
Springer Nature 2021 LATEX template

Channel Polarization of

Two-dimensional-input Quantum Symmetric

Channels

Zhengzhong Yi1, Zhipeng Liang1 and Xuan Wang1*

1Harbin Institute of Technology, Shenzhen. Shenzhen, 518055,
China.

*Corresponding author(s). E-mail(s): wangxuan@cs.hitsz.edu.cn;
Contributing authors: zhengzhongyi@cs.hitsz.edu.cn;

liangzhipenghitsz@163.com;

Abstract

Being attracted by the property of classical polar code, researchers are
trying to find its analogue in quantum fields, which is called quan-
tum polar code. The first step and the key to design quantum polar
code is to find out for the quantity which can measure the qual-
ity of quantum channels, whether there is a polarization phenomenon
which is similar to classical channel polarization. Coherent information
is believed to be the quantum analogue of classical mutual informa-
tion and the quantity to measure the capacity of quantum channel.
In this paper, we define a class of quantum channels called quantum
symmetric channels, and prove that for quantum symmetric channels,
under the similar channel combining and splitting process as in the
classical channel polarization, the maximum single letter coherent infor-
mation of the coordinate channels will polarize. That is to say, there
is a channel polarization phenomenon in quantum symmetric channels.
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1 Introduction

The potential to solve different problems more efficiently than the state-
of-the-art classical computing makes quantum computing attract worldwide
attention. To give full play to this potential, quantum computers should have
sufficient reliable qubits. However, at present, physical qubits are quite vul-
nerable, which restricts the development of large-scale fault-tolerant quantum
computing and exploiting the advantages of quantum computing. Fortunately,
quantum error correcting codes (QECCs) discovered by Shor and Steane
provide us with a solution to this problem[1, 2].

Similar to classical error correcting codes (CECCs), QECCs encoding n
(which is called code length) less reliable physical qubits (with error rate p0)
in a certain way to obtain k (k < n) more reliable logic qubits (with error rate
pL < p0 after decoding and recovery). The ratio k/n is called coding rate. The
higher it is, the more efficient the QECC is. No matter for CECCs or QECCs,
to improve the reliability of the logic bits/qubits, we often need to increase
the code length. Good CECCs have constant or increasing coding rate with
code length increasing, some[3–6] can even asymptotically achieve the channel
capacity which is a quantity measures the upper limit of coding rate. However,
for most QECC schemes, the larger the code length n is, the lower the coding
rate will be, which will results in excessive physical qubits overhead. This
makes reliable large-scale fault-tolerant quantum computing needs millions of
physical qubits, which is very difficult to realize for the current technology.
For Surface Code[7–24] which is the most promising QECC at present, and
the concatenated QECCs[25–27] which is the earliest and also a promising
method to realize fault-tolerant quantum computing, their coding rate tends
to 0 with the increase of its code length. For quantum low-density parity check
(QLDPC) codes[28–37], though their coding rate is constant with code length
increasing, whether their coding rate can achieve the channel capacity has not
been proven. In some cases, such as hyperbolic codes[33–37], which is a family
of QLDPC codes, have a constant coding rate, but their coding rate does not
seem to achieve the quantum channel capacity (we measure this capacity by
maximum single letter coherent information of the quantum channel, which is
explained in Subsection 2.4). For instance, in ref [36], the asymptotic coding
rate of 4D-hyperbolic code is 0.18, but the quantum channel capacity of the
independent X/Z-flip noise channel considered by the authors with error rate
p = 0.04 (i.e. a qubit undergoes independently an X error with probability
p or a Z error with probability p) is 0.5178, which is rather larger than its
asymptotic coding rate.

Classical polar code (CPC) is the only error correcting code whose cod-
ing rate has been proven that it can reach the classical channel capacity[6].
The high coding rate has attracted researchers’ attention. In the past decade,
researchers are trying to apply the channel polarization idea of CPC to quan-
tum channels and find the analogue of CPC in quantum fields, which is called
quantum polar code (QPC)[38–45].
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The first step and also the key to design QPC is to figure out whether
quantum channels will polarize which is similar to classical channel polariza-
tion discovered in [6]. Some previous studies[38–43, 45–48] have proved some
quantities of classical-quantum channels whose inputs are classical bits and
outputs are qubits, such as classical symmetric capacity[38], Bhattacharyya
parameter[38, 48], and classical symmetric Holevo information[46] will polar-
ize. Some studies[39, 40, 42, 47, 48] has referred to coherent information, which
is a quantum quantity of quantum channels and is believed to be a quan-
tity to measure the channel capacity of pure quantum channels[49–58], but
the coherent information of the classical-quantum channels is just the classical
mutual information. Based on the polarization of classical-quantum channels,
researchers have proposed some quantum polar coding schemes[38–43, 45–48].
Unfortunately, they cannot be applied to quantum computing whose quan-
tum channels are pure quantum channels. In 2019, Dupuis[44] prove that the
symmetric coherent information(the coherent information of quantum chan-
nel evaluated for Bell-state input[39]) of pure quantum channels will polarize.
However, unlike the classical symmetric capacity having been proved that it is
the channel capacity of classical symmetric channels, no one has proved that
the symmetric coherent information is the maximum single letter coherent
information of pure quantum channels.

In this paper, we focus on proving the polarization of pure quantum chan-
nels. We first define a class of quantum channels called quantum symmetric
channels (QSCs, this term has been used in [59], but in this paper, it has dif-
ferent meaning), and prove some basic properties of them. For QSC, we prove
that its maximum single letter coherent information (MSLCI) equals to its
symmetric coherent information. Then we prove the MSLCI will polarize in
two-dimensional-input QSC under the quantum channel combining and split-
ting process. Unlike the proof method used by Dupuis[44], our proof uses the
basis transition probability matrix proposed by us.

The rest of this paper is organized as follows. Some preliminary knowl-
edge, including coherent information, quantum symmetric channels, quantum
channel combing and splitting, will be introduced in Sect. 2. In Sect. 3, we
will prove that the combined channel is quantum symmetric channel and all
the coordinate channels are two-dimensional-input quasi quantum symmetric
channels. In Sect. 4, we will prove the MSLCI of the coordinate channels will
polarize. In Sect. 5, we conclude our work.

2 Preliminaries

2.1 Coherent information

Coherent information is proposed by Schumacher and Nielsen to measure
the amount of quantum information conveyed in the noisy channel[60]. It
is believed to be the analogue of classical mutual information in quantum
information theory[61].
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Fig. 1 System Q and its reference system R. System Q is subjected to a quantum channel
E. Notice that the reference system R is only subjected to an identity operator I, namely,

R
′

= R. The solid line between system Q and its reference system R indicates Q and R are
in a maximally entangled state, which means in a certain basis, the measurement results
of Q and R have an one-to-one relationship. Once you get the measurement results of Q,
you know the state of R, and vice versa. Hence, we use solid line to represent this “strong”

relationship. The dashed line indicates there might be still some entanglement between Q
′

and R
′

and the one-to-one relationship might not exist.

As shown in Fig. 1, suppose the state of a quantum system Q is ρQ,

ρQ =
∑
i

pi |iQ〉 〈iQ| (1)

where |iQ〉 is the basis for Q. Suppose Q is subjected to a quantum channel E
which change system Q to Q

′
and maps the state to ρQ

′

, namely,

ρQ
′

= E(ρQ) (2)

For system Q, we can always introduce a reference system R which has the
same state space as Q to purify Q, namely, map the mixed state ρQ to a pure
state |QR〉. The state of system Q and R can be expressed as

|QR〉 =
∑
i

√
pi |iQ〉 |iR〉 (3)

where |iR〉 is the basis for R, which is the same as |iQ〉.
Schumacher defined an intrinsic quantity to Q called entropy exchange

Se[62],

Se ≡ S(RQ
′
) (4)

where S(RQ
′
) is the von Neumann entropy of system RQ

′
.

Coherent information in the process shown in Fig. 1 is defined as

I(Q; Q
′
) ≡ S(Q

′
)− Se = S(Q

′
)− S(RQ

′
) (5)

where S(Q
′
) is the von Neumann entropy of system Q

′
. It’s obvious that once

Q and E are given, Q
′

is determined. Hence, we can also write I(Q; Q
′
) as

I(ρQ, E).



Springer Nature 2021 LATEX template

Channel Polarization of 2D-input Quantum Symmetric Channels 5

Assuming the operation elements of E are {Ek}, then Se can be calculated
by

Se = S(W ) (6)

where Wij = tr
(
Eiρ

QE†j

)
.

It should be emphasized that in this paper, the coherent information
which we consider is the single letter coherent information (SLCI). Due to the
superadditivity[63] of quantum channel, single letter coherent information is
the lower bound of quantum channel capacity. Researchers[64, 65] believes the
quantum channel capacity should be more accurately measured by I

(
ρQ, E⊗n

)
which is defined by

I
(
ρQ, E⊗n

)
≡ lim
n→∞

1

n
I
(
ρQ, E

)
(7)

Whether will I
(
ρQ, E⊗n

)
of the coordinate channels polarize has not been

proven in this paper.

2.2 Quantum symmetric channels

In classical information theory, there is a class of channels called classical
symmetrical channels (CSCs) whose properties have been well-studied, such as
binary symmetric channel (BSC). The behavior of a classical channel can be
depicted by a transition probability matrix (TPM). Assume the input variable
is A, which takes value from {a1, a2, · · · , aK}, and the output variable is B,
which takes value from {b1, b2, · · · , bL}, then we can write out its TRM as
follows.


B = b1 · · · B = bL

A = a1 p(B = b1|A = a1) · · · p(B = bL|A = a1)
A = a2 p(B = b1|A = a2) · · · p(B = bL|A = a2)
...

...
. . .

...
A = aK p(B = b1|A = aK) · · · p(B = bL|A = aK)

 (8)

If each row of the TPM is a permutation of the first row, then this channel
is symmetric with respect to its input. If each column of the TPM is a permu-
tation of the first column, then this channel is symmetric with respect to its
output. If a channel is symmetric with respect to both of its input and output,
then this channel is called a symmetric channel. If a channel is symmetric with
respect to its input but might not to its output, and its TPM can be divided
into several submatrices by column, each of which satisfies that each column
of it is a permutation of the first column of it, then this channel is called a
quasi symmetric channel.

For some quantum channels, given certain basis of the input space and the
output space, we may also find a probability matrix similar to TRM of classical
channels. For example, for bit flip channel, if the input state |Q〉 is |0〉 (with
probability q) or |1〉 (with probability 1 − q), then the output state |Q′〉 will
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also take value from |0〉 or |1〉, and we can figure out p(|Q′〉 = |0〉 ||Q〉 = |0〉),
p(|Q′〉 = |1〉 ||Q〉 = |0〉), p(|Q′〉 = |0〉 ||Q〉 = |1〉), p(|Q′〉 = |1〉 ||Q〉 = |1〉). Then
we can write out a probability matrix as follows.

( |Q′〉 = |0〉 |Q′〉 = |1〉
|Q〉 = |0〉 p(|Q′〉 = |0〉 ||Q〉 = |0〉) p(|Q′〉 = |1〉 ||Q〉 = |0〉)
|Q〉 = |1〉 p(|Q′〉 = |0〉 ||Q〉 = |1〉) p(|Q′〉 = |1〉 ||Q〉 = |1〉)

)
(9)

Here, we name matrix (9) basis transition probability matrix (BTPM),
for it shows the transition relationship between the basis of input and out-
put spaces. Different from TPM of classical channels, the above BTPM
doesn’t seem to fully depicted the behavior of bit flip channel, because quan-
tum mechanics allow the input state to be a superposition state, such as
1√
2
|0〉+ 1√

2
|1〉. That is to say, the input state and the output state may take

value outside {|0〉 , |1〉}, which cannot be depicted by BTPM. However, using
BTPM (9), given arbitrary input state, we can always determine the out-
put. This is because we can write out the operator elements by matrix (9),
which will be proved later. And once the operator elements are determined,
the behavior of the quantum channel is determined. Hence, for the quantum
channels which have a BTPM, its behavior can be fully depicted by its BTPM.

There is a necessary and sufficient condition for a quantum channel having
a BTPM.

Theorem 1 (Necessary and sufficient condition for a quantum channel
having a BTPM) Given a quantum channel E, it has a BTPM if and only if there
is a certain basis Bin = {|1〉 , |2〉 , · · · , |N〉} of the input space, any two basis vectors
|i〉 and |j〉 in Bin satisfy that E(|i〉 〈i|) commutes with E(|j〉 〈j|), namely,

[E(|i〉 〈i|), E(|j〉 〈j|)] = E(|i〉 〈i|)E(|j〉 〈j|)− E(|j〉 〈j|)E(|i〉 〈i|) = 0 (10)

Proof (1)Sufficiency: If there is a certain basis Bin = {|1〉 , |2〉 , · · · , |N〉} of the
input space, any two basis vectors |i〉 and |j〉 in Bin satisfy [E(|i〉 〈i|), E(|j〉 〈j|)] = 0,
then for all E(|i〉 〈i|), they can be simultaneously diagonalized in a certain basis

Bout = {|1
′
〉 , |2

′
〉 , · · · , |M

′
〉} of the output space. The result of diagonalization is

E(|i〉 〈i|) =

M∑
k=1

pik |k
′
〉 〈k

′
| (11)

It is obvious that pik forms the BPTM.
(2)Necessity: Assume quantum channel E has a BTPM whose elements areAik (1 ≤
i ≤ N, 1 ≤ k ≤ M), and the corresponding basis for the input and output space

are Bin = {|1〉 , |2〉 , · · · , |N〉} and Bout = {|1
′
〉 , |2

′
〉 , · · · , |M

′
〉}, respectively, then

E(|i〉 〈i|) can be expressed as

E(|i〉 〈i|) =

M∑
k=1

Aik |k
′
〉 〈k

′
| (12)
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which means that all E(|i〉 〈i|) can be simultaneously diagonalized in Bout =

{|1
′
〉 , |2

′
〉 , · · · , |M

′
〉}. Hence, any two basis vectors |i〉 and |j〉 in Bin satisfy

[E(|i〉 〈i|), E(|j〉 〈j|)] = 0. The proof is completed. �

Next, we are going to prove that one can derive the channel operation
elements by BTPM.

Theorem 2 (Derive the channel operation elements from BTPM) For
a quantum channel which has BTPM, its BTPM determine a set of quantum
operations.

Proof Assume quantum channel E has a BTPM A, for arbitrary input ρ =∑N
i=1 qi |i〉 〈i|, the corresponding output E(ρ) is

E(ρ) =

N∑
i=1

qiE(|i〉 〈i|) =

N∑
i=1

qi

M∑
k=1

Aik |k
′
〉 〈k

′
| =

M∑
k=1

Ek

(
N∑
i=1

qi |i〉 〈i|

)
E†k (13)

where {Ek} are the operation elements of channel E , and Ek |i〉 =
√
Aik |k

′
〉, accord-

ing to which one can easily write out the matrix representation of Ek. This completes
the proof. �

According to the above proof, one can see that the number of independent
operation elements equals to the number of dimensions of the output space.

Similar to classical symmetric channels, we can define quantum symmetric
channels by BTPM.

Definition 1 (Quantum symmetric channels) For the quantum channels which
have BTPM, if each row of the BTPM is a permutation of the first row, then this
quantum channel is symmetric with respect to its input. If each column of the BTPM
is a permutation of the first column, then this quantum channel is symmetric with
respect to its output. If a quantum channel is symmetric with respect to both of its
input and output, then this channel is called quantum symmetric channel (QSC). If
a channel is symmetric with respect to its input but might not to its output, and
its BTPM can be divided into several submatrices by column, each of which satisfies
that each column of it is a permutation of the first column of it, then this channel is
called a quantum quasi symmetric channel (QQSC). Actually, a QSC can be regarded
as a special QQSC.

Theorem 3 (Operation elements of two-dimensional-input QQSC) For a
two-dimensional-input QQSC whose output space is M-dimensional, there is always
a set of operation elements {Ek} , 1 ≤ k ≤M , which satisfies

Ek |0〉 =
√
pk |k

′
〉 , Ek |1〉 =

√
pk |π(k)

′
〉 (14)

where π is a certain permutation, {|k
′
〉} is a basis of the output space,

∑M
k=1 pk = 1.

Notice that |0〉 and |1〉 are only basis vectors of the input space, they are not necessary

to be the computational basis vectors

(
1
0

)
and

(
0
1

)
.
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Fig. 2 Bit flip channel

Proof We only need to determine the matrix representation of each Ek and prove

that
∑
k E
†
kEk = I. Notice that the matrix representation of Ek can be calculated by

Ekji = 〈j|Ek |i− 1〉 (15)

Here, the ket vector is |i− 1〉 rather than |i〉. This is because we use |0〉 and |1〉
to represent the input basis rather than |1〉 and |2〉, so the index of the column of
the matrix starts from 1. Through Eq. (14) and Eq. (15), it’s easy to obtain

Ekj1 =
√
pkδjk (16)

Ekj2 =
√
pkδjπ(k) (17)

where δ is the Kronecker Delta. Hence,∑
k

E†kEk =

(∑M
k=1 pk 0

0
∑M
k=1 pk

)
= I (18)

which completes the proof. �

2.3 Two examples of QSC

Bit flip channel and phase flip channel are two typical QSCs, as shown in Fig.
2 and Fig. 3, respectively.

Bit flip channel flips |0〉 and |1〉 with the same probability p, and phase flip
channel flips |+〉 and |−〉 with the same probability p. It’s easy to write out the
operation elements[61] for them. The operation elements for bit flip channel is

E0 =
√
pI, E1 =

√
1− pX (19)

where X is the pauli X operator. And the operation elements for phase flip
channel is

Ẽ0 =
√
pI, Ẽ1 =

√
1− pZ (20)

where Z is the pauli Z operator.
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Fig. 3 Phase flip channel

2.4 Symmetric coherent information and the MSLCI of
two-dimensional-input QQSC

The symmetric coherent information was first proposed in [40], which is similar
to the definition of symmetric capacity used by Arikan[6].

Definition 2 (Symmetric coherent information) For a quantum channel E ,
the number of whose input qubits is n, its input state can be represented by

ρ =
∑2n

i=1 qi |i〉 〈i|, its symmetric coherent information IU is defined as the coherent
information I(ρ, E) when q1 = q2 = · · · = q2n = 1/2n, namely,

IU ≡ I

ρ =

2n∑
i=1

1

2n
|i〉 〈i| , E

 (21)

Arikan has proved that for a classical symmetric channel (actually, the
classical symmetric channel mentioned by Arikan in the Part A of Sec. I of
[6] means a classical binary quasi symmetric channel), the symmetric capacity
is its Shannon capacity. However, up to the present, none of the previous
studies[38–48] has proved that the symmetric coherent information of a pure
quantum channel is its MSLCI. Next, we will prove this theorem for two-
dimensional-input QQSC.

Theorem 4 (The MSLCI of two-dimensional-input QQSC) The MSLCI of
two-dimensional-input QQSC is its symmetric coherent information.

Proof Assume the input state of a two-dimensional-input QQSC E is ρ = q |0〉 〈0|+
(1 − q) |1〉 〈1|. According to Theorem 3, there is a set of operation elements {Ek},
1 ≤ k ≤M . By Eq. (5) and Eq. (6), the coherent information of E is

I(ρ, E) = S(E(ρ))− Se = S(E(ρ))− S(W ) (22)
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Using Eq. (15), one can easily obtain

Wij = tr
(
EiρE

†
j

)
= tr

(
Ei(q |0〉 〈0|+ (1− q) |1〉 〈1|)E†j

)
= q × tr

(√
pipj |i′〉 〈j′|

)
+ (1− q)× tr

(√
pipj |π(i)′〉 〈π(j)′|

)
= piδij

(23)

where δ is the Kronecker Delta and π is a certain permutation.
Hence, S(W ) = H (pi), where H (pi) is the Shannon entropy of the probability

distribution {p1, . . . , pM}. It’s obviously that S(W ) has nothing to do with q.
Next, we analyze the first term S(E(ρ)). Using Eq. (14), we get

S(E(ρ)) = S

(
M∑
k=1

EkρE
†
k

)

= S

(
M∑
k=1

qpk |k
′
〉 〈k

′
|+

M∑
k=1

(1− q)pk |π(k)
′
〉 〈π(k)

′
|

)

= S

(
M∑
k=1

qpk |k
′
〉 〈k

′
|+

M∑
m=1

(1− q)pπ(m) |m
′
〉 〈m

′
|

)

= S

(
M∑
k=1

qpk |k
′
〉 〈k

′
|+

M∑
k=1

(1− q)pπ(k) |k
′
〉 〈k

′
|

)
(24)

The third equality in Eq. (24 )holds because π(π(k)) = k. If one let π(k) = m,
then π(m) = k. The last equality is obtained simply by renaming m.

Notice that von Neumann entropy has a property which states that when ρi have
support on orthogonal subspaces, the following equation holds.

S

(∑
i

piρi

)
=
∑
i

piS (ρi) +H (pi) (25)

Using Eq. (25), we can further simplify Eq. (24).

S(E(ρ)) =

M∑
k=1

[
qpk + (1− q)pπ(k)

]
S
(
|k′〉 〈k′|

)
+H

(
qpk + (1− q)pπ(k)

)
= H

(
qpk + (1− q)pπ(k)

) (26)

Taking the derivative with respect to q, we obtain

dS(E(ρ))

dq
= −

M∑
k=1

(pk − pπ(k)) log2

[(
pk − pπ(k)

)
q + pπ(k)

]
+

(
pk − pπ(k)

)
ln 2


= −

M∑
k=1

tk

(27)

where tk = −
(
pk − pπ(k)

)
log2

[(
pk − pπ(k)

)
q + pπ(k)

]
+
(
pk − pπ(k)

)
/ ln 2.

Notice that there are M terms in the summation sign, which can be divided into
M/2 pairs, each of which can be represented by

yk = tk + tπ(k) (28)
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Fig. 4 (a) Two primal channel E combines to form channel E2. (b) Two primal E2 combines
to form channel E4. (c)Two primal EN/2 combines to form channel EN , RN is the reverse
shuffle operator[6]. The blue gates are quantum CNOT gates and the pink gates are quantum
SWAP gates.

It’s easy to prove that for all yk, when q ∈
[
0, 12

)
, yk < 0, when q ∈

(
1
2 , 1
]
, yk >

0, and when q = 1
2 , yk = 0. Hence, when q ∈

[
0, 12

)
,
dS(E(ρ))

dq > 0, when q ∈(
1
2 , 1
]
,
dS(E(ρ))

dq < 0, and q = 1
2 ,

dS(E(ρ))
dq = 0. Therefore, q = 1

2 is the maximum

point of S(E(ρ)), which completes the proof. �

2.5 Quantum channel combining and splitting

2.5.1 Quantum channel combining

Quantum channel combing and splitting are two steps to polarize quantum
channels. The quantum channel combing is similar to classical channel comb-
ing. Assume the primal channel is E : ρQ → ρV , which maps the state of
a qubit to another state. We denote the input by Q, and the output by V .
As shown in Fig. 4, we use the same recursive manner as in classical channel
combining to combine N primal quantum channels. The difference is that we
replace XOR gates in classical channel combining by quantum CNOT gates,
and we use quantum SWAP gates to realize the reverse shuffle operator[6].
The channel combing process produces the channel EN : ρQ1···QN → ρV1···VN ,
where the subscript i (1 ≤ i ≤ N) means the ith qubit. This paper follows
the Arikan’s rule to denote a row vector, namely, we use ai1 as a shorthand
for denoting (a1, · · · , ai), and the notation 0N1 is used to denote the all-zero

vector. According to this rule, EN can be rewritten as EN : ρQ
N
1 → ρV

N
1 .
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2.5.2 Quantum channel splitting

Having combing N quantum channels E to EN , the next step to polar-
ize quantum channels is splitting EN to N quantum coordinate channels

E(i)N : ρQi → ρV
N
1 ,Ri−1

1 , namely, E(i)N : ρQi → ρV1···VN ,R1···Ri−1 , where Ri is
the reference system of Qi, and 1 ≤ i ≤ N . The quantum coordinate chan-
nels we define is a little bit different from the classical coordinate channels. If
we follow the classical definition, the quantum coordinate channels should be

E(i)N : ρQi → ρV
N
1 ,Qi−1

1 . However, due to quantum no-cloning theorem, ρQ
i−1
1

and ρV
i−1
1 cannot appear at the same side. Moreover, according to the man-

ner of Eq. (3) we introduce the reference systems, Ri and Qi are in maximally
entangled states, which means that the state of Ri is the same as Qi. Hence,

E(i)N : ρQi → ρV
N
1 ,Ri−1

1 is a more reasonable definition.
According to Theorem 4, for a two-dimensional-input QSC, when the input

state is a completely mixed state, its SLCI takes maximum.

3 Symmetry of the quantum combined channel
and coordinate channels

In Sect. 2.5, quantum combined channel EN and coordinate channels {E(i)N }
have been defined. The main goal of this section is to prove that if the primal
channel E is a two-dimensional-input QSC with two-dimensional output, then

EN is a QSC and {E(i)N } are two-dimensional-input QQSCs. We will refer to
the proof method which Arikan used to prove that if the primal binary-input
discrete memoryless channel W : X → Y is symmetric with input alphabet
X = {0, 1} and output alphabet Y = {0′, 1′}, classical combined channel

WN : XN → YN and classical coordinate channels W
(i)
N : X → YN × X i−1,

1 ≤ i ≤ N , are symmetric.

3.1 Symmetry of the quantum combined channel EN
If E is a two-dimensional-input QSC with two-dimensional output, the BTPM
of the channel E can be expressed as


|0′〉 |1′〉

|0〉 Pr
(
|0′〉 ||0〉

)
Pr
(
|1′〉 ||0〉

)
|1〉 Pr

(
|0′〉 ||1〉

)
Pr
(
|1′〉 ||1〉

)
 (29)

where Pr
(
|0′〉 ||0〉

)
= Pr

(
|1′〉 ||1〉

)
and Pr

(
|1′〉 ||0〉

)
= Pr

(
|0′〉 ||1〉

)
.

According to Theorem 2, we can derive a set of quantum operations
{E0, E1} of this channel E , which satisfy E0 |0〉 =

√
Pr (|0′〉 ||0〉) |0′〉,

E1 |0〉 =
√
Pr (|1′〉 ||0〉) |0′〉, E0 |1〉 =

√
Pr (|1′〉 ||1〉) |1′〉 and E1 |1〉 =√

Pr (|0′〉 ||1〉) |0′〉.
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Definition 3 (N-copy channel E⊗N of the primal QSC E) We define a N -copy
channel E⊗N : ρQ1 ⊗ . . . ⊗ ρQN → ρV1 ⊗ . . . ⊗ ρVN which is simply composed by
N independent copies of the primal E : ρQ → ρV . The operation elements {Fk} of
E⊗N is

Fk = E1
b1 ⊗ E

2
b2 ⊗ · · · ⊗ E

N
bN (30)

where the subscript bj ∈ {0, 1}, 1 ≤ j ≤ N . The superscript i of Eibj means the

operation element Eibj only acts on the ith input state ρQi , and the subscript k (0 ≤
k ≤ 2N − 1) of operation elements Fk is the decimal number of the binary sequence
b1b2 · · · bN .

Assume that N uncorrelated pure input states of the channel E⊗N is
|QN1 〉 = |Q1〉 ⊗ · · · ⊗ |QN 〉, we have

Fk |QN1 〉 = E1
b1 ⊗ · · · ⊗ ENbN (|Q1〉 ⊗ · · · ⊗ |QN 〉)

=

N∏
i=1

√
Pr (|Vi〉 ||Qi〉) (|V1〉 ⊗ · · · ⊗ |VN 〉)

=
√
PrN

(
|V N1 〉 ||QN1 〉

)
|V N1 〉

(31)

where we let
|V1〉 ⊗ · · · ⊗ |VN 〉 = |V N1 〉 (32)

and

PrN
(
|V N1 〉 ||QN1 〉

)
=

N∏
i=1

Pr (|Vi〉 ||Qi〉) (33)

for all V N1 ∈ YN , QN1 ∈ XN . XN is the N -power extension alphabet of X and
YN is the N -power extension alphabet of Y. Eq. (33) means PrN

(
|V N1 〉 ||QN1 〉

)
is the transition probability when the input state of E⊗N is |QN1 〉 and the
output state of E⊗N is |V N1 〉.

In Fig. 4, one can see that E⊗N is just the last layer of EN , which is to say, if
the recursive combining circuits are omitted, EN will become E⊗N . Intuitively,
it seems that the BTPM of EN should have some connections with that of
E⊗N . Next, we prove this intuition.

Proposition 5 (The BTPM of quantum combined channel EN ) If each input
state of the channel EN is uncorrelated, the basis transition probabilities of the channel
EN can be obtained by the following equation

PrN

(
|V N1 〉 ||QN1 〉

)
=

N∏
i=1

Pr (|Vi〉 ||Ci〉) (34)

for all Ci ∈ X , Vi ∈ Y, V N1 ∈ YN , QN1 ∈ XN , where |QN1 〉 and |V N1 〉 are the
input basis vector and the output basis vector of channel EN respectively. |Ci〉 and
|Vi〉 are the ith input basis vector and the ith output basis vector of the channel E⊗N
respectively, as shown in Fig. 4.
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Proof Assume that each uncorrelated input state ρQi of the quantum combined
channel EN is ρQi = q |0〉 〈0|+ (1− q) |1〉 〈1|. Then we have

ρQ
N
1 = ρQ1 ⊗ · · · ⊗ ρQN

= (q |0〉 〈0|+ (1− q) |1〉 〈1|)⊗N

=
∑

QN
1 ∈XN

Pr
(
|QN1 〉 〈QN1 |

)
|QN1 〉 〈QN1 |

(35)

where alphabet X = {0, 1} and XN is the N -power extension alphabet of X ,

Pr
(
|QN1 〉 〈QN1 |

)
is the probability of |QN1 〉 〈QN1 |. Since each input state ρQi is

uncorrelated with other input states, we have

Pr
(
|QN1 〉 〈QN1 |

)
=

N∏
i=1

Pr (|Qi〉 〈Qi|) (36)

Since the process |QN1 〉 → |CN1 〉 which can be seen as an encoding process only
includes quantum CNOT gates and quantum SWAP gates, this process must be
unitary. As shown in Fig. 4, we use unitary operator UN to denote this encoding
process, and obtain

ρC
N
1 = UNρ

QN
1 U†N

= UN

 ∑
QN

1 ∈XN

Pr
(
|QN1 〉 〈QN1 |

)
|QN1 〉 〈QN1 |

U†N

=
∑

QN
1 ∈XN

Pr
(
|QN1 〉 〈QN1 |

)
|QN1 GN 〉 〈QN1 GN |

=
∑

CN
1 ∈XN

Pr
(
|QN1 〉 〈QN1 |

)
|CN1 〉 〈CN1 |

(37)

where CN1 = QN1 GN , and GN is generator matrix[6].
CNOT gates can produce entanglement between its two input qubits while the

control qubit is in a superposition state in the computational basis. However, since
the input states |Qi〉 will only take value from |0〉 or |1〉, CNOT gates will not produce
entanglement[66, 67]. Besides, SWAP gates will not produce entanglement between
its two inputs. Hence, all |Ci〉 are uncorrelated. By Eq. (33), we have

PrN

(
|V N1 〉 ||CN1 〉

)
=

N∏
i=1

Pr (|Vi〉 ||Ci〉) (38)

Since |CN1 〉 = |QN1 GN 〉, once QN1 is determined, CN1 will be determined. Thus,

PrN

(
|V N1 〉 ||QN1 〉

)
= PrN

(
|V N1 〉 ||QN1 GN 〉

)
= PrN

(
|V N1 〉 ||CN1 〉

)
=

N∏
i=1

Pr (|Vi〉 ||Ci〉)

(39)

which completes the proof. �
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Let E : ρQ → ρV is a two-dimensional-input QSC with two-dimensional
output. By definition, there is a permutation π1 on Y such that 1) π−11 = π1
and 2) Pr(|V 〉 ||1〉) = Pr(|π1(V )〉 ||0〉) for all V ∈ Y = {0′, 1′}. Let π0 be the
identity permutation on Y. Using the compact notation mentioned by Arikan,
we denote πQ(V ) by Q · V , for all Q ∈ X = {0, 1} and V ∈ Y = {0′, 1′}.

Observe that Pr(|V 〉 ||Q⊕ a〉) = Pr(|a · V 〉 ||Q〉) for all a,Q ∈ X =
{0, 1} and V ∈ Y = {0′, 1′}. It’s easy to verify that Pr(|V 〉 ||Q⊕ a〉) =
Pr(|(Q⊕ a) · V 〉 ||0〉) = Pr(|Q · (a · V )〉 ||0〉) and Pr(|V 〉 ||Q⊕ a〉) =
Pr(|Q · V 〉 ||a〉) since ⊕ is commutative operation on X .

For QN1 ∈ XN , V N1 ∈ YN , let

QN1 · V N1 , (Q1 · V1, · · · , QN · VN ) (40)

Next, we will prove the quantum combined channel EN is symmetric.

Theorem 6 (the quantum combined channel EN is a QSC) If the primal
channel E is a two-dimensional-input QSC with two-dimensional output, then the
quantum combined channel EN is QSC in the sense that

PrN

(
|V N1 〉 ||QN1 〉

)
= PrN

(
|aN1 GN · V N1 〉 ||QN1 ⊕ aN1 〉

)
(41)

for all QN1 , a
N
1 ∈ XN and V N1 ∈ YN .

The Eq. (41) means arbitrary row of the BTPM of EN is a permutation of
the first row, and arbitrary column of the BTPM of EN is a permutation of
the first column.

Proof By Proposition 5, we have

PrN

(
|V N1 〉 ||QN1 〉

)
=

N∏
i=1

Pr (|Vi〉 ||Ci〉)

=

N∏
i=1

Pr (|Ci · Vi〉 ||0〉)

= PrN

(
|CN1 · V N1 〉 ||0N1 〉

)
(42)

Let bN1 = aN1 GN , we have

PrN

(
|bN1 · V N1 〉 ||QN1 ⊕ aN1 〉

)
= PrN

(
|(CN1 ⊕ bN1 ) · (bN1 · V N1 )〉 ||0N1 〉

)
= PrN

(
|CN1 · V N1 〉 ||0N1 〉

)
= PrN

(
|V N1 〉 ||QN1 〉

) (43)

which completes the proof. �
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3.2 Symmetry of the quantum coordinate channels

{E(i)N : 0 ≤ i ≤ N}
In this part, we will prove that if the primal channel E is a two-dimensional-

input QSC with two-dimensional output, the coordinate channels {E(i)N : 0 ≤
i ≤ N} are QQSCs. The key of the proof is to find out the BTPMs of {E(i)N :
0 ≤ i ≤ N}, and prove their arbitrary row is a permutation of another row.

Theorem 7 (the quantum coordinate channels {E(i)N : 0 ≤ i ≤ N}
are QQSCs) If the primal channel E is a two-dimensional-input QSC with two-
dimensional output, and the input state ρQi = q |0〉 〈0| + (1 − q) |1〉 〈1|, then the

arbitrary quantum coordinate channel E(i)N : ρQi → ρV
N
1 ,Ri−1

1 , 1 ≤ i ≤ N , is QQSC.

The density operator ρV
N
1 ,Ri−1

1 of the joint system V N1 , Ri−11 can be written as

ρV
N
1 ,Ri−1

1 =

2N−1∑
m=0

[
qPr

(i)
N

(
|m
′
〉 ||0〉

)
|m
′
〉 〈m

′
|+ (1− q)Pr(i)N

(
|m
′
〉 ||1〉

)
|m
′
〉 〈m

′
|
]

(44)

where |m
′
〉 =

∑
Qi−1

1

=Ri−1
1

∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉, 0 ≤

m ≤ 2N −1, form a set of basis {|m
′
〉}m=0,··· ,2N−1 which contains 2N basis vectors.

And the basis transition probabilities are

Pr
(i)
N

(
|m
′
〉 ||Qi〉

)

= Pr
(i)
N


∑
Qi−1

1

=Ri−1
1

∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 ||Qi〉


=

∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
PrN

(
|V N1 〉 ||0i−11 , Qi, Q

N
i+1〉

)

= Pr
(i)
N

 ∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|
(
ai−11 , 1, aNi+1 ⊕Q

i−1
1 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 ||Qi ⊕ 1〉

)
(45)

for all V N1 ∈ YN , Qi ∈ X , (ai−11 , 1, aNi+1), (Qi−11 , Qi, Q
N
i+1) ∈ XN , N = 2n, n ≥ 0,

1 ≤ i ≤ N , which means arbitrary row of the BTPM of E(i)N is a permutation of
another row.

The proof of Theorem 7 is given in Appendix B.
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Since E(i)N is two-dimensional-input QQSC, according to Theorem 4, the

MSLCI of E(i)N is equal to its symmetric coherent information, namely, the SLCI

of E(i)N takes the maximum when the input state is ρQi = 1
2 |0〉 〈0| +

1
2 |1〉 〈1|,

therefore Eq. (44) and Eq. (45) are reduced to

ρV
N
1 ,Ri−1

1 =
1

2

2N−1∑
m=0

Pr
(i)
N (|m〉 ||0〉) |m〉 〈m|+ 1

2

2N−1∑
m=0

Pr
(i)
N (|m〉 ||1〉) |m〉 〈m|

(46)
and

Pr
(i)
N (|m〉 ||Qi〉)

= Pr
(i)
N

 ∑
Qi−1

1 =Ri−1
1 ∈X i−1

1

2
i−1
2

|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 ||Qi〉


=

2i−1

2N−1

∑
QN

i+1∈XN−i

PrN
(
|V N1 〉 ||0i−11 , 0, QNi+1〉

)

= Pr
(i)
N


∑
Qi−1

1

=Ri−1
1

∈X i−1

1

2
i−1
2

|
(
ai−11 , 1, aNi+1 ⊕Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 ||Qi ⊕ 1〉


(47)

where |m〉 =
∑

Qi−1
1 =Ri−1

1 ∈X i−1
1

2
i−1
2

∣∣(Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11

〉
, 0 ≤ m ≤

2N − 1.

4 Polarization of two-dimensional-input QSC

The goal of this section is to prove the MSLCI of coordinate channels {E(i)N }
will polarize.

One can see that the quantum combined channel EN corresponds to a clas-
sical combined channel WN , which is obtained by simply replace the quantum
circuits in Fig. 4 to a classical ones, and the primal channel E to a classical
channel W . Our proof in this section makes use of the connection between EN
and WN .

If the BTPM of the primal QSC E and the TPM of classical primal BSC W
are the same, first of all, we prove that the BTPM of the quantum combined
channel EN and the TPM of classical combined channel WN are the same;

secondly, we prove the BTPM of quantum coordinate channel E(i)N can be

derived from the TPM of classical coordinate channel W
(i)
N which reveals the

relationship between the BTPM of E(i)N and the TPM of W
(i)
N ; finally we use
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this relationship to prove that the MSLCI of E(i)N numerically equals to the

Shannon capacity of W
(i)
N . Since the Shannon capacity of {W (i)

N } will polarize,

the MSLCI of {E(i)N } will polarize as well. Moreover, due to the MSLCI of the
primal channel E being equal to the Shannon capacity of the classical primal

channel W , the polarization rate of {E(i)N } equals to the MSLCI of E , which is
referred to Arikan’s method[6].

Proposition 8 (Relationship between the BTPM of EN and the TPM of
WN ) Assume that the BTPM of a two-dimensional-input QSC with two-dimensional
output E is 

|0
′
〉 |1

′
〉

|0〉 Pr
(
|0
′
〉 ||0〉

)
Pr
(
|1
′
〉 ||0〉

)
|1〉 Pr

(
|0
′
〉 ||1〉

)
Pr
(
|1
′
〉 ||1〉

)
 (48)

where Pr
(
|0
′
〉 ||0〉

)
= Pr

(
|1
′
〉 ||1〉

)
= W

(
0
′
|0
)

= W
(

1
′
|1
)

and Pr
(
|1
′
〉 ||0〉

)
=

Pr
(
|0
′
〉 ||1〉

)
= W

(
1
′
|0
)

= W
(

0
′
|1
)

. Then the BTPM of quantum combined chan-

nel EN and the TPM of classical combined channel WN are the same, that is to
say

PrN

(
|V N1 〉 ||QN1 〉

)
= WN

(
yN1 |uN1

)
(49)

for all V N1 = yN1 ∈ YN and QN1 = uN1 ∈ XN , where y, V ∈ Y =
{

0′, 1′
}

and
u,Q ∈ X = {0, 1}.

Proof By Proposition 5, we have

PrN

(
|V N1 〉 ||QN1 〉

)
= PrN

(
|V N1 〉 ||QN1 GN 〉

)
= PrN

(
|V N1 〉 ||CN1 〉

)
=

N∏
i=1

Pr (|Vi〉 ||Ci〉)

(50)

According to Arikan’s method[6], we have

WN

(
yN1 |uN1

)
= WN

(
yN1 |uN1 GN

)
= WN

(
yN1 |xN1

)
=

N∏
i=1

W (Vi|xi)

(51)

where uN1 GN = xN1 . Since V N1 = yN1 and QN1 = uN1 , then we have QN1 GN =
uN1 GN = CN1 = xN1 . Thus, we have Pr (|Vi〉 ||Ci〉) = W (yi|xi), and obtain

N∏
i=1

Pr (|Vi〉 ||Ci〉) =

N∏
i=1

W (Vi|xi) (52)

which completes the proof. �
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Proposition 9 (Relationship between the BTPM of E(i)N and the TPM of

W
(i)
N ) According to Eq. (46) and Eq. (47), when the input state ρQi of the channel

E(i)N is ρQi = 1
2 |0〉 〈0|+

1
2 |1〉 〈1|, the output state |m〉 of the channel E(i)N is

|m〉 =
∑

Qi−1
1 =Ri−1

1 ∈X i−1

1

2
i−1
2

|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 (53)

and the basis transition probabilities are

Pr
(i)
N (|m〉 ||Qi〉) =

Pr
(i)
N

 ∑
Qi−1

1 =Ri−1
1 ∈X i−1

1

2
i−1
2

|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 ||Qi〉


=

2i−1

2N−1

∑
Qi−1

1 ∈X i−1

PrN

(
|V N1 〉 ||0i−11 , Qi, Q

N
i+1〉

) (54)

We can derive Pr
(i)
N (|m〉 ||Qi〉) from the TPM of classical coordinate channels W

(i)
N

Pr
(i)
N (|m〉 ||Qi〉)

=
∑

ui−1
1 ∈X i−1

1

2N−1

∑
uN
i+1∈XN−i

WN

(
(ui−11 , 0, 0Ni+1)GN · yN1 |ui−11 , ui, u

N
i+1

)

=
2i−1

2N−1

∑
uN
i+1∈XN−i

WN

(
yN1 |0i−11 , ui, u

N
i+1

)
= 2i−1W

(i)
N

(
yN1 , 0

i−1
1 |ui

)
(55)

for all V N1 = yN1 ∈ YN and QN1 = uN1 ∈ XN , where y, V ∈ Y =
{

0′, 1′
}

and
u,Q ∈ X = {0, 1}.

The proof of Propositon 9 is given in Appendix C.

The Proposition 9 means that arbitrary column of the BTPM of each E(i)N
is the sum of some 2i−1 columns of the TPM whose corresponding elements are

all equal, hence the TPM of each W
(i)
N has 2N+i−1 columns while the BTPM

of each E(i)N has 2N columns.

Theorem 10 (the polarization of quantum coordinate channels {E(i)N }) If the
BTPM of the primal QSC E and the TPM of classical primal BSC W are the same,

the MSLCI I
(
ρQi , E(i)N

)
of the quantum coordinate channel E(i)N is numerically equal

to the Shannon capacity I
(
W

(i)
N

)
of classical coordinate channel W

(i)
N , namely,

I
(
ρQi , E(i)N

)
= S

(
ρV

N
1 ,Ri−1

1

)
− S

(
ρV

N
1 ,Ri

1

)
= I

(
W

(i)
N

)
= H

(
yN1 u

i−1
1

)
−H

(
yN1 u

i
1

)
+H (ui)

(56)
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where p (ui = 0) = p (ui = 1) = 1
2 and the density operator ρQi = 1

2 |0〉 〈0|+
1
2 |1〉 〈1|

is the input of the quantum coordinate channel E(i)N , which is also the ith input of
the quantum combined channel EN . S(·) is von Neumann entropy, and H(·) is Shan-

non entropy. Since classical coordinate channels {W (i)
N } polarize, quantum coordinate

channels {E(i)N } polarize as well.

Proof For W
(i)
N , its Shannon capacity is I

(
W

(i)
N

)
= H

(
yN1 u

i−1
1

)
− H

(
yN1 u

i
1

)
+

H (ui). To calculate the Shannon capacity of W
(i)
N , we should first calculate

H
(
yN1 u

i−1
1

)
which is the the Shannon entropy of the output yN1 u

i−1
1 of W

(i)
N

H
(
yN1 u

i−1
1

)
=

∑
yN1 u

i−1
1 ∈YN×X i−1

−p
(
yN1 , u

i−1
1

)
log2 p

(
yN1 , u

i−1
1

)
(57)

where p
(
yN1 , u

i−1
1

)
= 1

2W
(i)
N

(
yN1 , u

i−1
1 | ui = 0

)
+ 1

2W
(i)
N

(
yN1 , u

i−1
1 | ui = 1

)
.

Notice that by Proposition 9, we have W
(i)
N

(
yN1 , 0

i−1
1 | ui

)
=

W
(i)
N

((
ui−11 , 0, 0Ni+1

)
GN · yN1 , 0i−11 ⊕ ui−11 | ui

)
for all ui−11 ∈ X i−1, hence

H
(
yN1 u

i−1
1

)
= 2i−1

∑
yN1 ∈YN

−p
(
yN1 , 0

i−1
1

)
log2 p

(
yN1 , 0

i−1
1

)
(58)

and ∑
yN1 u

i−1
1 ∈YN×X i−1

p
(
yN1 , u

i−1
1

)
= 2i−1

∑
yN1 ∈YN

p
(
yN1 , 0

i−1
1

)
= 1

(59)

Now, we calculate S
(
ρV

N
1 ,Ri−1

1

)
, the von Neumann entropy of the ouput state

ρV
N
1 ,Ri−1

1 of E(i)N . By Eq. (46), we have

S
(
ρV

N
1 ,Ri−1

1

)
= −

∑
m

p (|m〉) log2 p (|m〉) (60)

where p (|m〉) = 1
2Pr

(i)
N (|m〉 ||0〉) + 1

2Pr
(i)
N (|m〉 ||1〉). By Proposition 9, we have

Pr
(i)
N (|m〉 ||Qi〉) = Pr

(i)
N


∑
Qi−1

1

=Ri−1
1

∈X i−1

1

2
i−1
2

|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 ||Qi〉


= 2i−1W

(i)
N

(
yN1 , 0

i−1
1 | ui

)
(61)
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for all yN1 = V N1 ∈ YN and QN1 = uN1 ∈ XN . Thus S
(
ρV

N
1 ,Ri−1

1

)
can be rewritten

as

S
(
ρV

N
1 ,Ri−1

1

)
= −

∑
yN1 ∈YN

2i−1p
(
yN1 , 0

i−1
1

)
log2

[
2i−1p

(
yN1 , 0

i−1
1

)]
= −2i−1

∑
yN1 ∈YN

p
(
yN1 , 0

i−1
1

)
log2 p

(
yN1 , 0

i−1
1

)
− (i− 1)× 2i−1

∑
yN1 ∈YN

p
(
yN1 , 0

i−1
1

)
= H

(
yN1 u

i−1
1

)
− (i− 1)

(62)

Using the same method, we have S
(
ρV

N
1 ,Ri

1

)
= H

(
yN1 u

i
1

)
−i. Thus I

(
ρQi , E(i)N

)
=

S
(
ρV

N
1 ,Ri−1

1

)
−S

(
ρV

N
1 ,Ri

1

)
= H

(
yN1 u

i−1
1

)
−H

(
yN1 u

i
1

)
+ 1. Notice that H (ui) =

H
(
1
2

)
= 1, thus we have

I
(
ρQi , E(i)N

)
= H

(
yN1 u

i−1
1

)
−H

(
yN1 u

i
1

)
+H (ui) = I

(
W

(i)
N

)
(63)

which completes the proof. �

5 Conclusion

The core of this paper is to prove that there is a polarization phenomenon
in quantum channels similar to classical channel polarization. To prove this,
we first define BTPM, and show how to use BTPM to determine a set of
operation elements of a quantum channel. Then we use BTPM to define QSC
and QQSC, and prove that the MSLCI of two-dimensional-input QQSC is its
symmetric coherent information, which was not proved before our work. After
this, we introduce the quantum channel combining and splitting, and obtain

the quantum combined channel EN and coordinate channels {E(i)N }. It has been
proved in Sect. 3 that if the primal channel E is a two-dimensional-input QSC,

then EN is a two-dimensional-input QSC and {E(i)N } are two-dimensional-input
QQSCs. Based on the above work, we prove that the MSLCI of the coordinate
channels will polarize – some of them tend to 1 while the others tend to 0 with
the increase of N , and the ratio of the former to N equals to the MSLCI of
the primal channel E , which completes the proof that there is a polarization
phenomenon in quantum channels.

However, whether we can make use of this polarization phenomenon of
quantum channels to design a quantum error correcting code which can achieve
the MSLCI of QSC is still unknow.
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Appendix A A Particular Rule

Before proving Theorem 7, we make a particular rule which will be used in the
second step of the proof.

This rule is used to label the operator elements of a channel through a
one-to-one relationship between operator elements and output states. First,
we fixed the input state |QN1 〉 of the quantum combined channel EN to |0N1 〉,
then arbitrary operator element Fk ∈ {Fk}k=0,··· ,2N−1 of the N -copy channel

E⊗N uniquely corresponds to a output state |V N1 〉, V N1 ∈ YN , namely,

Fk |0N1 GN 〉 =
√
PrN

(
|V N1 〉 ||0N1 〉

)
|V N1 〉 (A1)

By Definition 3, we have

Fk = E1
b1 ⊗ E

2
b2 ⊗ · · · ⊗ E

N
bN (A2)

the subscript k of Fk is the decimal number of the binary sequence b1b2 · · · bN .
To further understanding this rule, we take 2-copy channel E⊗2 for example,

and primal channel E is Bit flip channel whose operator elements are {E0 =√
pX,E1 =

√
1− pI}. It’s easy to obtain that four operator elements of E⊗2

are F0 = pX1 ⊗ X2, F1 =
√
p(1− p)X1 ⊗ I2, F2 =

√
p(1− p)I1 ⊗ X2 and

F3 = (1 − p)I1 ⊗ I2, respectively. Assume that the input state of primal

channel E will only take value from |0〉 =

(
1
0

)
or |1〉 =

(
0
1

)
. Then the

input space {|Q2
1〉} of the quantum combined channel E2 must be {|Q2

1〉} =
{|00〉 , |01〉 , |10〉 , |11〉}, and the output space {|V 2

1 〉} of the quantum combined
channel E2 must be {|V 2

1 〉} = {|00〉 , |01〉 , |10〉 , |11〉}, which means different
operator element Fk, 0 ≤ k ≤ 3, will map the input space {|Q2

1〉} to the same
output space {|V 2

1 〉}. Thus we fixed the input state to |00〉, and a one-to-one
relationship between operator element Fk(0 ≤ k ≤ 3) and output state |V 2

1 〉 of
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the channel E⊗2 is established, namely, F0 corresponds to |11〉, F1 corresponds
to |10〉, F2 corresponds to |01〉 and F3 corresponds to |00〉.

By using Theorem 6 and Eq. (A1), we have

Fk |QN1 GN 〉 =
√
PrN

(
|QN1 GN · V N1 〉 ||QN1 〉

)
|QN1 GN · V N1 〉 (A3)

for all QN1 ∈ XN and V N1 ∈ YN .

Appendix B Proof of Theorem 7

In this section, we prove Theorem 7 that the quantum coordinate channels

{E(i)N } are QQSCs. At the second step of the proof, we use the particular rule
that we make in Appendix A.

Proof In subsection 2.5, we define quantum coordinate channel E(i)N , 1 ≤ i ≤ N ,

whose input is ρQi and output is ρV
N
1 ,Ri−1

1 .
1. The first step of the proof: obtain the general form of density

operator ρV
N
1 ,Ri−1

1 of quantum joint system V N1 , Ri−11 .

Assume that each input state ρQi of the quantum combined channel EN is ρQi =
q |0〉 〈0|+ (1− q) |1〉 〈1|. Then we have

ρQ
N
1 = ρQ1 ⊗ · · · ⊗ ρQN

= (q |0〉 〈0|+ (1− q) |1〉 〈1|)⊗N

=
∑

QN
1 ∈XN

Pr
(
|QN1 〉 〈QN1 |

)
|QN1 〉 〈QN1 |

(B4)

where Pr
(
|QN1 〉 〈QN1 |

)
=
∏N
i=1 Pr(|Qi〉 〈Qi|), alphabet X = {0, 1} and XN is the

N-power extension alphabet of X . Introduce reference system ρR
N
1 = ρR1⊗· · ·⊗ρRN

to purify ρQ
N
i , where ρR1 = · · · = ρRN = ρQ1 = · · · = ρQN . We have

|ϕQN
1 ,R

N
1
〉 =

∑
QN

1 =RN
1 ∈XN

√
Pr
(
|QN1 〉 〈QN1 |

)
|QN1 , RN1 〉 (B5)

Then the density operator ρQ
N
1 ,R

N
1 of the joint system QN1 , R

N
1 is

ρQ
N
1 ,R

N
1

= |ϕQN
1 ,R

N
1
〉 〈ϕQN

1 ,R
N
1
|

=
∑

QN
1 =RN

1 ∈X
N

Q̃N
1 =R̃N

1 ∈X
N

√
Pr
(
|QN1 〉 〈QN1 |

)
|QN1 , RN1 〉

√
Pr
(
|Q̃N1 〉 〈Q̃N1 |

)
〈Q̃N1 , R̃N1 |

(B6)
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We use a unitary operator UN which only acts on system QN1 to represent the
encoding process |QN1 〉 → |CN1 〉, and we have

ρC
N
1 ,R

N
1

= UNρ
QN

1 R
N
1 U†N

= UN


∑

QN
1 =RN

1 ∈X
N

Q̃N
1 =R̃N

1 ∈X
N

√
Pr
(
|QN1 〉 〈QN1 |

)
|QN1 , RN1 〉

√
Pr
(
|Q̃N1 〉 〈Q̃N1 |

)
〈Q̃N1 , R̃N1 |

U†N

=
∑

QN
1 =RN

1 ∈X
N

Q̃N
1 =R̃N

1 ∈X
N

√
Pr
(
|QN1 〉 〈QN1 |

)
|QN1 GN , RN1 〉

√
Pr
(
|Q̃N1 〉 〈Q̃N1 |

)
〈Q̃N1 GN , R̃N1 |

=
∑

RN
1 ∈XN

√
Pr
(
|QN1 〉 〈QN1 |

)
|CN1 , RN1 〉

∑
R̃N

1 ∈XN

√
Pr
(
|Q̃N1 〉 〈Q̃N1 |

)
〈C̃N1 , R̃N1 |

(B7)
where CN1 = QN1 GN , C̃N1 = Q̃N1 GN and GN is generator matrix.

The channel E⊗N , whose operator elements are {Fk}k=0,··· ,2N−1, follows the

encoding process |QN1 〉 → |CN1 〉. Then the density operator ρV
N
1 ,RN

1 of the output
of the channel E⊗N is

ρV
N
1 ,RN

1 =

2N−1∑
k=0

Fkρ
CN

1 ,R
N
1 F †k

=

2N−1∑
k=0

Fk
∑

QN
1 =RN

1 ∈XN

√
Pr
(
|QN1 〉 〈QN1 |

)
|QN1 GN , RN1 〉

×
∑

Q̃N
1 =R̃N

1 ∈XN

√
Pr
(
|Q̃N1 〉 〈Q̃N1 |

)
〈Q̃N1 GN , R̃N1 |F

†
k

(B8)

Notice that the channel E⊗N is the last layer of the channel EN , so the density

operator ρV
N
1 ,RN

1 is also the output of the channel EN . Then we perform partial
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trace over the system RNi and obtain

ρV
N
1 ,RN

1

= trRN
i

2N−1∑
k=0

Fk
∑

QN
1 =RN

1 ∈XN

√
Pr
(
|QN1 〉 〈QN1 |

)
|QN1 GN , RN1 〉

×
∑

Q̃N
1 =R̃N

1 ∈XN

√
Pr
(
|Q̃N1 〉 〈Q̃N1 |

)
〈Q̃N1 GN , R̃N1 |F

†
k


= trRN

i

2N−1∑
k=0

Fk
∑

QN
i =RN

i ∈XN−i+1

×
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
Pr
(
|QNi 〉 〈Q

N
i |
)
|QN1 GN , Ri−11 , RNi 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
Pr
(
|QNi 〉 〈Q

N
i |
)
〈Q̃N1 GN , R̃i−11 , RNi |F

†
k


=

2N−1∑
k=0

Fk

 ∑
QN

i ∈XN−i+1

Pr
(
|QNi 〉 〈Q

N
i |
)

×
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|QN1 GN , Ri−11 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈Q̃N1 GN , R̃i−11 |

F †k
(B9)

Eq. (B9) guarantees that∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|QN1 GN , Ri−11 〉 (B10)

must be a unit vector, since it is easy to verify
∑
Qi−1

1 ∈X i−1 Pr
(
|Qi−11 〉 〈Qi−11 |

)
= 1.

Divide the Eq. (B9) into two parts: Qi = 0 and Qi = 1, we have

ρV
N
1 ,Ri−1

1 = ρ
(0)

V N
1 ,Ri−1

1

+ ρ
(1)

V N
1 ,Ri−1

1

(B11)
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where

ρ
(0)

V N
1 ,Ri−1

1

= q

2N−1∑
k=0

Fk

 ∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)

×
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, QNi+1)GN , R

i−1
1 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈(Q̃i−11 , 0, QNi+1)GN , R̃

i−1
1 |

F †k
(B12)

and

ρ
(1)

V N
1 ,Ri−1

1

= (1− q)
2N−1∑
k=0

Fk

 ∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)

×
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 1, QNi+1)GN , R

i−1
1 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈(Q̃i−11 , 1, QNi+1)GN , R̃

i−1
1 |

F †k
(B13)

For ρ
(0)

V N
1 ,Ri−1

1

and ρ
(1)

V N
1 ,Ri−1

1

, we exchange summation order, and obtain

ρ
(0)

V N
1 ,Ri−1

1

= q
∑

QN
i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)

×
2N−1∑
k=0

Fk

 ∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, QNi+1)GN , R

i−1
1 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈(Q̃i−11 , 0, QNi+1)GN , R̃

i−1
1 |

F †k
(B14)
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and

ρ
(1)

V N
1 ,Ri−1

1

= (1− q)
∑

QN
i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)

×
2N−1∑
k=0

Fk

 ∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 1, QNi+1)GN , R

i−1
1 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈(Q̃i−11 , 1, QNi+1)GN , R̃

i−1
1 |

F †k
(B15)

2. The second step of the proof: prove that the density oper-

ator ρV
N
1 ,Ri−1

1 can be diagonalized with respect to a set of basis

{|m
′
〉}m=0,··· ,2N−1.

We will prove that density operators ρ
(0)

V N
1 ,Ri−1

1

and ρ
(1)

V N
1 ,Ri−1

1

can be diagonalized

with respect to a same set of basis {|m
′
〉}m=0,··· ,2N−1, namely,

ρ
(0)

V N
1 ,Ri−1

1

= q

2N−1∑
m=0

Pr
(i)
N

(
|m
′
〉 ||0〉

)
|m
′
〉 〈m

′
| (B16)

ρ
(1)

V N
1 ,Ri−1

1

= (1− q)
2N−1∑
m=0

Pr
(i)
N

(
|m
′
〉 ||1〉

)
|m
′
〉 〈m

′
| (B17)

We consider ρ
(0)

V N
1 ,Ri−1

1

only, since the proof method of ρ
(1)

V N
1 ,Ri−1

1

is the same as

that of ρ
(0)

V N
1 ,Ri−1

1

. We first prove that the vector |m
′
〉 can be written as

|m
′
〉 =

∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, 0Ni+1)GN · V N1 , Ri−11 〉

(B18)
Since for all QNi+1 ∈ X

N−i, operation elements {Fk}k=0,··· ,2N−1 will map vector∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, QNi+1)GN , R

i−1
1 〉 (B19)

to a same set of orthogonal basis {|m
′
〉}m=0,··· ,2N−1, which contains 2N basis vec-

tors. Thus, without losing generality, we can let QNi+1 = 0Ni+1. Using Eq. (A1), Eq.
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(A3) and Theorem 6, we have

Fk
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, QNi+1)GN , R

i−1
1 〉

=
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
PrN

(
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 〉 ||Q

i−1
1 , 0, 0Ni+1〉

)

×
√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, 0Ni+1)GN · V N1 , Ri−11 〉

=
√
PrN

(
|V N1 〉 ||0N1 〉

)
×

∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, 0Ni+1)GN · V N1 , Ri−11 〉

=
√
PrN

(
|V N1 〉 ||0N1 〉

)
|m
′
〉

(B20)

which proves the Eq. (B18).
Observe Eq. (B20), there is a one-to-noe relationship between Fk and V N1 , thus

sum over all Fk is sum over all V N1 and Eq. (B14) can be rewritten as

ρ
(0)

V N
1 ,Ri−1

1

= q
∑

QN
i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

) ∑
V N
1 ∈YN

×
∑

Qi−1
1 =Ri−1

1 ∈X i−1

PrN

(
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 〉 ||Qi−11 , 0, QNi+1〉

)

×
√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, 0Ni+1)GN · V N1 , Ri−11 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈(Q̃i−11 , 0, 0Ni+1)GN · V N1 , R̃i−11 |

= q
∑

QN
i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

) ∑
V N
1 ∈YN

PrN

(
|V N1 〉 ||0i−11 , 0, QNi+1〉

)

×
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, 0Ni+1)GN · V N1 , Ri−11 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈(Q̃i−11 , 0, 0Ni+1)GN · V N1 , R̃i−11 |

(B21)

Here we use the fact that PrN

(
|V N1 〉 ||QN1 〉

)
=

PrN

(
|aN1 GN · V N1 〉 ||QN1 ⊕ aN1 〉

)
which is according to Theorem 6, so let

aN1 = Qi−11 , 0, 0Ni+1, we have

PrN

(
|V N1 〉 ||0i−11 , 0, QNi+1〉

)
= PrN

(
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 〉 ||Qi−11 , 0, QNi+1〉

)
(B22)
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For Eq. (B21), we exchange summation order and obtain

ρ
(0)

V N
1 ,Ri−1

1

= q
∑

V N
1 ∈YN

 ∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
PrN

(
|V N1 〉 ||0i−11 , 0, QNi+1〉

)

×
∑

Qi−1
1 =Ri−1

1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, 0Ni+1)GN · V N1 , Ri−11 〉

×
∑

Q̃i−1
1 =R̃i−1

1 ∈X i−1

√
Pr
(
|Q̃i−11 〉 〈Q̃i−11 |

)
〈(Q̃i−11 , 0, 0Ni+1)GN · V N1 , R̃i−11 |


= q

2N−1∑
m=0

Pr
(i)
N

(
|m
′
〉 ||0〉

)
|m
′
〉 〈m

′
|

(B23)

where

|m
′
〉 =

∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|(Qi−11 , 0, 0Ni+1)GN · V N1 , Ri−11 〉

(B24)
and

Pr
(i)
N

(
|m
′
〉 ||0〉

)
=

∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
PrN

(
|V N1 〉 ||0i−11 , 0, QNi+1〉

)
(B25)

Pr
(i)
N

(
|m
′
〉 ||0〉

)
is the transition probability which means the probability of the

input state |0〉 〈0| changing into |m
′
〉 〈m

′
|. Using Eq. (B22), then Eq. (B25) can be

rewritten as

Pr
(i)
N

(
|m
′
〉 ||0〉

)
=

∑
Qi−1

1 ∈X i−1

1

2i−1

∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
× PrN

(
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 〉 ||Qi−11 , 0, QNi+1〉

) (B26)

Using the same method, Eq. (B17) can be easily proved, and we have

Pr
(i)
N

(
|m
′
〉 ||1〉

)
=

∑
Qi−1

1 ∈X i−1

1

2i−1

∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
× PrN

(
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 〉 ||Qi−11 , 1, QNi+1〉

)
=

∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
PrN

(
|V N1 〉 ||0i−11 , 1, QNi+1〉

)
(B27)
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Thus, the basis transition probabilities can be uniformly expressed as

Pr
(i)
N

(
|m
′
〉 ||Qi〉

)
=

∑
Qi−1

1 ∈X i−1

1

2i−1

∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
× PrN

(
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 〉 ||Qi−11 , Qi, Q

N
i+1〉

)
=

∑
QN

i+1∈XN−i

Pr
(
|QNi+1〉 〈Q

N
i+1|

)
PrN

(
|V N1 〉 ||0i−11 , Qi, Q

N
i+1〉

)
(B28)

3. The third step of the proof: use Arikan’s method to prove the basis
transition probability matrix is symmetric.

Next, we will prove that the basis transition probability matrix is symmetric.
We will refer to the proof method which Arikan used to prove that classical coordi-

nate channels {W (i)
N } are symmetric if the primal binary-input discrete memoryless

channel W is symmetric.
By Theorem 6, we have

PrN

(
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 〉 ||Qi−11 , Qi, Q

N
i+1〉

)
= PrN

(
|(ai−11 , 1, aNi+1)GN · (Qi−11 , 0, 0Ni+1)GN · V N1 〉 |

|(Qi−11 , Qi, Q
N
i+1)⊕ (ai−11 , 1, aNi+1)〉

) (B29)

for arbitrary (ai−11 , 1, aNi+1) ∈ XN , thus the Eq. (B28) can be rewritten as

Pr
(i)
N

(
|m
′
〉 ||Qi〉

)
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1 ∈X i−1
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2i−1
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N
i+1|

)
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N
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)
=
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1 ∈X i−1

1

2i−1

∑
QN

i+1∈XN−i

Pr
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i+1|

)
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|(Qi−11 , Qi, Q
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)
= Pr
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N
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1 ∈X i−1

√
Pr
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(B30)
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Substitute Eq. (B18) into Pr
(i)
N

(
|m
′
〉 ||Qi〉

)
, and connect with Eq. (B30), we

have

Pr
(i)
N

(
|m
′
〉 ||Qi〉

)

= Pr
(i)
N


∑
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1
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1
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√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
|
(
Qi−11 , 0, 0Ni+1

)
GN · V N1 , Ri−11 〉 ||Qi〉



= Pr
(i)
N

 ∑
Qi−1

1 =Ri−1
1 ∈X i−1

√
Pr
(
|Qi−11 〉 〈Qi−11 |

)
× |(ai−11 , 1, aNi+1 ⊕Q

i−1
1 , 0, 0Ni+1)GN · V N1 , Ri−11 ⊕ ai−11 〉 ||Qi ⊕ 1〉

)
(B31)

Here we take aN1 = (ai−11 , 1, aNi+1), and the proof is completed. The Eq. (B31)

means arbitrary row of the BTPM of the quantum coordinate channel E(i)N is a
permutation of another row. �

Appendix C Proof of Proposition 9

In this section, we prove Proposition 9 that we can derive Pr
(i)
N (|m〉 ||Qi〉)

from the TPM of classical coordinate channels W
(i)
N .

Proof According to Arikan’s theorem[6], the transition probabilities of classical

coordinate channels {W (i)
N } are

W
(i)
N

(
yN1 , u

i−1
1 | ui

)
=

∑
uN
i+1∈XN−i

1

2N−1
WN

(
yN1 |uN1

)

=
∑

uN
i+1∈XN−i

1

2N−1
WN

(
aN1 GN · yN1 |uN1 ⊕ aN1

)
= W

(i)
N

(
aN1 GN · yN1 , ui−11 ⊕ ai−11 |ui ⊕ ai

)
(C32)

and Arikan has proved that classical combined channel WN and classical coordinate

channels {W (i)
N } are all symmetric, which satisfies

WN

(
yN1 | 0i−11 , ui, u

N
i+1

)
= WN

((
ui−11 , 0, 0Ni+1

)
GN · yN1 | ui−11 , ui, u

N
i+1

)
(C33)

and

W
(i)
N

(
yN1 , 0

i−1
1 | ui

)
= W

(i)
N

((
ui−11 , 0, 0Ni+1

)
GN · yN1 , 0i−11 ⊕ ui−11 | ui

)
(C34)

for all ui−11 ∈ X i−1.
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Using Theorem 6, Proposition 8 and Eq (C33), we have

PrN

(
|V N1 〉 ||0i−11 , Qi, Q

N
i+1〉

)
= WN

(
yN1 | 0i−11 , ui, u

N
i+1

)
= WN

((
ui−11 , 0, 0Ni+1

)
GN · yN1 | ui−11 , ui, u

N
i+1

)
= PrN

(
|(Qi−11 , 0, 0Ni+1)GN · V N1 〉 ||Qi−11 , Qi, Q

N
i+1〉

)
(C35)

for all V N1 = yN1 ∈ YN and QN1 = uN1 ∈ XN .
Substitute Eq. (C35) and Eq. (C34) into Eq. (47), we have

Pr
(i)
N (|m〉 ||Qi〉) =

∑
ui−1
1 ∈X i−1

1

2N−1

×
∑

uN
i+1∈XN−i

WN

(
(ui−11 , 0, 0Ni+1)GN · yN1 |ui−11 , ui, u

N
i+1

)

=
2i−1

2N−1

∑
uN
i+1∈XN−i

WN

(
yN1 |0i−11 , ui, u

N
i+1

)
= 2i−1W

(i)
N

(
yN1 , 0

i−1
1 |ui

)
(C36)

The Eq. (C36) means we can derive Pr
(i)
N (|m〉 ||Qi〉) from the TPM of classical

coordinate channels W
(i)
N , which completes the proof. �
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