One-Way Deficit and Holevo Quantity of Generalized *n*-qubit Werner State

Yao-Kun Wang $\,\cdot\,$ Rui-Xin Chen $\,\cdot\,$ Li-Zhu Ge $\,\cdot\,$ Shao-Ming Fei $\,\cdot\,$ Zhi-Xi Wang

the date of receipt and acceptance should be inserted later

Abstract Originated from the work extraction in quantum systems coupled to a heat bath, quantum deficit is a kind of significant quantum correlations like quantum entanglement. It links quantum thermodynamics with quantum information. We analytically calculate the one-way deficit of the generalized *n*-qubit Werner state. We find that the one-way deficit increases as the mixing probability p increases for any n. For fixed p, we observe that the one-way deficit increases as n increases. For any n, the maximum of one-way deficit is attained at p = 1. Furthermore, for large n ($2^n \to \infty$), we prove that the curve of one-way deficit versus p approaches to a straight line with slope 1. We also calculate the Holevo quantity for the generalized *n*-qubit Werner state, and show that it is zero.

Keywords Generalized *n*-qubit Werner state · one-way deficit · Holevo quantity.

1 Introduction

Similar to quantum entanglement [1] and quantum discord [2,3], quantum deficit [4,5,6] is a kind of important nonclassical correlation, which characterizes the work

Yao-Kun Wang

College of Mathematics, Tonghua Normal University, Tonghua, Jilin 134001, China

Rui-Xin Chen

27 Jiefang Road, The High School Affiliated to Bohai University, Jinzhou, Liaoning 121000, China

Li-Zhu Ge The Branch Campus of Tonghua Normal University, Tonghua, Jilin 134001, China

Shao-Ming Fei School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Zhi-Xi Wang E-mail: wangzhx@cnu.edu.cn

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

extraction from a correlated system coupled to a heat bath by using nonlocal operations [4]. Oppenheim et al. defined the work deficit [4] to be the difference between the information of the whole system and the localizable information [7]. By means of relative entropy over all local von Neumann measurements on one subsystem, Streltsov et al. [9,10] introduced the one-way deficit (OWD) as a resource of entanglement distribution. OWD is able to characterize quantum phase transitions in the XY model and even topological phase transitions in the extended Ising model [8]. These results enlighten extensive researches of quantum phase transitions from the perspective of quantum information processing and quantum computation. For a bipartite composite quantum system ρ_{AB} associated with subsystems A and B, the one-way deficit with respect to von Neumann measurement $\{\Pi_k\}$ on one subsystem is given by [11]

$$\Delta^{\rightarrow}(\rho_{AB}) = \min_{\{\Pi_k\}} S(\sum_k \Pi_k \rho_{AB} \Pi_k) - S(\rho_{AB}), \tag{1}$$

where $S(\cdot)$ denotes the von Neumann entropy.

The Holevo bound characterizes the capacity of quantum states in classical communication [12,13]. It is a keystone in many applications of quantum information theory [14,15,16,17,18,19,20]. With respect to the Holevo bound, the maximal Holevo quantity referred to weak measurements has been studied in [21]. The Holevo quantity of the SU(2)-invariant states has been investigated in [22]. The Holevo quantity of an ensemble $\{p_i; \rho_{A|\Pi_i}\}$, corresponding to a bipartite quantum state ρ_{AB} with the projective measurements $\{\Pi_i\}$ performed on the subsystem B, is given by [21]

$$\chi\{\rho_{AB}|\{\Pi_{i}^{B}\}\} = \chi\{p_{i}; \rho_{A|\Pi_{i}}\} \equiv S(\sum_{i} p_{i}\rho_{A|\Pi_{i}}) - \sum_{i} p_{i}S(\rho_{A|\Pi_{i}}), \qquad (2)$$

where

$$p_i = \operatorname{tr}_{AB}[(I_A \otimes \Pi_i)\rho_{AB}(I_A \otimes \Pi_i)], \ \rho_{A|\Pi_i} = \frac{1}{p_i}\operatorname{tr}_B[(I_A \otimes \Pi_i)\rho_{AB}(I_A \otimes \Pi_i)].$$
(3)

It characterizes the A's accessible information about the B's measurement outcome when B projects the subsystem B by the projection operators $\{\Pi_i^B\}$.

In this paper, we consider the generalized *n*-qubit Werner state given in [23, 24]. The state becomes the Werner state [25] when n = 2. We study the OWD and the Holevo quantity under the bipartition of any single qubit (*B* subsystem) and the remaining n - 1 qubits (*A* subsystem) for the generalized *n*-qubit Werner state. Here we perform a projective measurement on subsystem *B*. The general projective measurement operators are of the form,

$$\Pi_1 = \mathbb{I}_A \otimes |u\rangle_{BB} \langle u| \qquad \text{and} \qquad \Pi_2 = \mathbb{I}_A \otimes |v\rangle_{BB} \langle v|, \qquad (4)$$

where $|u\rangle = \cos(\theta)|0\rangle + e^{i\phi}\sin(\theta)|1\rangle$ and $|v\rangle = \sin(\theta)|0\rangle - e^{i\phi}\cos(\theta)|1\rangle$ with $0 \le \theta \le \pi/2$ and $0 \le \phi \le 2\pi$. In section 2, we analytically calculate OWD between the subsystems A and B, and derive the linear relationship between OWD and the mixing probability p at the thermodynamic limit $(n \to \infty)$. The Holevo quantity between the subsystems A and B is investigated in section 3.

2 OWD for generalized *n*-qubit Werner state

As the two-qubit Werner state is a special case of the Bell-diagonal states, while the quantum discord coincides with the one-way deficit for Bell-diagonal states [26], the one-way deficit is equal to the quantum discord for two-qubit Werner state [2]. We first study the relation between the non-local correlations and the total number of qubits n. The generalized n-qubit Werner state is given as follows,

$$\rho_{W_{AB}} = p|\phi\rangle_{AB\,AB}\langle\phi| + \frac{(1-p)}{2^n}\mathbb{I}_{AB},\tag{5}$$

where $0 \leq p \leq 1$, $|\phi\rangle_{AB}$ is the *n*-qubit GHZ state under bipartition, $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}} \left(|0\rangle_A^{\otimes n-1} |0\rangle_B + |1\rangle_A^{\otimes n-1} |1\rangle_B \right)$, $\mathbb{I}_{AB}/2^n$ is the *n*-qubit maximally mixed state. To calculate the OWD between subsystems *A* and *B* for the state $\rho_{W_{AB}}$, we calculate the von Neumann entropy of $\rho_{W_{AB}}$.

Denote $N = 2^n$. The matrix representation of the state $\rho_{W_{AB}}$ has the form,

$$\rho_{W_{AB}} = \begin{bmatrix}
a_{11} & 0 & 0 & \dots & a_{1N} \\
0 & a_{22} & 0 & \dots & 0 \\
0 & 0 & a_{33} & \dots & 0 \\
\vdots & & \ddots & \vdots \\
a_{N1} & & & a_{NN}
\end{bmatrix}_{N \times N},$$
(6)

where $a_{11} = a_{NN} = \left(\frac{1-p}{2^n} + \frac{p}{2}\right)$, $a_{1N} = a_{N1} = \frac{p}{2}$ and $a_{22} = a_{33} = a_{44} = \dots = a_{N-1 N-1} = \left(\frac{1-p}{2^n}\right)$. From the characteristic equation of the matrix $\rho_{W_{AB}}$, $(a_{22} - \lambda)(a_{33} - \lambda) \cdots (a_{N-1 N-1} - \lambda)(\lambda^2 - \lambda(a_{11} + a_{NN}) + a_{11}a_{NN} - a_{N1}a_{1N}) = 0$, we have the eigenvalues [28],

$$\lambda_1 = \lambda_2 = \lambda_3 = \dots = \lambda_{N-2} = \frac{1-p}{2^n} \tag{7}$$

and

$$\lambda_{N-1} = \frac{1}{2} \left\{ (a_{11} + a_{NN}) + \sqrt{(a_{11} - a_{NN})^2 + 4a_{1N}a_{N1}} \right\}$$

= $\frac{1 + (2^n - 1)p}{2^n};$ (8)
 $\lambda_N = \frac{1}{2} \left\{ (a_{11} + a_{NN}) - \sqrt{(a_{11} - a_{NN})^2 + 4a_{1N}a_{N1}} \right\}$

$$=\frac{1-p}{2^n}.$$
(9)

Therefore, we have the entropy $S(\rho_{W_{AB}})$,

$$S(\rho_{W_{AB}}) = (N-2) \left\{ -\left(\frac{1-p}{2^n}\right) \log_2\left(\frac{1-p}{2^n}\right) \right\} - \left(\frac{1+(2^n-1)p}{2^n}\right) \\ \cdot \log_2\left(\frac{1+(2^n-1)p}{2^n}\right) - \left(\frac{1-p}{2^n}\right) \log_2\left(\frac{1-p}{2^n}\right), \tag{10}$$
$$= -(2^n-1) \left(\frac{1-p}{2^n}\right) \log_2\left(\frac{1-p}{2^n}\right) - \left(\frac{1+(2^n-1)p}{2^n}\right)$$

$$= -(2^n - 1)\left(\frac{1}{2^n}\right)\log_2\left(\frac{1}{2^n}\right) - \left(\frac{1}{2^n}\right) - \left(\frac{1}{2^n}\right)$$
$$\cdot \log_2\left(\frac{1 + (2^n - 1)p}{2^n}\right). \tag{11}$$

To compute $\min_{\{\Pi_k\}} S(\sum_k \Pi_k \rho_{W_{AB}} \Pi_k)$ under measurement (4) on subsystem B, let us consider the following state,

$$\rho = p \cos^{2}(\theta) |0\rangle^{\otimes n-1} \langle 0|^{\otimes n-1} + p e^{i\phi} \cos(\theta) \sin(\theta) |0\rangle^{\otimes n-1} \langle 1|^{\otimes n-1} + p e^{-i\phi} \cos(\theta) \sin(\theta) |1\rangle^{\otimes n-1} \langle 0|^{\otimes n-1} + p \sin^{2}(\theta) |1\rangle^{\otimes n-1} \langle 1|^{\otimes n-1} + \sum_{i=0}^{2^{n-1}-1} \left(\frac{1-p}{2^{n-1}}\right) |i\rangle \langle i|.$$
(12)

Denote $L = 2^{n-1}$. The density matrix ρ has the form,

$$\rho = \begin{bmatrix}
b_{11} & 0 & 0 & \dots & b_{1L} \\
0 & b_{22} & 0 & \dots & 0 \\
0 & 0 & b_{33} & \dots & 0 \\
\vdots & & \ddots & \vdots \\
b_{L1} & 0 & 0 & \dots & b_{LL}
\end{bmatrix}_{LL},$$
(13)

where

$$b_{11} = p\cos^2\theta + \frac{1-p}{2^{n-1}}, \qquad b_{LL} = p\sin^2\theta + \frac{1-p}{2^{n-1}}, \qquad (14)$$

$$b_{1L} = pe^{i\phi}\cos(\theta)\sin(\theta), \qquad b_{L1} = pe^{-i\phi}\cos(\theta)\sin(\theta) \qquad (15)$$

and

$$b_{22} = b_{33} = \ldots = b_{L-1} {}_{L-1} = \frac{1-p}{2^{n-1}}.$$
 (16)

The eigenvalues of ρ are $\beta_1 = \beta_2 = \ldots = \beta_{L-2} = \frac{1-p}{2^{n-1}}, \ \beta_{L-1} = \frac{1+(2^{n-1}-1)p}{2^{n-1}}$ and

 $\beta_L = \frac{1-p}{2^{n-1}}.$ From (4) and (12), it is direct to verify that $\Pi_1 \rho_{W_{AB}} \Pi_1 = \frac{\rho}{2} \otimes |u\rangle_{BB} \langle u|$ and $\Pi_2 \rho_{W_{AB}} \Pi_2 = \frac{\rho}{2} \otimes |v\rangle_{BB} \langle v|.$ Hence,

$$\sum_{k} \Pi_{k} \rho_{W_{AB}} \Pi_{k} = \Pi_{1} \rho_{W_{AB}} \Pi_{1} + \Pi_{2} \rho_{W_{AB}} \Pi_{2}$$
(17)

$$= \frac{\rho}{2} \otimes (|u\rangle_{BB} \langle u| + |v\rangle_{BB} \langle v|) \tag{18}$$

$$= \frac{\rho}{2} \otimes \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}. \tag{19}$$

From the calculation of the eigenvalues of ρ , we have the following eigenvalues of the matrix $\sum_{k} \prod_{k} \rho_{W_{AB}} \prod_{k}$, $\alpha_1 = \alpha_2 = \ldots = \alpha_{2L-4} = \frac{1-p}{2^n}$, $\alpha_{2L-3} = \alpha_{2L-2} = \alpha_{2L-2}$

$$\frac{1+(2^{n-1}-1)p}{2^n} \text{ and } \alpha_{2L-1} = \alpha_{2L} = \frac{1-p}{2^n}. \text{ The entropy of } \sum_k \Pi_k \rho_{W_{AB}} \Pi_k \text{ is given by}$$

$$S(\sum_k \Pi_k \rho_{W_{AB}} \Pi_k) = -(2L-4) \left(\frac{1-p}{2^n}\right) \log_2 \left(\frac{1-p}{2^n}\right) - 2 \left(\frac{1+(2^{n-1}-1)p}{2^n}\right)$$

$$\cdot \log_2 \left(\frac{1+(2^{n-1}-1)p}{2^n}\right) - 2 \left(\frac{1-p}{2^n}\right) \log_2 \left(\frac{1-p}{2^n}\right)$$

$$= -(2^{n-1}-1) \left(\frac{1-p}{2^{n-1}}\right) \log_2 \left(\frac{1-p}{2^n}\right) - \left(\frac{1+(2^{n-1}-1)p}{2^{n-1}}\right)$$

$$\cdot \log_2 \left(\frac{1+(2^{n-1}-1)p}{2^n}\right). \tag{20}$$

Note that $S(\sum_{k} \Pi_{k} \rho_{W_{AB}} \Pi_{k})$ is independent of the parameters θ and ϕ in the measurement operators given in (4). Therefore, the minimization of $S(\sum_{k} \Pi_{k} \rho_{W_{AB}} \Pi_{k})$ over the measurements is not required. Using Eqs. (1), (11) and (20), we have the OWD of state $\rho_{W_{AB}}$,

$$\Delta^{\rightarrow}(\rho_{W_{AB}}) = \min_{\{\Pi_k\}} S(\sum_k \Pi_k \rho_{W_{AB}} \Pi_k) - S(\rho_{AB})$$

$$= -(2^{n-1} - 1) \left(\frac{1-p}{2^{n-1}}\right) \log_2\left(\frac{1-p}{2^n}\right) - \left(\frac{1+(2^{n-1}-1)p}{2^{n-1}}\right)$$

$$\cdot \log_2\left(\frac{1+(2^{n-1}-1)p}{2^n}\right) + (2^n - 1) \left(\frac{1-p}{2^n}\right) \log_2\left(\frac{1-p}{2^n}\right)$$

$$+ \left(\frac{1+(2^n-1)p}{2^n}\right) \log_2\left(\frac{1+(2^n-1)p}{2^n}\right).$$
(21)

In Fig. 1, We plot the OWD as a function of p for different number of qubits n. We observe that the OWD increases as p increases for any n. As n increases, the OWD increases for a given p, which indicates that the nonclassical correlations are dependent upon n. The maximum of OWD is attained at p = 1 for any n.

We next study the one-way deficit at thermodynamic limit $(n \to \infty).$ The OWD (21) can be rewritten as,

$$\Delta^{\rightarrow}(\rho_{W_{AB}}) = -\left(1 - p - \frac{1 - p}{2^{n-1}}\right)\log_2\left(\frac{1 - p}{2^n}\right) - \left(\frac{1}{2^{n-1}} + p - \frac{p}{2^{n-1}}\right)$$
$$\cdot \log_2\left(\frac{1}{2^n} + \frac{p}{2} - \frac{p}{2^n}\right) + \left(1 - p - \frac{1 - p}{2^n}\right)\log_2\left(\frac{1 - p}{2^n}\right)$$
$$+ \left(\frac{1}{2^n} + p - \frac{p}{2^n}\right)\log_2\left(\frac{1}{2^n} + p - \frac{p}{2^n}\right). \tag{22}$$

When $2^n \to \infty$, one obtains

$$\lim_{2^n \to \infty} \Delta^{\to}(\rho_{W_{AB}}) = -(1-p)\log_2\left(\frac{1-p}{2^n}\right) - p\log_2\left(\frac{p}{2}\right)$$
$$+(1-p)\log_2\left(\frac{1-p}{2^n}\right) + p\log_2\left(p\right)$$
$$= p.$$

Fig. 1 (Color online) One-way deficit of the generalized n-qubit Werner State as a function of the mixing probability p for different number of qubits n.

Interestingly, the change between OWD and p saturates at thermodynamic limit. The curve in Fig. 1 approaches to a straight line with slope 1, a phenomenon we call it "saturation of one-way deficit".

3 Holevo Quantity for generalized *n*-qubit Werner state

In this section, we calculate the Holevo quantity of the generalized *n*-qubit Werner state $\rho_{W_{AB}}$. Denote p_i the probability with respect to the measurement outcome of Π_i , i = 1, 2. From (3) we have

$$p_1 = tr(\Pi_1 \rho_{W_{AB}} \Pi_1)$$
$$= tr(\frac{\rho}{2} \otimes |u\rangle_{BB} \langle u|) = \frac{1}{2}.$$

The post measurement state of the subsystem A is

$$\begin{split} \rho_{A|\Pi_1} &= \frac{1}{p_1} tr_B(\Pi_1 \rho_{W_{AB}} \Pi_1) \\ &= \frac{1}{p_1} tr_B(\frac{\rho}{2} \otimes |u\rangle_{BB} \langle u|) = \rho. \end{split}$$

Similarly, we have $p_2 = \frac{1}{2}$ and $\rho_{A|\Pi_2} = \rho$.

The Holevo quantity of the generalized *n*-qubit Werner state is then given by

$$\chi\{\rho_{AB}|\{\Pi_i\}\} = S\left(\sum_i p_i \rho_{A|\Pi_k}\right) - \sum_i p_i S\left(\rho_{A|\Pi_k}\right)$$
$$= S\left(\frac{1}{2}\rho + \frac{1}{2}\rho\right) - \left(\frac{1}{2}S(\rho) + \frac{1}{2}S(\rho)\right)$$
$$= 0.$$

4 Conclusion

We have analytically calculated the one-way deficit of the generalized *n*-qubit Werner state, with the projective measurements performed on one-qubit subsystem. We have found that the OWD increases as *p* increases for any *n*. When *n* increases, the OWD increases for any fixed *p*. For any *n*, the maximum of OWD is attained at p = 1. Furthermore, for large $n \ (2^n \to \infty)$, by analytical calculation we have proved that this curve OWD versus *p* approaches to a straight line with slope 1. We have also shown that the Holevo quantity of the generalized *n*-qubit Werner state is 0.

Acknowledgments This work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 12065021, 12075159 and 12171044; Beijing Natural Science Foundation (Grant No. Z190005); the Academician Innovation Platform of Hainan Province.

Conflict of Interest Statements The authors declare no competing interests.

Data Availability Statements All data generated or analysed during this study are available from the corresponding author on reasonable request.

References

- Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).
- Ollivier, H., Zurek, W. H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002).
- Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen 34, 6899 (2001).
- Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002).
- Horodecki, M., Horodecki, K., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003).
- Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012).
- Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U., Synak, B.: Local versus nonlocal information in quantum-information theory: Formalism and phenomena. Phys. Rev. A **71**, 062307 (2005); Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A **67** 062104 (2003).
- Wang, Y. K., Zhang, Y. R., Fan, H.: One-way deficit and quantum phase transitions in XY model and extended Ising model. Quantum. Inf. Process 18 19 (2019).

- Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108 250501 (2012).
- Chuan, T. K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109 070501 (2012).
- Streltsov, A., Kampermann, H., Bruß, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106 160401 (2011).
- 12. Holevo, A. S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9, 177 (1973).
- Benatti, F.: Entropy of a subalgebra and quantum estimation. J. Math. Phys. 37, 5244 (1996).
- 14. Nielsen, M. A., Chuang, I. L.: *Quantum Computation and Quantum Information* (Cambridge University Press, Cambridge, UK, 2000).
- 15. Roga, W., Fannes, M., Życzkowski, K.: Universal bounds for the Holevo quantity, coherent information, and the Jensen-Shannon divergence. Phys. Rev. Lett. **105**, 040505 (2010).
- Lloyd, S., Giovannetti, V., Maccone, L.: Sequential projective measurements for channel decoding. Phys. Rev. Lett. 106, 250501 (2011).
- Lupo, C., Lloyd, S.: Quantum-locked key distribution at nearly the classical capacity rate. Phys. Rev. Lett. 113, 160502 (2014).
- Zhang, Z., Mower, J., Englund, D., Wong, F. N. C., Shapiro, J. H.: Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. Phys. Rev. Lett. **112**, 120506 (2014).
- Wu, S. Ma, Z., Chen, Z., Yu, S.: Reveal quantum correlation in complementary bases. Sci. Rep 4, 4036 (2014).
- Guo, Y., Wu, S.: Quantum correlation exists in any non-product state. Sci. Rep 4, 7179 (2014).
- Wang, Y. K., Fei, S. M., Wang, Z. X., Cao, J. P., Fan, H.: Maxmal Holevo quantity based on weak measurements. Sci. Rep 5, 10727 (2015).
- Wang, Y. K., Ge, L. Z., Fei, S. M., Wang, Z. X.:A note on Holevo quantity of Su(2)invariant states. Int. J. Theor. Phys. 61, 7 (2022).
- Siewert, J., Eltschka, C.: Entanglement of three-qubit Greenberger-Horne-Zeilinger-Symmetric states. Phys. Rev. Lett. 108, 020502 (2012).
- Dür, W., Cirac, J. I.: Classification of multiqubit mixed states: Separability and distillability properties. Phys. Rev. A 61, 042314 (2000).
- Werner, R. F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989).
- Wang, Y. K., Ma, T., Li, B., Wang, Z. X.: One-way information deficit and geometry for a class of two-qubit states. Commun. Theor. Phys. 59, 540 (2013).
- Greenberger, D. M., Horne, M., Zeilinger, A.: Bell Theorem, Quantum Theory, and Conceptions of the Universe, In: Kafatos, M. (ed.) Kluwer, Dordrecht(1989).
- Ramkarthik, M. S., Tiwari, D., Barkataki, P.: Quantum discord and logarithmic negativity in the generalized n-qubit Werner state. Int. J. Theor. Phys. 59, 4040 (2020).