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Abstract

High-fidelity quantum state transfer is critical for quantum communica-
tion and scalable quantum computation. Current quantum state transfer
algorithms on the complete bipartite graph, which are based on discrete-
time quantum walk search algorithms, suffer from low fidelity in some
cases. To solve this problem, in this paper we propose a two-stage quan-
tum state transfer algorithm on the complete bipartite graph. The algo-
rithm is achieved by the generalized Grover walk with one marked vertex.
The generalized Grover walk’s coin operators and the query oracles are
both parametric unitary matrices, which are designed flexibly based on
the positions of the sender and receiver and the size of the complete bipar-
tite graph. We prove that the fidelity of the algorithm is greater than
1−2ǫ1−ǫ2−2

√

2
√
ǫ1ǫ2 or 1−(2+2

√

2)ǫ1−ǫ2−(2+2
√

2)
√
ǫ1ǫ2 for

any adjustable parameters ǫ1 and ǫ2 when the sender and receiver are in
the same partition or different partitions of the complete bipartite graph.
The algorithm provides a novel approach to achieve high-fidelity quan-
tum state transfer on the complete bipartite graph in any case, which
will offer potential applications for quantum information processing.

Keywords: Quantum walk, Quantum state transfer, Complete bipartite
graph, Generalized Grover walk
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1 Introduction

Quantum walk [1, 2], the quantum counterpart of classical random walk, was
first proposed by Aharonov [3] in 1993. It is a universal model of quantum
computation[4, 5] and has become a useful tool for designing quantum algo-
rithms, such as quantum search algorithms [6, 7], quantum state transfer
algorithms [8, 9], quantum hash functions[10, 11], and so on[12–14]. There
are two kinds of quantum walks, discrete-time quantum walks[8, 9] and
continuous-time quantum walks[15–17].

Quantum state transfer is to transfer the initial state from the sender to the
receiver which is critical for quantum communication and scalable quantum
computation [18]. When the fidelity of the quantum state transfer algorithm
is 1, we call it perfect state transfer. It can be divided into two cases: the
position of the sender and receiver are known or unknown. When the position
of the sender and the receiver vertices are known, we can globally design the
dynamics to transfer the walker from one to the other. It was investigated on
different graphs such as a line [8, 9], a circle [8], a 2D lattice [9], a regular
graph [19], a complete graph[19] or more general networks [20]. When the
position of the sender and the receiver are unknown, the Grover walk with two
marked vertices, the sender and receiver, is used to achieve state transfer. It
was analyzed on various types of graphs such as a star graph[21], a complete
bipartite graph [22], a complete M-partite graph [23], or a circulant graph [24].
In this paper, we consider the latter.

Current quantum state transfer algorithms on the complete bipartite graph,
which are based on discrete-time quantum walk search algorithms, have low
fidelity in some cases. Ref. [22] has proved that perfect state transfer can
not be achieved when the sender and receiver are in opposite partitions with
different sizes. The fidelity is low when the number of vertices in the two
partitions differs greatly. Ref. [25] uses lackadaisical quantum walks to achieve
state transfer. But it achieves high fidelity only when the number of vertices
in two partitions of the complete bipartite graph exceeds a certain number.

To avoid the problem of low fidelity, in this paper we propose a two-stage
quantum state transfer algorithm on the complete bipartite graph that achieves
high-fidelity quantum state transfer in any case. It is inspired by Ref. [26]. As
shown in Fig. 1, the initial state is transferred to the uniform superposition
state of the vertices on the other side of the sender with the fidelity of at least
1 − ǫ1 in the first stage. In the second stage, the uniform superposition state
of the vertices on the other side of the sender is transferred to the target state
with the fidelity of at least 1 − ǫ2, when the sender and receiver are in the
same partition or different partitions.

The algorithm is achieved by the generalized Grover walks with one marked
vertex. In the first stage, the marked vertex is the sender. But in the second
stage, the receiver is the marked vertex. The coin operators of the general-
ized Grover walk and the query oracles are both parametric unitary matrices
changed with time which are designed according to the position of the sender
and receiver and the size of the complete bipartite graph.
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Through analysis, it is found that the fidelity of the quantum state transfer
algorithm is greater than 1−2ǫ1− ǫ2−2

√
2
√
ǫ1ǫ2 or 1− (2+2

√
2)ǫ1− ǫ2− (2+

2
√
2)
√
ǫ1ǫ2 when the sender and receiver are in the same partition or different

partitions. ǫ1, ǫ2 are tunable parameters chosen from (0,1]. When ǫ1 and ǫ2
are small, the value of fidelity of the quantum state transfer algorithm will be
close to 1. The advantage of the algorithm is it works in any case since high-
fidelity quantum state transfer can be reached by adjusting the parameters of
the coin operators and the query oracles.

Robust quantum state transfer algorithm

Initial state Stage 1 Stage 2

the sender vertex is on the left side
the uniform superposition state of the 

vertices on the other side of sender

the receiver vertex is on the left side

the receiver vertex is on the right side

vertices on the other side of sender

uniform superposition state of the 

vertices on the other side of sender

s

u

v

s

u

v

r

u

v

r

u

v

Fig. 1 The process of the quantum state transfer algorithm.

The rest of this paper is organized as follows. In section 2, some prelim-
inaries are introduced. The quantum state transfer algorithm is presented in
section 3 and section 4. A conclusion is presented in Section 5.

2 Preliminaries

Complete bipartite graph. Let G = (V,E) be a graph where V is the
vertex set and E is the edge set. For u ∈ V , deg(u) = {v|(u, v) ∈ E} denotes
the set of neighbors of u. The degree of u is denoted as du = |deg(u)|. A
bipartite graph can be denoted as G = {V1 ∪ V2, E = {(u, v)|u ∈ V1, v ∈ V2}}
with V1∩V2 = ∅. V1 and V2 denote the vertices on the left side of the bipartite
graph and the right side of it respectively. A complete bipartite graph is a
bipartite graph where every vertex on the left side is connected to every vertex
on the right side. A complete bipartite graph is shown in Fig. 2, which contains
4 vertices on the left side and 3 vertices on the right side.
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Fig. 2 A complete bipartite graph with 4 vertices on the left side and 3 vertices on the
right side.

Generalized Grover walk. A coined walk is called the Grover walk if
the coin operator is the Grover matrix. The Grover walk is generalized by
considering coin operators as parametric unitary matrices, which include the
Grover matrix as a special case for some particular values of the parameters.

The Hilbert space of generalized Grover walk on a graph G = (V,E) can
be defined as

HN2

= span{|uv〉, (u, v) ∈ E}, (1)

where u is the position of the walker and v is the coin that represents a neighbor
of u. N is the number of vertices in the complete bipartite graph.

The evolution operator of the generalized Grover walk with marked vertex
used in this paper is denoted as

U(α, β) = SC(α)Q(β), (2)

where the flip-flop shift operator S is

S =
∑

u,v

|u, v〉〈v, u|. (3)

The coin operator C(α) is

C(α) = I ⊗
∑

u

[(1− e−iα)|Ψu〉〈Ψu| − I], (4)

where

|Ψu〉 =
1√
du

∑

v∈deg(u)

|v〉. (5)

The query oracle Q(β) is

Q(β)|uv〉 =
{

eiβ |uv〉, when u is marked,

|uv〉, when u is not marked.
(6)
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Let the initial state be |ψ0〉. The state of the walker after t steps is given by

|ψt〉 = U(αt, βt)U(αt−1, βt−1)...U(α2, β2)U(α1, β1)|ψ0〉. (7)

Quantum state transfer. The initial state of the quantum state transfer
algorithm is

|ψ0〉 =
1√
ds

∑

v∈deg(s)

|sv〉, (8)

where s is the position of the sender.
The target state of quantum state transfer is

|target〉 = 1√
dr

∑

v∈deg(r)

|rv〉, (9)

where r is the position of the receiver. The fidelity of the final state and the
target state is given by

F (t) = |〈target|ψt〉|2. (10)

We call it perfect state transfer when the value of fidelity is 1.
Quasi-Chebyshev polynomial. The Chebyshev polynomials of the first

kind Tn(x) are defined by initial values T0(x) = 1, T1(x) = x, and for an
integer n ≥ 2,

Tn(x) = 2xTn−1(x) − Tn−2(x). (11)

A result of one Quasi-Chebyshev polynomial implied in [27] is stated in the
following lemma.

Lemma 1. Let x = cos(θ) for θ ∈ [0, 2π]. Let h ≥ 3 be an odd integer.

One Quasi-Chebyshev polynomial ak(x) is defined by initial values a0(x) =
1, a1(x) = x, and for k = 2, ..., h,

ak(x) = x(1 + e−i(ηk−ηk−1))ak−1(x)− e−i(ηk−ηk−1)ak−2(x). (12)

When ηk+1−ηk = (−1)kπ−2arccot(tan(kπ
h
)
√

1− γ2) for k = 1, ..., h−1, where

γ = 1
cos( 1

h
arccos( 1√

ǫ
))

with ǫ ∈ (0, 1], we have ah(x) =
Th(

x
γ
)

Th(
1
γ
)
with Th(

1
γ
) = 1√

ǫ
.

3 Sender and receiver in the same partition

The quantum state transfer algorithm will be different when the sender and
receiver are in the same partition or different partitions. In this section, we
propose a quantum state transfer algorithm when the sender and receiver are
in the same partition. As shown in Fig. 3, the sender and the receiver are on
the left side of the complete bipartite graph. The left side of the complete
bipartite graph has m vertices and the right side of it has n vertices.
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s

r

Fig. 3 The sender and the receiver are on the left side of the complete bipartite graph.

Our algorithm is as follows.

Algorithm 1 Quantum state transfer algorithm (sender and receiver in the
same partition)

Input: the initial state|ψ0〉, parameters ǫ1 and ǫ2.

First stage:

Initialization:

Let h1 be an odd integer and ensure h1 ≥ ln( 2√
ǫ1
)
√
m.

Let βk = −αh1+2−k = −2arccot(tan( (k−1)π
h1

)
√

1− γ21) for k =

3, 5, 7, ..., h1, where γ1 = 1
cos( 1

h1
arccos( 1√

ǫ1
))
. The other αi and βi, can be any

value.
Perform the evolution operator:

|ψh1〉 = U(αh1 , βh1)U(αh1−1, βh1−1)...U(α2, β2)U(α1, β1)|ψ0〉
Second stage:

Initialization:

Let h2 be an odd integer and ensure h2 ≥ ln( 2√
ǫ2
)
√
m.

Let α
′

k = −β′

h2+2−k = 2arccot(tan( (k−1)π
h2

)
√

1− γ22) for k =

3, 5, 7, ..., h2, where γ2 = 1
cos( 1

h2
arccos( 1√

ǫ2
))
. The other α

′

i and β
′

i can be any

value.
Perform the evolution operator:

|ψh2〉 = U(α
′

h2
, β

′

h2
)U(α

′

h2−1, β
′

h2−1)...U(α
′

2, β
′

2)U(α
′

1, β
′

1)|ψh1〉

Our algorithm is divided into two stages. The purpose of the first stage is
to transfer the initial state to the uniform superposition state of the vertices
on the other side of the sender. In the first stage, only the sender is the marked
vertex. The purpose of the second stage is to transfer the uniform superposition
state of the vertices on the other side of the sender to the target state. In the
second stage, only the receiver is the marked vertex.

The analysis of the first stage and the second stage are shown in 3.1 and
3.2 respectively. The analysis of the fidelity of the quantum state transfer
algorithm is shown in 3.3.
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3.1 The first stage of the quantum state transfer

algorithm

In the first stage, only the sender is marked. Thus, the vertices can be divided
into three parts shown in Fig. 4: the sender denoted by s on the left side, the
other vertices denoted by u on the left side, and v on the right side. Therefore,
the analysis can be simplified in an invariant subspace with the orthogonal
basis {|e1〉, |e2〉, |e3〉, |e4〉} given below. The orthogonal basis is only used in
3.1.

|e1〉 =
1√
n

∑

v

|sv〉,

|e2〉 =
1√
n

∑

v

|vs〉,

|e3〉 =
1

√

n(m− 1)

∑

v,u

|vu〉,

|e4〉 =
1

√

n(m− 1)

∑

u,v

|uv〉.

. (13)

s

u

v

Fig. 4 Only the sender is marked in the first stage.

So the initial state can be denoted as |ψ0〉 = 1√
n

∑

v

|sv〉 = |e1〉 =

(1, 0, 0, 0)T . The target state of the first stage can be denoted as |Ψ〉 =
1√
mn

(
∑

v,u

|vu〉+∑

v

|vs〉) = 1√
m
|e2〉+

√
m−1√
m

|e3〉 = (0, 1√
m
,
√
m−1√
m

, 0)T .

The flip-flop shift operator S, the query oracle Q(β), and the coin operator
C(α) can be rewritten as

S =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, Q(β) =









eiβ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (14)
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and

C(α) =











−e−iα 0 0 0

0 (1−e−iα)(1−cos(ω))
2 − 1 (1−e−iα)sin(ω)

2 0

0 (1−e−iα)sin(ω)
2

(1−e−iα)(1+cos(ω))
2 − 1 0

0 0 0 −e−iα











, (15)

where cos(ω) = 1− 2
m
, sin(ω) = 2

m

√
m− 1.

In the first stage, we know

|ψh1〉 = SC(αh1)Q(βh1)SC(αh1−1)Q(βh1−1)...SC(α2)Q(β2)SC(α1)Q(β1)|ψ0〉.
(16)

The coin operator C(α) can be denoted as

C(α) = e−
iα
2 A(

π

2
)R(α)A(−π

2
), (17)

where

R(θ) = −











e−
iθ
2 0 0 0

0 e
iθ
2 0 0

0 0 e−
iθ
2 0

0 0 0 e−
iθ
2











, (18)

and

A(θ) =









1 0 0 0
0 cos(ω2 ) −ieiθsin(ω2 ) 0
0 −ie−iθsin(ω2 ) cos(ω2 ) 0
0 0 0 1









. (19)

The query oracle Q(β) can be denoted as

Q(β) = −e iβ
2 SR(β)S. (20)

And we find the equation

SB1SB2S = B2SB1, (21)

where B1 =
∏n1

i=0Di and B2 =
∏n2

i=0Di for Di ∈ A(θi), R(θi).
By using Eq. (17), Eq. (20), and Eq. (21), we obtain

|ψh1〉 ∼ R(βh1)A(
π

2
)R(αh1−1)A(−

π

2
)...R(β3)A(

π

2
)R(α2)A(−

π

2
)R(β1)S

A(
π

2
)R(αh1)A(−

π

2
)R(βh1−1)A(

π

2
)R(αh1−2)A(−

π

2
)...R(β2)A(

π

2
)R(α1)A(−

π

2
)|ψ0〉.

(22)
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R(θ) only adds a coefficient to the |ψ0〉, and A(θ) makes effect only on the
second and third dimensions of the |ψ0〉, so Eq. (22) can be simplified to

|ψh1〉 ∼ R(βh1)A(
π

2
)R(αh1−1)A(−

π

2
)...R(β3)A(

π

2
)R(α2)A(−

π

2
)S|ψ0〉. (23)

Then using A(α + β) = R(β)A(α)R(−β) and R(θ)R(−θ) = I, we obtain

|ψh1〉 ∼A(
π

2
+ βh1)A(−

π

2
+ βh1 + αh1−1)...A(

π

2
+ βh1 + αh1−1 + ...+ β3)

A(−π
2
+ βh1 + αh1−1 + ...+ β3 + α2)S|ψ0〉.

(24)
The purpose of the first stage is to transfer the state |ψ0〉 to the state |Ψ〉. The
state |Ψ〉 can be denoted as |Ψ〉 = A(π2 )S|e4〉. So the fidelity of the first stage is

F1 =|〈e4|SA(−
π

2
)A(

π

2
+ βh1)A(−

π

2
+ βh1 + αh1−1)...A(

π

2
+ βh1 + αh1−1 + ...+ β3)

A(−π
2
+ βh1 + αh1−1 + ...+ β3 + α2)S|ψ0〉|2.

(25)
There exists a set of parameters αi, βi, then the value of fidelity F1 will greater
than or equal to 1− ǫ1. It can be shown in theorem 1.

Theorem 1. Let βk = −αh1+2−k = −2arccot(tan( (k−1)π
h1

)
√

1− γ21) for k =

3, 5, 7..., h1, where γ1 = 1
cos( 1

h1
arccos( 1√

ǫ1
))
, and ensure h1 ≥ ln( 2√

ǫ1
)
√
m, then

the value of fidelity F1 will be greater than or equal to 1− ǫ1.

Proof. Let βk = −αh1+2−k for k = 3, 5, 7..., h1. So Eq. (25) can be rewritten as

F1 =|〈e4|SA(φh1
)A(φh1−1)A(φh1−2)...A(φ2)A(φ1)S|ψ0〉|2, (26)

where φk+1−φk = −π−βk+1 for k = 2, 4, 6, ..., h1−1 and φk+1−φk = π+βh1−k+1

for k = 1, 3, 5, ..., h1 − 2.
The formula SA(φh1

)A(φh1−1)A(φh1−2)...A(φ2)A(φ1)S|ψ0〉 in Eq.(26) can be
viewed as the operator SA(φh1

)A(φh1−1)A(φh1−2)...A(φ2)A(φ1)S applied to |ψ0〉.
So it can be divided into three steps as follows.

|ψ0〉 =









1
0
0
0









S−−→
1○









0
1
0
0









A(φh1
)A(φh1−1)A(φh1−2)...A(φ2)A(φ1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2○









0
bh1

(x)
ch1

(x)
0









S−−→
3○









bh1
(x)
0
0

ch1
(x)









In step 2○, the operator A(φh1
)A(φh1−1)A(φh1−2)...A(φ2)A(φ1) will be applied

to the state |µ0〉 = (0, b0, c0, 0)
T = (0, 1, 0, 0)T . Let |µk〉 = (0, bk, ck, 0)

T =
A(φk)|µk−1〉 for k = 1, 2, ..., h1.

Combined |µk〉 = A(φk)|µk−1〉 and |µk−2〉 = A(φk−1)
−1|µk−1〉, we obtain bk =

cos(ω2 )(1 + e−i(φk−1−φk))bk−1 − e−i(φk−1−φk)bk−2. So the recurrence formula of
bk(x) can be defined by b0(x) = 1, b1(x) = x and for k = 2, 3, 4, ..., h1,

bk(x) = x(1 + e
−i(φk−1−φk))bk−1(x)− e

−i(φk−1−φk)bk−2(x), (27)
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with x = cos(ω2 ).

Let βk = −2arccot(tan(
(k−1)π

h1
)
√

1− γ21) for k = 3, 5, 7..., h1, where γ1 =

1
cos( 1

h1
arccos( 1√

ǫ1
))
. So we have φk −φk+1 = (−1)kπ− 2arccot(tan(kπh1

)
√

1− γ21) for

k = 1, 2, ..., h1 − 1. By using lemma 1, we obtain

bh1
(x) =

Th1
( x
γ1

)

Th1
( 1
γ1

)
=

√
ǫ1Th1

(cos(
1

h1
arccos(

1√
ǫ1

))

√

1− 1

m
). (28)

So the fidelity of the first stage can be calculated as follow.

F1 = 1− |bh1
(x)|2 = 1− ǫ1T

2
h1

(cos(
1

h1
arccos(

1√
ǫ1

))

√

1− 1

m
) (29)

Let h1 ≥ ln( 2√
ǫ1
)
√
m. We know x ≥ tanh(x) for x ≥ 0, so we have

1

m
≥ tanh

2(
ln( 2√

ǫ1
)

h1
)>tanh2(

1

h1
ln(

1√
ǫ1

+

√

(
1√
ǫ1

)2 − 1)). (30)

Then using arccos(z) = 1
i ln(z +

√
z2 − 1) and tan(iz) = itanh(z), we obtain

tanh
2(

1

h1
ln(

1√
ǫ1

+

√

(
1√
ǫ1

)2 − 1)) = 1− cos
−2(

1

h1
arccos(

1√
ǫ1

)). (31)

So we have 1
m >1− cos−2( 1

h1
arccos( 1√

ǫ1
)). That is

cos(
1

h1
arccos(

1√
ǫ1

))

√

1− 1

m
<1. (32)

Then we can obtain F1 ≥ 1− ǫ1. �

Therefore, let βk = −αh1+2−k = −2arccot(tan( (k−1)π
h1

)
√

1− γ21) for k =

3, 5, 7..., h1, where γ1 = 1
cos( 1

h1
arccos( 1√

ǫ1
))
, and ensure h1 ≥ ln( 2√

ǫ1
)
√
m, the

initial state will be transferred to the uniform superposition state of the vertices
on the other side of the sender with the fidelity of at least 1− ǫ1.

3.2 The second stage of the quantum state transfer

algorithm

In the second stage, only the receiver is marked (shown in Fig. 5). Thus the
analysis can be simplified in an invariant subspace with the orthogonal basis
{|e1〉, |e2〉, |e3〉, |e4〉} given below. The orthogonal basis is only used in 3.2.

|e1〉 =
1√
n

∑

v

|rv〉,

|e2〉 =
1√
n

∑

v

|vr〉,

|e3〉 =
1

√

n(m− 1)

∑

v,u

|vu〉,

|e4〉 =
1

√

n(m− 1)

∑

u,v

|uv〉.

(33)
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r

u

v

Fig. 5 Only the receiver is marked in the second stage.

The flip-flop shift operator S1, the query oracle Q1(β), and the coin
operator C1(α) can be rewritten as

S1 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, Q1(β) =









eiβ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (34)

and

C1(α) =











−e−iα 0 0 0

0 (1−e−iα)(1−cos(ω1))
2 − 1 (1−e−iα)sin(ω1)

2 0

0 (1−e−iα)sin(ω1)
2

(1−e−iα)(1+cos(ω1))
2 − 1 0

0 0 0 −e−iα











,

(35)
where cos(ω1) = 1− 2

m
and sin(ω1) =

2
m

√
m− 1.

In the second stage, we have

|ψh2〉 = S1C1(α
′

h2
)Q1(β

′

h2
)S1C1(α

′

h2−1)Q1(β
′

h2−1)...S1C1(α
′

1)Q1(β
′

1)|ψh1〉.
(36)

The coin operator C1(α) can be denoted as

C1(α) = e−
iα
2 A1(

π

2
)R1(α)A1(−

π

2
), (37)

where

R1(θ) = −











e−
iθ
2 0 0 0

0 e
iθ
2 0 0

0 0 e−
iθ
2 0

0 0 0 e−
iθ
2











, (38)

and

A1(θ) =









1 0 0 0
0 cos(ω1

2 ) −ieiθsin(ω1

2 ) 0
0 −ie−iθsin(ω1

2 ) cos(ω1

2 ) 0
0 0 0 1









. (39)
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The query oracle Q1(β) can be denoted as

Q1(β) = −e iβ
2 S1R1(β)S1. (40)

And we find the equation

S1B1S1B2S1 = B2S1B1, (41)

where B1 =
∏n1

i=0Di, B2 =
∏n2

i=0Di for Di ∈ A1(θi), R1(θi).
By using Eq. (37), Eq. (40) and Eq. (41), we obtain

|ψh2〉 ∼R1(β
′

h2
)A1(

π

2
)R1(α

′

h2−1)A1(−
π

2
)...R1(β

′

3)A1(
π

2
)R1(α

′

2)A1(−
π

2
)R1(β

′

1)S1

A1(
π

2
)R1(α

′

h2
)A1(−

π

2
)R1(β

′

h2−1)A1(
π

2
)R1(α

′

h2−2)A1(−
π

2
)...

R1(β
′

4)A1(
π

2
)R1(α

′

3)A1(−
π

2
)R1(β

′

2)A1(
π

2
)R1(α

′

1)A1(−
π

2
)|ψh1〉.

(42)
The state |ψh1〉 can be rewritten as |ψh1〉 ≈ |Ψ〉 = A1(

π
2 )S1|e4〉. Then we

eliminate invalid A1(θ) and R1(θ). So Eq. (42) can be simplified to

|ψh2〉 ∼S1A1(
π

2
)R1(α

′

h2
)A1(−

π

2
)R1(β

′

h2−1)A1(
π

2
)R1(α

′

h2−2)A1(−
π

2
)...

R1(β
′

4)A1(
π

2
)R1(α

′

3)A1(−
π

2
)R1(β

′

2)A1(
π

2
)S1|e4〉.

(43)

Then using A1(α+ β) = R1(β)A1(α)R1(−β) and R1(θ)R1(−θ) = I, we have

|ψh2〉 ∼S1A1(
π

2
)A1(−

π

2
+ α

′

h2
)A1(

π

2
+ α

′

h2
+ β

′

h2−1)...

A1(−
π

2
+ α

′

h2
+ β

′

h2−1 + ...+ β
′

4 + α
′

3)A1(
π

2
+ α

′

h2
+ β

′

h2−1 + ...+ β
′

2)S1|e4〉.
(44)

The target state of the second stage can be denoted as |target〉 = 1√
n

∑

v

|rv〉 =

|e1〉 = (1, 0, 0, 0)T . So the fidelity of the second stage is

F2 =|〈e1|S1A1(
π

2
)A1(−

π

2
+ α

′

h2
)A1(

π

2
+ α

′

h2
+ β

′

h2−1)...

A1(−
π

2
+ α

′

h2
+ β

′

h2−1 + ...+ β
′

4 + α
′

3)A1(
π

2
+ α

′

h2
+ β

′

h2−1 + ...+ β
′

2)S1|e4〉|2.
(45)

There exists a set of parameters α
′

i, β
′

i , then the value of fidelity F2 will greater
than or equal to 1− ǫ2. It can be shown in theorem 2.

Theorem 2. Let α
′

k = −β′

h2+2−k = 2arccot(tan( (k−1)π
h2

)
√

1− γ22) for k =

3, 5, 7..., h2, where γ2 = 1
cos( 1

h2
arccos( 1√

ǫ2
))

, and ensure h2 ≥ ln( 2√
ǫ2
)
√
m, then

the value of fidelity F2 ≥ 1− ǫ2.
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Proof. Let α
′

k = −β
′

h2+2−k for k = 3, 5, 7..., h2. So Eq. (45) can be rewritten as

F2 = |〈e1|S1A1(ηh2
)A1(ηh2−1)A1(ηh2−2)...A1(η2)A1(η1)S1|e4〉|2, (46)

where ηk+1 − ηk = π−α
′

k+1 for k = 2, 4, 6, ..., h2 − 1 and ηk+1 − ηk = −π+α
′

h−k+1
for k = 1, 3, 5, ..., h2 − 2.

The formula S1A1(ηh2
)A1(ηh2−1)A1(ηh2−2)...A1(η2)A1(η1)S1|e4〉 in Eq. (46)

can be viewed as the operator S1A1(ηh2
)A1(ηh2−1)A1(ηh2−2)...A1(η2)A1(η1)S1

applied to |e4〉. So it can be divided into three steps as follows.








0
0
0
1









S1−−→
1○









0
0
1
0









A1(ηh2
)A1(ηh2−1)A1(ηh2−2)...A1(η2)A1(η1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2○









0
bh2

(x)
ch2

(x)
0









S1−−→
3○









bh2
(x)
0
0

ch2
(x)









Then after calculations in step 2○ like in the proof of theorem 1, the recurrence
formula of ck(x) can be defined by c0(x) = 1, c1(x) = x and for k = 2, 3, 4, ..., h2,

ck(x) = x(1 + e
−i(ηk−ηk−1))ck−1(x)− e

−i(ηk−ηk−1)ck−2(x), (47)

with x = cos(ω1
2 ).

Let α
′

k = 2arccot(tan(
(k−1)π

h2
)
√

1− γ22) for k = 3, 5, 7..., h2, where γ2 =

1
cos( 1

h2
arccos( 1√

ǫ2
))
. Then we get ηk+1 − ηk = (−1)kπ − 2arccot(tan(kπh )

√

1− γ22).

By using lemma 1, we obtain

ch2
(x) =

Th2
( x
γ2

)

Th2
( 1
γ2

)
=

√
ǫ2Th2

(cos(
1

h2
arccos(

1√
ǫ2

))

√

1− 1

m
). (48)

So the fidelity of the second stage can be calculated as follow.

F2 = 1− |ch2
(x)|2 = 1− ǫ2T

2
h2

(cos(
1

h2
arccos(

1√
ǫ2

))

√

1− 1

m
) (49)

Let h2 ≥ ln( 2√
ǫ2
)
√
m. Similar to the proof of the theorem 1, we obtain F2 ≥ 1− ǫ2.

�

Therefore, let α
′

k = −β′

h2+2−k = 2arccot(tan( (k−1)π
h2

)
√

1− γ22) for k =

3, 5, 7..., h2, where γ2 = 1
cos( 1

h2
arccos( 1√

ǫ2
))

, and ensure h2 ≥ ln( 2√
ǫ2
)
√
m, the

uniform superposition state of the vertices on the other side of the sender will
be transferred to the target state with the fidelity of at least 1− ǫ2.

3.3 The fidelity of the quantum state transfer algorithm

Since the sender and receiver are in the same partition of the complete bipartite
graph (shown in Fig. 6), the analysis of the algorithm can be simplified in
an invariant subspace with the orthogonal basis {|e1〉, |e2〉, |e3〉, |e4〉, |e5〉, |e6〉}
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given below. the orthogonal basis is only used in 3.3.

|e1〉 =
1√
n

∑

v

|sv〉,

|e2〉 =
1√
n

∑

v

|vs〉,

|e3〉 =
1√
n

∑

v

|rv〉,

|e4〉 =
1√
n

∑

v

|vr〉,

|e5〉 =
1

√

n(m− 2)

∑

u,v

|uv〉,

|e6〉 =
1

√

n(m− 2)

∑

v,u

|vu〉.

. (50)

s

u

v

r

Fig. 6 The sender and the receiver are in the same partition.

From the analysis of the first stage in 3.1, we know
SA(φh1)A(φh1−1)...A(φ2)A(φ1)S|ψ0〉 = (bh1(x), 0, 0, ch1(x))

T where φh1 =
−π

2 . And we know |ψh1〉 ∼ A(φh1−1)A(φh1−2)...A(φ2)A(φ1)S|ψ0〉. So we can

obtain |ψh1〉 ∼ (0,
√

m−1
m

bh1(x) +
1√
m
ch1(x),− 1√

m
bh1(x) +

√

m−1
m

ch1(x), 0)
T .

So in the new basis, the state |ψh1〉 can be rewritten as

|ψh1〉 ∼ t1|Ψ〉+ t2|e2〉, (51)

where t1 = ch1(x) − 1√
m−1

bh1(x), t2 =
√
m√

m−1
bh1(x), and |Ψ〉 = 1√

m
|e2〉 +

1√
m
|e4〉+

√
m−2√
m

|e6〉. |Ψ〉 denotes the target state of the first stage.

In the second stage, we have

|ψh2〉 ∼ t1U2|Ψ〉+ t2U2|e2〉, (52)

where U2 denotes the evolution operators of the second stage.
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Let t1U2|Ψ〉 = (f1, 0, f3, 0, f5, 0)
T and t2U2|e2〉 = (g1, 0, g3, 0, g5, 0)

T , where
|f1|2 + |f3|2 + |f5|2 = |t1|2 and |g1|2 + |g3|2 + |g5|2 = |t2|2. And we can obtain
the following equation.

|f1 + g1|2 + |f3 + g3|2 + |f5 + g5|2 = 1 (53)

The target state of the algorithm is |e3〉. So the fidelity of the algorithm
can be denoted as

F =
∣

∣f3 + g3
∣

∣

2
. (54)

From Eq. (53) and Eq. (54), we can obtain

F = 1−
∣

∣f1 + g1
∣

∣

2 −
∣

∣f5 + g5
∣

∣

2
. (55)

By using |x+ y| ≤ ||x|+ |y||, we can obtain

F ≥ 1−
∣

∣f1
∣

∣

2 −
∣

∣g1
∣

∣

2 − 2
∣

∣f1
∣

∣

∣

∣g1
∣

∣−
∣

∣f5
∣

∣

2 −
∣

∣g5
∣

∣

2 − 2
∣

∣f5
∣

∣

∣

∣g5
∣

∣. (56)

From 3.2, we know
∣

∣f1
∣

∣

2
+
∣

∣f5
∣

∣

2
<ǫ2. And we know

∣

∣g1
∣

∣

2
+
∣

∣g5
∣

∣

2 ≤ |t2|2 ≤ 2ǫ1.

Then we obtain
∣

∣f1
∣

∣

∣

∣g1
∣

∣ +
∣

∣f5
∣

∣

∣

∣g5
∣

∣ ≤
√

(
∣

∣f1
∣

∣

2
+
∣

∣f5
∣

∣

2
)(
∣

∣g1
∣

∣

2
+
∣

∣g5
∣

∣

2
)<

√
2ǫ1ǫ2.

So we have
F>1− ǫ2 − 2ǫ1 − 2

√
2
√
ǫ1ǫ2. (57)

From Eq. (57), we know that the fidelity will be close to 1 when ǫ1 and ǫ2
are small. For instance, let ǫ1 be 0.01 and ǫ2 be 0.01. From Eq. (57), we know
the fidelity will be greater than 0.94 regardless of the value of m and n. The
simulation results of the algorithm are shown in Fig. 7. The fidelity is bigger
than 0.98 at a certain range ofm and n when ǫ1 = 0.01 and ǫ2 = 0.01. It further
verifies that the quantum state transfer algorithm can achieve high fidelity.

Fig. 7 The fidelity of the quantum state transfer algorithm with ǫ1 = 0.01, ǫ2 = 0.01 when
the sender and receiver are in the same partition.
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4 Sender and receiver in different partitions

In this section, we propose the quantum state transfer algorithm when the
sender and receiver are in different partitions. As shown in Fig. 8, the sender
is on the left side of the complete bipartite graph and the receiver is on the
right side of it. The left side of the complete bipartite graph has m vertices
and the right side of it has n vertices.

s

r

Fig. 8 The sender is on the left side of the complete bipartite graph and the receiver is on
the right side of it.

Our algorithm is as follows.

Algorithm 2 Quantum state transfer algorithm (the sender and receiver in
different partitions)

Input: the initial state|ψ0〉, parameters ǫ1 and ǫ2.

First stage:

Initialization:

Let h1 be an odd integer and ensure h1 ≥ ln( 2√
ǫ1
)
√
m.

Let βk = −αh1+2−k = −2arccot(tan( (k−1)π
h1

)
√

1− γ21) for k =

3, 5, 7, ..., h1, where γ1 = 1
cos( 1

h1
arccos( 1√

ǫ1
))
. The other αi and βi can be any

value.
Perform the evolution operators:

|ψh1〉 = U(αh1 , βh1)U(αh1−1, βh1−1)...U(α2, β2)U(α1, β1)|ψ0〉
Second stage:

Initialization:

Let h2 be an even integer and ensure h2 ≥ ln( 2√
ǫ2
)
√
n.

Let α
′

k = −β′

h2+2−k = 2arccot(tan( kπ
h2+1 )

√

1− γ22) for k =

2, 4, 6, ..., h2, where γ2 = 1
cos( 1

(h2+1)arccos(
1√
ǫ2

))
. The other α

′

i and β
′

i can be

any value.
Perform the evolution operators:

|ψh2〉 = U(α
′

h2
, β

′

h2
)U(α

′

h2−1, β
′

h2−1)...U(α
′

2, β
′

2)U(α
′

1, β
′

1)|ψh1〉
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Our algorithm is divided into two stages. The purpose of the first stage is
to transfer the initial state to the uniform superposition state of the vertices
on the other side of the sender. In the first stage, only the sender is the marked
vertex. And the second stage is to transfer the uniform superposition state of
the vertices on the other side of the sender to the target state. In the second
stage, only the receiver is the marked vertex.

The analysis of the first stage and the second stage are shown in 4.1 and
4.2 respectively. The analysis of the fidelity of the quantum state transfer
algorithm is shown in 4.3.

4.1 The first stage of the quantum state transfer

algorithm

The first stage of the quantum state transfer algorithm is the same when the
sender and receiver are in the same partition or different partitions. Therefore,
the analysis of the first stage can be viewed in section 3.1.

4.2 The second stage of the quantum state transfer

algorithm

In the second stage, only the receiver is marked (shown in Fig. 9). Thus the
analysis can be simplified in an invariant subspace with the orthogonal basis
{|e1〉, |e2〉, |e3〉, |e4〉} given below. The orthogonal basis is only used in 4.2.

|e1〉 =
1√
m

∑

v

|rv〉,

|e2〉 =
1√
m

∑

u

|ur〉,

|e3〉 =
1

√

m(n− 1)

∑

u,v

|uv〉,

|e4〉 =
1

√

m(n− 1)

∑

v,u

|vu〉.

(58)

r

u

v

Fig. 9 Only the receiver is marked in the second stage.
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The flip-flop shift operator S2, the query oracleQ2(β) and the coin operator
C2(α) can be rewritten as

S2 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, Q2(β) =









eiβ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (59)

and

C2(α) =











−e−iα 0 0 0

0 (1−e−iα)(1−cos(ω2))
2 − 1 (1−e−iα)sin(ω2)

2 0

0 (1−e−iα)sin(ω2)
2

(1−e−iα)(1+cos(ω2))
2 − 1 0

0 0 0 −e−iα











,

(60)
where cos(ω2) = 1− 2

n
and sin(ω2) =

2
n

√
n− 1.

In the second stage, we know

|ψh2〉 = S2C2(α
′

h2
)Q2(β

′

h2
)S2C2(α

′

h2−1)Q2(β
′

h2−1)...S2C2(α
′

1)Q2(β
′

1)|ψh1〉.
(61)

The coin operator C2(α) can be denoted as

C2(α) = e−
iα
2 A2(−

π

2
)R2(α)A2(

π

2
), (62)

where

R2(θ) = −











e−
iθ
2 0 0 0

0 e
iθ
2 0 0

0 0 e−
iθ
2 0

0 0 0 e−
iθ
2











, (63)

and

A2(θ) =









1 0 0 0
0 cos(ω2

2 ) −ieiθsin(ω2

2 ) 0
0 −ie−iθsin(ω2

2 ) cos(ω2

2 ) 0
0 0 0 1









. (64)

The query oracle Q2(β) can be denoted as

Q2(β) = −e iβ
2 S2R2(β)S2. (65)

And we find the equation

S2B1S2B2S2 = B2S2B1, (66)

where B1 =
∏n1

i=0Di, B2 =
∏n2

i=0Di, for Di ∈ A2(θi), R2(θi).
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Then by using Eq. (62), Eq. (65) and Eq. (66), we have

|ψh2〉 ∼S2A2(
π

2
)R2(α

′

h2
)A2(−

π

2
)R2(β

′

h2−1)A2(
π

2
)R2(α

′

h2−2)A2(−
π

2
)...

R2(β
′

5)A2(
π

2
)R2(α

′

4)A2(−
π

2
)R2(β

′

3)A2(
π

2
)R2(α

′

2)A2(−
π

2
)R2(β

′

1)

S2R2(β
′

h2
)A2(

π

2
)R2(α

′

h2−1)A2(−
π

2
)...R2(β

′

2)A2(
π

2
)R2(α

′

1)A2(−
π

2
)|ψh1〉,
(67)

where h2 is an even integer.
The state |ψh1〉 can be rewritten as |ψh1〉 ≈ |Ψ〉 = S2A2(

π
2 )|e3〉. Then we

eliminate invalid A2(θ) and R2(θ). So Eq. (67) can be simplified to

|ψh2〉 ∼S2A2(
π

2
)R2(α

′

h2
)A2(−

π

2
)R2(β

′

h2−1)A2(
π

2
)R2(α

′

h2−2)A2(−
π

2
)...

R2(β
′

5)A2(
π

2
)R2(α

′

4)A2(−
π

2
)R2(β

′

3)A2(
π

2
)R2(α

′

2)A2(−
π

2
)R2(β

′

1)A2(
π

2
)|e3〉.

(68)
Then by using A2(α + β) = R2(β)A2(α)R2(−β) and R2(θ)R2(−θ) = I, we
obtain

|ψh2〉 ∼S2A2(
π

2
)A2(−

π

2
+ α

′

h2
)A2(

π

2
+ α

′

h2
+ β

′

h2−1)...

A2(−
π

2
+ α

′

h2
+ β

′

h2−1 + ...+ α2)A2(
π

2
+ α

′

h2
+ β

′

h2−1 + ...+ α2 + β1)|e3〉.
(69)

The target state of the second stage is |target〉 = 1√
m

∑

v

|rv〉 = |e1〉. So the

fidelity of the second stage can be calculated as follow.

F2 = |〈e1|S2A2(
π

2
)A2(−

π

2
+ α

′

h2
)A2(

π

2
+ α

′

h2
− α

′

2)...A2(−
π

2
+ α

′

h2
)A2(

π

2
)|e3〉|2

(70)
There exists a set of parameters α

′

i, β
′

i , then the value of fidelity F2 will greater
than or equal to 1− ǫ2. It can be shown in theorem 3.

Theorem 3. Let α
′

k = −β′

h2+1−k = 2arccot(tan( kπ
h2+1 )

√

1− γ22), for k =

2, 4, 6, ..., h2, where γ2 = 1
cos( 1

(h2+1)arccos(
1√
ǫ2

))
, and ensure h2 ≥ ln( 2√

ǫ2
)
√
n−

1, then the value of fidelity F2 ≥ 1− ǫ2.

Proof. Let β
′

i = −α
′

h2+1−i, for i = 1, 3, 5, ..., h2 − 1. So Eq.(70) can be rewritten as

F2 = |〈e1|S2A2(ζh2+1)A2(ζh2
)A2(ζh2−1)...A2(ζ2)A2(ζ1)|e3〉|2, (71)

where ζk+1 − ζk = π − α
′

k for k = 2, 4, 6, ..., h2 and ζk+1 − ζk = −π + α
′

h2−k+1 for
k = 1, 3, 5, ..., h2 − 1.

The formula S2A2(ζh2+1)A2(ζh2
)A2(ζh2−1)...A2(ζ2)A2(ζ1)|e3〉 in Eq. (71) can

be viewed as the operator S2A2(ζh2+1)A2(ζh2
)A2(ζh2−1)...A2(ζ2)A2(ζ1) applied to
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|e3〉. So it can be divided into two steps as follow.








0
0
1
0









A2(ζh2+1)A2(ζh2
)A2(ζh2−1)...A2(ζ2)A2(ζ1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1○









0
bh2+1(x)
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Then after calculations like the proof of the theorem 1, the recurrence formula
of ck(x) can be defined by c0(x) = 1, c1(x) = x and for k = 2, 3, 4, ..., h2 + 1,

ck(x) = x(1 + e
−i(ζk−ζk−1))ck−1(x)− e

−i(ζk−ζk−1)ck−2(x), (72)

with x = cos(ω2
2 ).

Let α
′

k = 2arccot(tan( kπ
h2+1 )

√

1− γ22), for k = 2, 4, 6, ..., h2, where γ2 =

1
cos( 1

(h2+1)
arccos( 1√

ǫ2
))
. So we have ζk+1− ζk = (−1)kπ−2arctan(tan(kπ

h2
)
√

1− γ22).

By using lemma 1, we obtain

ch2+1(x) =
Th2+1(

x
γ2

)

Th2+1(
1
γ2

)
=

√
ǫ2Th2+1(cos(

1

(h2 + 1)
arccos(

1√
ǫ2

))

√

1− 1

n
). (73)

So the fidelity of the second stage can be calculated as follow.

F2 = 1− |ch2+1(x)|2 = 1− ǫ2T
2
h2+1(cos(

1

h2 + 1
arccos(

1√
ǫ2

))

√

1− 1

n
) (74)

Let h2 ≥ ln( 2√
ǫ2
)
√
n−1. Similar to the proof of the theorem 1, we have F2 ≥ 1− ǫ2.

�

Therefore, let α
′

k = −β′

h2+1−k = 2arccot(tan( kπ
h2+1 )

√

1− γ22), for k =

2, 4, 6, ..., h2, where γ2 = 1
cos( 1

(h2+1)
arccos( 1√

ǫ2
))
, and ensure h2 ≥ ln( 2√

ǫ2
)
√
n−1,

the uniform superposition state of the vertices on the other side of the sender
will be transferred to the receiver with the fidelity of at least 1− ǫ2.

4.3 The fidelity of the quantum state transfer algorithm

Since the sender and receiver are in different partitions of the com-
plete bipartite graph(shown in Fig. 10), the analysis of the algorithm
can be simplified in an invariant subspace with the orthogonal basis
{|e1〉, |e2〉, |e3〉, |e4〉, |e5〉, |e6〉, |e7〉, |e8〉} given below. The orthogonal basis is
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only used in 4.3.
|e1〉 = |sr〉,
|e2〉 = |rs〉,

|e3〉 =
1√
n− 1

∑

v

|sv〉,

|e4〉 =
1√
n− 1

∑

v

|vs〉,

|e5〉 =
1√
m− 1

∑

u

|ur〉,

|e6〉 =
1√
m− 1

∑

u

|ru〉.

|e7〉 =
1

√

(m− 1)(n− 1)

∑

u,v

|uv〉,

|e8〉 =
1

√

(m− 1)(n− 1)

∑

v,u

|vu〉.

. (75)

s

u v

r

Fig. 10 The sender and the receiver are in different partitions.

From the analysis of the first stage in 3.1, we can obtain |ψh1〉 ∼
(0,

√

m−1
m

bh1(x) +
1√
m
ch1(x),− 1√

m
bh1(x) +

√

m−1
m

ch1(x), 0)
T . So in the new

basis, the state |ψh1〉 can be rewritten as

|ψh1〉 ∼ t1|Ψ〉+ t2|e2〉+
√
n− 1t2|e4〉, (76)

where t1 = ch1(x) − 1√
m−1

bh1(x), t2 =
√

m
n(m−1)bh1(x) and |Ψ〉 = 1√

m
|e2〉 +

1√
m
|e4〉+

√
m−2√
m

|e6〉. |Ψ〉 denotes the target state of the first stage.

So in the second stage, we have

|ψh2〉 ∼ t1U2|Ψ〉+ t2U2|e2〉+
√
n− 1t2U2|e4〉, (77)

where U2 denotes the evolution operators of the second stage.
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Let t1U2|Ψ〉 = (0, f2, 0, f4, 0, f6, 0, f8)
T , t2U2|e2〉 = (0, g2, 0, g4, 0, g6, 0, g8)

T

and
√
n− 1t2U2|e4〉 = (0, l2, 0, l4, 0, l6, 0, l8)

T . So we can obtain



















|f2|2 + |f4|2 + |f6|2 + |f8|2 = |t1|2,
|g2|2 + |g4|2 + |g6|2 + |g8|2 = |t2|2,
|l2|2 + |l4|2 + |l6|2 + |l8|2 = (n− 1)|t2|2,
|f2 + g2 + l2|2 + |f4 + g4 + l4|2 + |f6 + g6 + l6|2 + |f8 + g8 + l8|2 = 1.

(78)

The target state of the algorithm is 1√
m
|e2〉+

√
m−1√
m

|e6〉. So the fidelity of

the algorithm can be denoted as

F =
∣

∣

1√
m
(f2 + g2 + l2) +

√
m− 1√
m

(f6 + g6 + l6)
∣

∣

2
. (79)

From 4.2, we know f6 =
√
m− 1f2. So we can obtain

F ≥ |f2 + g2 + l2|2 + |f6 + g6 + l6|2 − |g2|2 − |l2|2 − |g6|2 − |l6|2 − 2|g2||l2| − 2|g6||l6|.
(80)

Then by using Eq. (78), we have

F ≥ 1− |f4 + g4 + l4|2 − |f8 + g8 + l8|2 − |g2|2 − |l2|2 − |g6|2 − |l6|2 − 2|g2||l2| − 2|g6||l6|.
(81)

By using |x+ y| ≤ ||x|+ |y||, we obtain

F ≥1− (|f4|2 + |f8|2)− (|g2|2 + |g4|2 + |g6|2 + |g8|2 + |l2|2 + |l4|2 + |l6|2 + |l8|2)
− 2(|f4||g4|+ |f8||g8|+ |f4||l4|+ |f8||l8|+ |g2||l2|+ |g4||l4|+ |g6||l6|+ |g8||l8|).

(82)
From 4.2, we know |f4|2 + |f8|2 ≤ |t1|2ǫ2<ǫ2. From Eq. (78), we have

|g2|2 + |g4|2 + |g6|2 + |g8|2 + |l2|2 + |l4|2 + |l6|2 + |l8|2 = n|t2|2 ≤ 2ǫ1.
We know |f4||g4| + |f8||g8| ≤

√

(|f4|2 + |f8|2)(|g4|2 + |g8|2)<
√
ǫ1ǫ2.

We also have |f4||l4| + |f8||l8| ≤
√

(|f4|2 + |f8|2)(|l4|2 + |l8|2)<
√
2ǫ1ǫ2.

And we have |g2||l2| + |g4||l4| + |g6||l6| + |g8||l8| ≤
√

(|g2|2 + |g4|2 + |g6|2 + |g8|2)(|l2|2 + |l4|2 + |l6|2 + |l8|2)<
√
2ǫ1.

So we obtain

F>1− (2 + 2
√
2)ǫ1 − ǫ2 − (2 + 2

√
2)
√
ǫ1ǫ2. (83)

From Eq. (83), we know that the fidelity will be close to 1 when ǫ1 and ǫ2
are small. For instance, let ǫ1 be 0.01 and ǫ2 be 0.01. From Eq. (83), we know
the fidelity will be greater than 0.89 regardless of the value of m and n. The
simulation results of the algorithm are shown in Fig. 11. The fidelity is bigger
than 0.98 at a certain range ofm and n when ǫ1 = 0.01 and ǫ2 = 0.01. It further
verifies that the quantum state transfer algorithm can achieve high fidelity.
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Fig. 11 The fidelity of the quantum state transfer algorithm with ǫ1 = 0.01 and ǫ2 = 0.01
when the sender and receiver are in different partitions.

5 Conclusions

In this paper, we propose a high-fidelity quantum state transfer algorithm on
the complete bipartite graph. The algorithm is divided into two stages. The
first stage is to transfer the initial state to the uniform superposition state of
the vertices on the other side of the sender. The second stage is to transfer the
uniform superposition state of the vertices on the other side of the sender to the
target state. The two stages are both achieved by using the generalized Grover
walks with one marked vertex. The coin operators of the generalized Grover
walks and the query oracles are parametric unitary matrices that changed with
time.

Through analysis, it is found that in the first stage, the initial state is
transferred to the uniform superposition state of the vertex on the other side
of the sender with the fidelity of at least 1 − ǫ1. In the second stage, the
uniform superposition state of the vertices on the other side of the sender is
transferred to the target state with the fidelity of at least 1 − ǫ2. We prove
that the fidelity of the algorithm is greater than 1 − 2ǫ1 − ǫ2 − 2

√
2
√
ǫ1ǫ2 or

1− (2+2
√
2)ǫ1 − ǫ2− (2+2

√
2)
√
ǫ1ǫ2 when the sender and receiver are in the

same partition or different partitions. ǫ1 and ǫ2 are chosen from (0, 1]. When
ǫ1 and ǫ2 are small, the fidelity of the algorithm will be close to 1.

Consequently, the algorithm can achieve high-fidelity quantum state trans-
fer when the sender and receiver are located in the same partition or different
partitions of the complete bipartite graph. Moreover, the algorithm can achieve
high-fidelity quantum state transfer on complete bipartite graphs of various
sizes. Compared to the previous algorithms, the advantage of the algorithm is it
works in any case because high-fidelity quantum state transfer can be achieved
by adjusting the parameters of the coin operators and the query oracles. The
algorithm provides a novel method for achieving high-fidelity quantum state
transfer on the complete bipartite graph, which will offer potential applications
for quantum information processing.
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