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Abstract Originated from the work extraction in quantum systems coupled to
a heat bath, quantum deficit is a kind of significant quantum correlations like
quantum entanglement. It links quantum thermodynamics with quantum infor-
mation. We analytically calculate the one-way deficit of the generalized n-qubit
Werner state. We find that the one-way deficit increases as the mixing probability
p increases for any n. For fixed p, we observe that the one-way deficit increases
as n increases. For any n, the maximum of one-way deficit is attained at p = 1.
Furthermore, for large n (2n → ∞), we prove that the curve of one-way deficit
versus p approaches to a straight line with slope 1. We also calculate the Holevo
quantity for the generalized n-qubit Werner state, and show that it is zero.

Keywords Generalized n-qubit Werner state · one-way deficit · Holevo quantity.

1 Introduction

Similar to quantum entanglement [1] and quantum discord [2,3], quantum deficit
[4,5,6] is a kind of important nonclassical correlation, which characterizes the work
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extraction from a correlated system coupled to a heat bath by using nonlocal op-
erations [4]. Oppenheim et al. defined the work deficit [4] to be the difference
between the information of the whole system and the localizable information [7].
By means of relative entropy over all local von Neumann measurements on one sub-
system, Streltsov et al. [9,10] introduced the one-way deficit (OWD) as a resource
of entanglement distribution. OWD is able to characterize quantum phase tran-
sitions in the XY model and even topological phase transitions in the extended
Ising model [8]. These results enlighten extensive researches of quantum phase
transitions from the perspective of quantum information processing and quantum
computation. For a bipartite composite quantum system ρAB associated with sub-
systems A and B, the one-way deficit with respect to von Neumann measurement
{Πk} on one subsystem is given by [11]

∆→(ρAB) = min
{Πk}

S(
∑

k

ΠkρABΠk)− S(ρAB), (1)

where S(·) denotes the von Neumann entropy.

The Holevo bound characterizes the capacity of quantum states in classical
communication [12,13]. It is a keystone in many applications of quantum informa-
tion theory[14,15,16,17,18,19,20]. With respect to the Holevo bound, the maxi-
mal Holevo quantity referred to weak measurements has been studied in [21]. The
Holevo quantity of the SU(2)-invariant states has been investigated in [22]. The
Holevo quantity of an ensemble {pi; ρA|Πi

}, corresponding to a bipartite quantum
state ρAB with the projective measurements {Πi} performed on the subsystem B,
is given by [21]

χ{ρAB|{ΠB
i }} = χ{pi; ρA|Πi

} ≡ S(
∑

i

piρA|Πi
)−

∑

i

piS(ρA|Πi
), (2)

where

pi = trAB [(IA⊗Πi)ρAB(IA⊗Πi)], ρA|Πi
=

1

pi
trB [(IA⊗Πi)ρAB(IA⊗Πi)]. (3)

It characterizes the A’s accessible information about the B’s measurement outcome
when B projects the subsystem B by the projection operators {ΠB

i }.

In this paper, we consider the generalized n-qubit Werner state given in [23,
24]. The state becomes the Werner state [25] when n = 2. We study the OWD
and the Holevo quantity under the bipartition of any single qubit (B subsystem)
and the remaining n− 1 qubits (A subsystem) for the generalized n-qubit Werner
state. Here we perform a projective measurement on subsystem B. The general
projective measurement operators are of the form,

Π1 = IA ⊗ |u〉BB〈u| and Π2 = IA ⊗ |v〉BB〈v|, (4)

where |u〉 = cos(θ)|0〉 + eiφ sin(θ)|1〉 and |v〉 = sin(θ)|0〉 − eiφ cos(θ)|1〉 with 0 ≤
θ ≤ π/2 and 0 ≤ φ ≤ 2π. In section 2, we analytically calculate OWD between the
subsystems A and B, and derive the linear relationship between OWD and the
mixing probability p at the thermodynamic limit (n → ∞). The Holevo quantity
between the subsystems A and B is investigated in section 3.
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2 OWD for generalized n-qubit Werner state

As the two-qubit Werner state is a special case of the Bell-diagonal states, while
the quantum discord coincides with the one-way deficit for Bell-diagonal states
[26], the one-way deficit is equal to the quantum discord for two-qubit Werner
state [2]. We first study the relation between the non-local correlations and the
total number of qubits n. The generalized n-qubit Werner state is given as follows,

ρWAB
= p|φ〉ABAB〈φ|+

(1− p)

2n
IAB , (5)

where 0 ≤ p ≤ 1, |φ〉AB is the n-qubit GHZ state under bipartition, |φ〉AB =
1√
2
( |0〉⊗n−1

A |0〉B + |1〉⊗n−1
A |1〉B ), IAB/2n is the n-qubit maximally mixed state.

To calculate the OWD between subsystems A and B for the state ρWAB
, we

calculate the von Neumann entropy of ρWAB
.

Denote N = 2n. The matrix representation of the state ρWAB
has the form,

ρWAB
=















a11 0 0 . . . a1N
0 a22 0 . . . 0
0 0 a33 . . . 0
...

. . .
...

aN1 aNN















N×N

, (6)

where a11 = aNN =
(

1−p
2n + p

2

)

, a1N = aN1 = p
2 and a22 = a33 = a44 = . . . =

aN−1 N−1 =
(

1−p
2n

)

. From the characteristic equation of the matrix ρWAB
, (a22 −

λ)(a33 − λ) · · · (aN−1 N−1 − λ)(λ2 − λ(a11 + aNN ) + a11aNN − aN1a1N ) = 0, we
have the eigenvalues [28],

λ1 = λ2 = λ3 = . . . = λN−2 =
1− p

2n
(7)

and

λN−1 =
1

2

{

(a11 + aNN ) +
√

(a11 − aNN )2 + 4a1NaN1

}

=
1 + (2n − 1)p

2n
; (8)

λN =
1

2

{

(a11 + aNN )−
√

(a11 − aNN )2 + 4a1NaN1

}

=
1− p

2n
. (9)

Therefore, we have the entropy S(ρWAB
),

S(ρWAB
) = (N − 2)

{

−

(

1− p

2n

)

log2

(

1− p

2n

)}

−

(

1 + (2n − 1)p

2n

)

· log2

(

1 + (2n − 1)p

2n

)

−

(

1− p

2n

)

log2

(

1− p

2n

)

, (10)

= −(2n − 1)

(

1− p

2n

)

log2

(

1− p

2n

)

−

(

1 + (2n − 1)p

2n

)

· log2

(

1 + (2n − 1)p

2n

)

. (11)
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To compute min
{Πk}

S(
∑

k

ΠkρWAB
Πk) under measurement (4) on subsystem B,

let us consider the following state,

ρ = p cos2(θ)|0〉⊗n−1〈0|⊗n−1 + peiφ cos(θ) sin(θ)|0〉⊗n−1〈1|⊗n−1

+pe−iφ cos(θ) sin(θ)|1〉⊗n−1〈0|⊗n−1 + p sin2(θ)|1〉⊗n−1〈1|⊗n−1

+

2n−1−1
∑

i=0

(

1− p

2n−1

)

|i〉〈i|. (12)

Denote L = 2n−1. The density matrix ρ has the form,

ρ =















b11 0 0 . . . b1L
0 b22 0 . . . 0
0 0 b33 . . . 0
...

. . .
...

bL1 0 0 . . . bLL















LL

, (13)

where

b11 = p cos2 θ +
1− p

2n−1
, bLL = p sin2 θ +

1− p

2n−1
, (14)

b1L = peiφ cos(θ) sin(θ), bL1 = pe−iφ cos(θ) sin(θ) (15)

and

b22 = b33 = . . . = bL−1 L−1 =
1− p

2n−1
. (16)

The eigenvalues of ρ are β1 = β2 = . . . = βL−2 = 1−p
2n−1 , βL−1 = 1+(2n−1−1)p

2n−1 and

βL = 1−p
2n−1 .

From (4) and (12), it is direct to verify that Π1ρWAB
Π1 = ρ

2 ⊗ |u〉BB〈u| and
Π2ρWAB

Π2 = ρ
2 ⊗ |v〉BB〈v|. Hence,

∑

k

ΠkρWAB
Πk = Π1ρWAB

Π1 +Π2ρWAB
Π2 (17)

=
ρ

2
⊗ (|u〉BB〈u|+ |v〉BB〈v|) (18)

=
ρ

2
⊗

(

1 0
0 1

)

. (19)

From the calculation of the eigenvalues of ρ, we have the following eigenvalues of
the matrix

∑

k

ΠkρWAB
Πk, α1 = α2 = . . . = α2L−4 = 1−p

2n , α2L−3 = α2L−2 =
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1+(2n−1−1)p
2n and α2L−1 = α2L = 1−p

2n . The entropy of
∑

k

ΠkρWAB
Πk is given by

S(
∑

k

ΠkρWAB
Πk) = −(2L− 4)

(

1− p

2n

)

log2

(

1− p

2n

)

− 2

(

1 + (2n−1 − 1)p

2n

)

· log2

(

1 + (2n−1 − 1)p

2n

)

− 2

(

1− p

2n

)

log2

(

1− p

2n

)

= −(2n−1 − 1)

(

1− p

2n−1

)

log2

(

1− p

2n

)

−

(

1 + (2n−1 − 1)p

2n−1

)

· log2

(

1 + (2n−1 − 1)p

2n

)

. (20)

Note that S(
∑

k

ΠkρWAB
Πk) is independent of the parameters θ and φ in the

measurement operators given in (4). Therefore, the minimization of S(
∑

k

ΠkρWAB
Πk)

over the measurements is not required. Using Eqs. (1), (11) and (20), we have the
OWD of state ρWAB

,

∆→(ρWAB
) = min

{Πk}
S(
∑

k

ΠkρWAB
Πk)− S(ρAB)

= −(2n−1 − 1)

(

1− p

2n−1

)

log2

(

1− p

2n

)

−

(

1 + (2n−1 − 1)p

2n−1

)

· log2

(

1 + (2n−1 − 1)p

2n

)

+ (2n − 1)

(

1− p

2n

)

log2

(

1− p

2n

)

+

(

1 + (2n − 1)p

2n

)

log2

(

1 + (2n − 1)p

2n

)

. (21)

In Fig. 1, We plot the OWD as a function of p for different number of qubits
n. We observe that the OWD increases as p increases for any n. As n increases,
the OWD increases for a given p, which indicates that the nonclassical correlations
are dependent upon n. The maximum of OWD is attained at p = 1 for any n.

We next study the one-way deficit at thermodynamic limit (n → ∞). The
OWD (21) can be rewritten as,

∆→(ρWAB
) = −

(

1− p−
1− p

2n−1

)

log2

(

1− p

2n

)

−

(

1

2n−1
+ p−

p

2n−1

)

· log2

(

1

2n
+

p

2
−

p

2n

)

+

(

1− p−
1− p

2n

)

log2

(

1− p

2n

)

+

(

1

2n
+ p−

p

2n

)

log2

(

1

2n
+ p−

p

2n

)

. (22)

When 2n → ∞, one obtains

lim
2n→∞

∆→(ρWAB
) = − (1− p) log2

(

1− p

2n

)

− p log2

(p

2

)

+(1− p) log2

(

1− p

2n

)

+ p log2 (p)

= p.
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Fig. 1 (Color online) One-way deficit of the generalized n-qubit Werner State as a function
of the mixing probability p for different number of qubits n.

Interestingly, the change between OWD and p saturates at thermodynamic limit.
The curve in Fig. 1 approaches to a straight line with slope 1, a phenomenon we
call it “saturation of one-way deficit”.

3 Holevo Quantity for generalized n-qubit Werner state

In this section, we calculate the Holevo quantity of the generalized n-qubit Werner
state ρWAB

. Denote pi the probability with respect to the measurement outcome
of Πi, i = 1, 2. From (3) we have

p1 = tr(Π1ρWAB
Π1)

= tr(
ρ

2
⊗ |u〉BB〈u|) =

1

2
.

The post measurement state of the subsystem A is

ρA|Π1
=

1

p1
trB(Π1ρWAB

Π1)

=
1

p1
trB(

ρ

2
⊗ |u〉BB〈u|) = ρ.

Similarly, we have p2 = 1
2 and ρA|Π2

= ρ.
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The Holevo quantity of the generalized n-qubit Werner state is then given by

χ{ρAB|{Πi}} = S

(

∑

i

piρA|Πk

)

−
∑

i

piS
(

ρA|Πk

)

= S

(

1

2
ρ+

1

2
ρ

)

−

(

1

2
S(ρ) +

1

2
S(ρ)

)

= 0.

4 Conclusion

We have analytically calculated the one-way deficit of the generalized n-qubit
Werner state, with the projective measurements performed on one-qubit subsys-
tem. We have found that the OWD increases as p increases for any n. When n
increases, the OWD increases for any fixed p. For any n, the maximum of OWD
is attained at p = 1. Furthermore, for large n (2n → ∞), by analytical calculation
we have proved that this curve OWD versus p approaches to a straight line with
slope 1. We have also shown that the Holevo quantity of the generalized n-qubit
Werner state is 0.
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