtarget such that zero controls form a stationary point of the objec-
tive functional. Known bounds for the overlap summarized in Subsect. 4.4. For global
optimization, these bounds can be useful for the analytical (Subsect. 4.6) and numerical
treatment. Sec. 5 describes one- and two-step GPM operating with piecewise continuous
controls for the problems of maximizing the overlap and steering the overlap to a given
value. The numerical results in Sec. 6 show the examples when the quantum system itself
contains resources sufficient to reach the control goal without external controls (i.e., when
zero coherent and incoherent controls are optimal), the gradient approach in the form of
one- and two-step GPM is successful in our numerical experiments, coherent and incoher-
ent controls can be simultaneously non-trivial, the profiles of the computed controls for
various final times can behave essentially differently.
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Figure 5: The results of the GPM-2 for minimizing Jθ
M,1(c), where ρ0 = diag(0, 1, 0, 0),

ρtarget = diag(0, 0, 1, 0), V is either V1 or V2, and T = 0.1.
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