
qLEET: Visualizing Loss Landscapes, Expressibility, Entangling power and Training
Trajectories for Parameterized Quantum Circuits

Utkarsh Azad∗ and Animesh Sinha†

Center for Computational Natural Sciences and Bioinformatics,
International Institute of Information Technology, Hyderabad.

Center for Quantum Science and Technology,
International Institute of Information Technology, Hyderabad.

(Dated: June 28, 2023)

We present qLEET, an open-source Python package for studying parameterized quantum circuits
(PQCs), which are widely used in various variational quantum algorithms (VQAs) and quantum
machine learning (QML) algorithms. qLEET enables computation of properties such as expressibil-
ity and entangling power of a PQC by studying its entanglement spectrum and the distribution of
parameterized states produced by it. Furthermore, it allows users to visualize the training trajecto-
ries of PQCs along with high-dimensional loss landscapes generated by them for different objective
functions. It supports quantum circuits and noise models built using popular quantum computing
libraries such as Qiskit, Cirq, and Pyquil. In our work, we demonstrate how qLEET provides op-
portunities to design and improve hybrid quantum-classical algorithms by utilizing intuitive insights
from the ansatz capability and structure of the loss landscape.

Keywords: Quantum Computing, Quantum Software, Parameterized Quantum Circuits, Hybrid Quantum-
Classical Algorithms

I. INTRODUCTION

Recent advances in the field of quantum technologies
have led to the development of near-term quantum hard-
ware, more popularly referred to as noisy intermediate-
scale quantum (NISQ) devices [1, 2]. Unfortunately, due
to restrictive qubit connectivity, imperfect qubit control,
and minimal error correction, their computation capabil-
ities are limited to executing only low depth algorithms
[3]. For this reason, these devices are supposedly used
as accelerators for their classical counterparts instead of
stand-alone devices themselves. This has led to the devel-
opment of hybrid quantum-classical (HQC) algorithms,
which use both quantum and classical hardware either it-
eratively or sequentially. The problems are decomposed
into classically tractable and intractable parts in such a
setup, where the latter is solved using the quantum pro-
cessor [4].

Parameterized quantum circuits (PQCs) are one of the
fundamental components of these algorithms [5]. They
are responsible for evolving the qubits system to a state

which is dependent on the series of parameters (θ⃗) pro-
vided by a classical processor and the objective function
from some initial state |ψ0⟩. The initial state of the qubit
system here could either be ground state |0 . . . 0⟩, or some
other particular state such as Hartree-Fock state |ψ⟩HF
as in the case of electronic structure problems. The PQC

(U(θ⃗)) is also popularly referred to as ansatz [5]. Their
structure dramatically affects the performance of HQCs
as they influence both the (i) convergence speed, i.e., the
number of quantum-classical feedback iterations, and (ii)

∗ utkarsh.azad@research.iiit.ac.in; Corresponding Author
† animesh.sinha@research.iiit.ac.in

closeness of the final state (|ψ(θ⃗)⟩) to a state that opti-

mally solves the problem (|ψ(θ⃗∗)⟩), i.e., the overlap or

the fidelity (F = |⟨ψ(θ⃗)|ψ(θ⃗∗)⟩|2) [6] between the final
state and the target state.

Therefore, it becomes imperative to design optimal
PQCs for a given problem. However, this is not straight-
forward because their design depends not only on the
problem instances themselves but also on the quantum
hardware that executes them. After all, some essential
properties like depth of circuit post compilation depend
on the hardware’s topology and the supported native
gates. Overall, there exist three main classes of ansätze:
(i) problem-inspired ansatz, where the evolutions of gen-
erators derived from properties of the given system are
used to construct the PQCs [7], (ii) hardware-efficient
ansatz, where a minimal set of quantum gates native to
a given device are used to construct the PQCs [8], and
(iii) adaptive ansatz, which is midway between the for-
mer two ansätze [9]. Using these three classes, one can
develop numerous ansatz designs for any given problem.
However, to finally choose one, we need to have insights
from the problems and a concrete strategy to compare
their performances.

In this work, we present a python library called qLEET
[10], [11]. The primary motivation behind the develop-
ment of qLEET stems from this need to have a framework
for analyzing the capabilities of parameterized quantum
circuits and comparing their performances. It does so
by allowing users to study various properties related to
the behavior of PQCs and assess their effectiveness for
a given problem instance. In particular, it will enable
visualization of the loss landscape of a PQC for a given
objective function and its training trajectory in the pa-
rameter space. Furthermore, it allows the calculation of
some essential properties of PQCs, such as their express-

ar
X

iv
:2

20
5.

02
09

5v
2

 [
qu

an
t-

ph
]

 2
6

Ju
n

20
23

2

CircuitDescriptor

circuit (cirq, qiskit, pyquil)

parameter symbols

loss functions

convert across backends

MetricSpec

from samples

from state vector

from density matrix

from circuit

qleet.interface

MetaLogger

PQCTrainer

CircuitDescriptor

train

evaluate

CircuitSimulator

CircuitDescriptor

NoiseModel

simulate

qleet.simulators

tutorials

qleet.examples

loss_landscape

PQCSimulatedTrainer

MetricSpecifier

scan

random_subspace

plot

log

qleet.analyzers

log

plot

LossLandscapePlotter

entanglement

EntanglementCapability

CircuitDescriptor

CircuitSimulator

NoiseModel

entanglement_capability

entanglement_measure

training_path

OptimizationPathPlotter

PQCSimulatedTrainer

histogram

ParameterHistograms

CircuitDescriptor

PQCSimulatedTrainer

simulate

plot

entanglement_spectrum

EntanglementSpectrum

CircuitDescriptor

CircuitSimulator

NoiseModel

entanglement_spectrum

plot

expressibility

Expressibility

CircuitDescriptor

CircuitSimulator

plot

expressibility

NoiseModel

qleet

FIG. 1: The architecture stack for qLEET: Each block directed from qLEET represents a module. For the analyzers
and simulators modules, each sub-block represents a submodule with class objects defined and used them (camel
case) and function methods provided by them (underlined). For the interface module, each block represents the class
objects defined in it (camel case header) and contains succinct description of their inputs and outputs.

ibility and entangling power [12]. It is integrable with
other popular libraries such as Qiskit [13], Cirq [14], or
PyQuil [15] and also supports instruction-set languages
like OpenQASM [16] and Quil [15].

Structure - In Sec. II we present an overview of the
architecture stack of qLEET. Then in Sec. III A and
Sec. IV, we demonstrate the use of qLEET in the con-
text of analyzing training of PQCs and mitigating the
challenges associated with them. Finally, in Sec. V, we
conclude with a discussion about our current limitation
and possible future extensions of this work.

II. OVERVIEW

All the functionalities present in qLEET are grouped
under four modules, which reside under the top-level
module called qleet. Each such module provides modu-

larity in feature development and interacts with one an-
other via a specified workflow or API. We present the
complete architecture stack for qLEET in Fig. 1, listing
down the following modules and identifying the interac-
tions within them:

1. Interface module: qleet.interface serves as
the interface for users to build workflow of the vari-
ational computation by specifying the parameter-
ized quantum circuit (PQC) along with its key com-
ponents like symbolic placeholders for variational

parameters (θ⃗), an objective or a cost function (C)
as an observable in Pauli basis and some metrics
for evolving the circuit to the final state defined by
MetricSpec. It also contains CircuitDescriptor,
which allows for the building of PQC using any
supported framework, therefore making the com-
putation software agnostic, and MetaLogger, which

3

maintains the record for events that happen during
qLEET’s execution.

2. Simulators module: qleet.simulator contains
the simulation engine for performing the compu-
tation. Depending upon the type of workflow
you want to execute, you can choose between
PQCTrainer and CircuitSimulator for running
training routing and for performing standalone cir-
cuit simulation, respectively. At this stage, you
may also describe the simulation environment for
the computation by providing a noise model for the
system.

3. Analyzers module: qleet.analyzers per-
forms execution of CircuitDescriptor object us-
ing PQCTrainer or CircuitSimulator functions
present in the qleet.simulator module. There-
fore, qleet.analyzers acts as a linkage between
the previous two modules and is responsible for esti-
mating various essential properties regarding PQC.
These include loss landscape and training trajec-
tory calculation or histogram prediction for vari-
ational computation and expressibility, entangling
power and entanglement spectrum calculations for
a given ansatz structure. This module also offers
plotting functionality for some of these features.

4. Example module: qleet.examples contains ba-
sic set of introductory tutorials and predefined tem-
plates for users to get started with using qLEET
and contribute to it. These include examples of
using qleet.analyzers for various kinds of calcu-
lations, as mentioned before.

We maintain the consistency of our codebase via unit
testing, type checking, and format checker via pytest [17],
mypy [18], and black [19], respectively. Overall, we aim
for the architecture stack for qLEET to follow object-
oriented design principles, which helps us create a clean
and modular software tool that is easy to test, debug,
and maintain in the future.

III. FEATURES

This section presents the theory and examples for the
features supported by the qLEET. We begin by introduc-
ing the idea of the trainability of a parameterized quan-
tum circuit (PQC). From there, we would motivate the
idea of studying different properties related to PQC to
improve and analyze its trainability. We end the discus-
sion in each subsection by demonstrating how modules
in qleet can be used for analyzing the mentioned prop-
erties.

0

1

2
3

4

5

6

7

8
9

10

11

FIG. 2: Problem graph considered for MaxCut using
QAOA. It is generated as an Erdos-Renyi graph with 12
nodes and 0.5 edge probability.

A. Trainability of PQCs

We consider an N-qubit PQC Û(θ⃗) with an objective
function defined by a Hermitian observable O in the Pauli
basis. For an input quantum state ρ, the process of train-
ing is defined as minimizing the following function C:

min C(θ⃗) = minTr[OÛ(θ⃗)ρÛ†(θ⃗)] = minTr[Oρ(θ⃗)] (1)

A PQC Û(θ⃗) evolves the input state ρ to a parameter-

ized target state ρ(θ⃗) and to minimize C(θ⃗) we update

paramters θ⃗ via some classical optimization routine such
that:

θ⃗ k+1 = θ⃗ k − γf(∇θ⃗) C(θ⃗ k), f(0) = 0 (2)

Therefore, for successfully training a PQC, we would re-
quire contributions from any variational parameter θv to
∇θ⃗, i.e., ∂C/∂θv to be non-vanishing, non-exploding and
unbiased. This means that we expect E(∂C/∂θv) = 0 and

Var(∂C/∂θv) > 0 ∀θv ∈ θ⃗. However, this is not always
the case, as we would see later in Sec. IV. To better
understand this behaviour, it is critical to look at the
evolution of C with respect to changes in variational pa-
rameters for which computing loss landscape and training
path is beneficial. Furthermore, it has also been shown
that circuits with large expressibility seem to have van-
ishing gradients, i.e., ∇θ⃗ C → 0. Hence, it is also crucial
to not just look at the evolution of C but also get insights
from the intrinsic properties of the PQC itself, such as
its expressibility and entangling power.

B. Loss Landscape

Loss landscape is a visual representation of the loss

values or the C(θ⃗) around the trainable variational pa-
rameter space of the PQC. This inspection is usually

done around the optimal variational parameters θ⃗∗ to

4

1

-3
-2

-1
0

1
2

3

2

-3
-2

-1
0

1
2

3

(
1 ,

2)

11
12
13
14
15
16
17
18

(a) Loss Landscape for p = 1

1

-3
-2

-1
0

1
2

3

2
-3-2-10123

(
1 ,

2)

11

12

13

14

15

16

(b) Loss Landscape for p = 4

1

-3
-2

-1
0

1
2

3

2

-3-2-10123

(
1,

2)

11

12

13

14

15

(c) Loss Landscape for p = 8

80 60 40 20 0 20 40 60 80
f()

80

60

40

20

0

20

40

60

80

g(
)

#1
#2
#3
#4
#5

(d) Training trajectories for p = 1

75 50 25 0 25 50 75
f()

80

60

40

20

0

20

40

60

80

g(
)

#1
#2
#3
#4
#5

(e) Training trajectories for p = 4

75 50 25 0 25 50 75
f()

80

60

40

20

0

20

40

60

80

g(
)

#1
#2
#3
#4
#5

(f) Training trajectories for p = 8

FIG. 3: Loss landscape and training trajectories plots for solving the MaxCut problem using QAOA routine
implemented with qLEET for the graph presented in Fig. 2. The training trajectories have been plotted for five

instances of training with different random initializations of variational parameters θ⃗ for each value of p ∈ {1, 4, 8},
where p denotes the number of times QAOA ansatz is repeated and functions f(θ⃗) and g(θ⃗) represents non-linear
functions obtained after dimensionality reduction using t-SNE

identify features like local minima, ridges, and valleys
present in the loss surface. Such analysis helps in an-
alyzing smoothness off the surface, indicating the ease
with which a gradient-based optimizer might be able to
perform on it [20, 21].

For example, in Fig. 3, we look at the loss landscape
associated with solving the MaxCut problem using the
QAOA algorithm [22] for an Erdos-Renyi graph (Fig. 2).
We see that as the number of layers of QAOA ansatz,
parameterized by p, are increased, the loss landscape be-
comes much smoother, and local minima pits disappear.
Therefore, it would be much easier for a descent-based
optimizer to traverse to global minima in case of higher
p. This and similar loss landscape calculations in qLEET
are done using the loss landscape function present in
the analyzer module. As shown in Eq. 3, we compute
the value of the loss function L for all the coordinates
ϕ⃗ (= ΦT θ⃗) in an orthonormalized 2-D subspace S with

basis vectors Φ⃗i sampled from the whole trainable vari-
ational parameter space and origin corresponding to the
optimal variational parameters θ∗.

L(ϕ0, ϕ1) = C(θ⃗∗ + θ⃗′), θ′i = (Φ ϕ⃗)T

=
∑

O

Tr

[
Oρ

(
θ⃗∗ + θ⃗′

)]
(3)

We gather different information about the loss of land-
scape based on how we choose to perform the sampling.
For example, using principal component analysis (PCA)

over the set of variational parameters θ⃗ at each train-

ing step would give us the vectors Φ⃗i that represent the
directions in parameter space for which major changes
happen during that training step. Similarly, other meth-
ods for obtaining subspace could be used, such as doing
random sampling of basis vectors or t-SNE (t-Distributed
Stochastic Neighbor Embedding) of the parameter vec-
tors encountered in the training trajectory. All such
methods provide beneficial insights about the structure
of the loss landscape using which one could adapt their
training strategy by tweaking the optimization routine,
evaluation metric, etc.

C. Training Trajectory

In many cases, just looking at the loss landscape for a
given PQC model is not enough as we define the subspace
S using two of many possible directions as axes by taking
linear combinations of variational parameters, while the
loss landscape itself is highly nonlinear. Moreover, the
high dimensionality of the parameter space makes the

5

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

JSD = 0.98, KLD = 4.605
Haar
PQC

(a) U(θ⃗) = I

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

JSD = 0.245, KLD = 0.206
Haar
PQC

(b) U(θ⃗) = HRZ(θ1)

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

JSD = 0.078, KLD = 0.025
Haar
PQC

(c) U(θ⃗) = HRZ(θ1)RX(θ2)

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y

JSD = 0.04, KLD = 0.005
Haar
PQC

(d) U(θ⃗) = HRZ(θ1)RX(θ2)RZ(θ3)

1

FIG. 4: Quantifying expressibility for single-qubit circuits. For each of the four circuits show here, 1000 sample pairs
of circuit parameter vectors were uniformly drawn, corresponding to 2000 parameterized states. Histograms of
estimated fidelities (orange) are shown, overlaid with fidelities of the Haar-distributed ensemble (blue), with the
computed Kullback-Leibler (KL) divergence and Jensen-Shannon Distance (JSD) reported above the histograms.

task of visualization of loss landscape extremely challeng-
ing. However, both of these difficulties can somewhat be
alleviated by visualizing the loss landscape via the evolu-
tion of variational parameters of PQC during training in
low dimensions. This evolution of variational parameters
can be realized as the training trajectory for the PQC,
and plotting them over several re-initializations helps us
learn about the convergence properties of the PQCs and
their optimization schedules.

In qLEET, training trajectories are calculated inside
the analyzer module by the training path function. We

use the entire set of variational parameters θ⃗t to generate
the trajectory over all re-initialization for every time step
t in the training process. We project the parameter vec-
tors down to an orthonormalized 2-D subspace S using
techniques such as PCA [23], t-SNE [24], or PHATE [25].
Similar to the case of loss landscape visualization, each
of the mentioned techniques reveals different trajectory
characteristics depending on its ability to preserve both
global and local structures of higher-dimensional data in
low dimensional subspace. Furthermore, the 2-D projec-
tions of the parameter trajectories can also be plotted on
the loss surface, with the loss values as its third axis [26].

For example, we present the training trajectories with

t-SNE projection in Fig. 3 for the same MaxCut problem
that we discuss in the previous subsection about the loss
landscape. We look at five different training instances for
each p, where we begin with randomized initialization of

variational parameters θ⃗ every time. We see that for

p = 1 evolutions of θ⃗ for every instance happen in their
own respective clusters, suggesting the optimizer unsuc-
cessfully gets stuck for different local minima every time.
In contrast, for both p = 4 and p = 8, we see much lesser
clusters formation and more intercrossing, hinting at cer-
tain parameters θk evolving to the same values while the
optimizer reaches the global minima.

D. Expressibility

We generate a distribution of states ρ(θ⃗) for a PQC

Û(θ⃗) by randomly sampling over the variational param-
eter space. We quantify the deviation of this distribu-
tion from the one obtained from the maximally expres-
sive Haar distribution as the Expressibility of the given
ansatz.

A(t) =

∥∥∥∥
∫

Haar

ρ⊗tdρ−
∫

θ⃗

ρ(θ⃗)⊗tdρ(θ⃗)

∥∥∥∥
2

HS

(4)

6

1 2 3 4 5
Number of layers

0.00

0.05

0.10

0.15

0.20

0.25
Ex

pr
Jensen-Shannon distance (JSD)

FIG. 5: Measuring expressibility for the parameterized

quantum circuit U(θ⃗) =∏L
1

(⊗5
i=1Rx(θ

1
i)Rz(θ

2
i)Rx(θ

3
i) . . .

⊗
i<j CX(i, j)

)

using the Jensen-Shannon distance (JSD) measure as a
function of number of layers L.

where
∫
Haar

dρ denotes the integration over the states
ρ produced by the unitaries sampled according to the
Haar measure over the unitary group U , t represent the
tth moment, and ∥A∥2HS is the Hilbert-Schmidt norm cal-
culated as Tr(A†A). We compute Eq. 4 as the diver-
gence between the distribution of fidelities F(ρ, σ) =(
Tr
√√

ρσ
√
ρ
)2

[27] of the states (ρ, σ) obtained from
the unitaries Uρ, Uσ ∈ UPQC (or UHaar), where UPQC is
the ensemble of parameterized unitaries describing the

ansatz for uniformly sampled θ⃗ and UHaar is the ensem-
ble of Haar random unitaries [12].

Expr = D(P̂PQC(F ; θ⃗)|PHaar(F)), Expr ≥ 0 (5)

According to this definition, a PQC U(θ⃗) is more
expressible if the distribution of state fidelities generated

by the ansatz circuit U(θ⃗) is closer to the one generated
by the unitaries UHaar sampled uniformly from the uni-
tary group U . Therefore, the smaller the Expr value, the
more is the expressibility of the parameterized unitary.
We see this in Fig. 4, where we compare the fidelity
distribution of PQC and Haar random states with
respect to the number of Pauli rotation gates present in
the single-qubit circuits and calculate the Expr values
for both Kullback-Leibler (KL) and Jensen-Shannon
(JS) divergence. Furthermore, in Fig. 5, we measure the

increasing expressibility of the five qubit ansatz U(θ⃗) =∏L
1

(⊗5
i=1Rx(θ

1
i)Rz(θ

2
i)Rx(θ

3
i) . . .

⊗
i<j CX(i, j)

)
,

where we see how expressibility increases with the
number of layers L. Finally, we note that, in addition
to experiments like these, expressibility function in
qLEET can also be used to predict the likelihood of
whether the given PQC would be able to represent an
unknown N-qubit target state and do a comparative
analysis between different ansätze.

0 1 2 3 4 5 6 7 8 9
Number of CX gates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q

Mayer-Wallach
Measure

FIG. 6: Measuring entangling power for the
parameterized quantum circuit U(θ) using the
Mayer-Wallach measure as a function of the number of
CX (or CNOT) gates appended to the circuit

U(θ⃗) =
⊗5

i=1Rx(θ
1
i)Rz(θ

2
i)Rx(θ

3
i).

E. Entangling Capability

A fundamental property that makes quantum compu-
tation different from the classical one is the existence of
entanglement in the system, which can be potentially ex-
ploited to gain a computational advantage. Hence, it is
essential to quantify its ability to generate entanglement
in the system to assess the effectiveness of a parameter-
ized quantum circuit. We use entanglement measures to
capture different properties of multipartite entanglement
present in the system. The first measure that we use
is the Meyer-Wallach Q measure [12, 28] in which the
amount of entangled states produced by a PQC is esti-
mated by measuring the average entanglement between
individual qubits and the rest of the system. In this con-
text, the entangling capability of a PQC can be defined
directly via the considered entanglement measure Q av-

eraged over all states ρ(θ⃗) generated by the PQC from

the uniform sampling of variational parameters θ⃗:

Q =
2

|θ⃗|
∑

θ⃗ i∈{θ⃗}

(
1− 1

n

n∑

k=1

Tr(ρ2k(θ⃗
i))

)
, (6)

where ρk is the density matrix for the state of the k-th
qubit. In a similar spirit, we can use another entangle-
ment measure called Scott Measure [29], which general-
izes the Meyer-Wallach measure using m entanglement
measures, each of which will measure the average entan-
glement between blocks of m qubits and the rest of the
system. Therefore, as pointed out before, each measure
would give access to different properties related to mul-
tipartite entanglement, and as m increases, Qm becomes
more sensitive to correlations of an increasingly global
nature. Similar to the previous case, the entangling ca-
pability of the PQC can be defined by the value of Qm

7

measures, averaged over uniformly sampled θ⃗ too:

Qm =
2m

(2m − 1)|θ⃗|
∑

θ⃗ i∈{θ⃗}

(
1−

m!(n−m)!)

n!

∑

|S|=m
Tr(ρ2S(θ⃗

i))

)

m = 1, . . . , ⌊n/2⌋

(7)

In qLEET, we perform these calculations inside the
entanglement function in the analyzer module, where
one can choose between both Meyer-Wallach and Scott
measures for any PQC loaded as a CircuitDescriptor
object. For example, in Fig. 6, we use it to plot the
entangling capability of a five qubit circuit template

U(θ⃗) =
⊗5

i=1Rx(θ
1
i)Rz(θ

2
i)Rx(θ

3
i) against the numbers

of CNOT gates appended to circuit in a pair-wise fasion,
i.e., CNOT(i, j), where i < j and i, j < 5. We see that as
the number of CNOT gates are increased, the entangling
capability improves. We also notice a region of minimal
increase between [5, 7], which can be attributed to addi-
tion on qubits which were already transitive correlated.

F. Entanglement Spectrum

In the previous subsection, we quantified the entan-
gling capability of an ansatz using entanglement mea-
sures. However, these measures might be insufficient to
fully characterize all the properties related to multipar-
tite entanglement [30]. This problem can be tackled by
making use of the entanglement spectrum [31], which is
defined as the eigenspectrum of the entanglement Hamil-
tonian Hent:

Hent = − log(ρA), (8)

where the ρA = TrB(ρ) is the reduced density matrix
of the qubit system obtained by the typical bipartition
of the N qubit system into subsystems A and B with
k = ⌈N/2⌉ and N − k qubits, respectively. For states
sampled from maximally expressive Haar distribution,
the eigenvalues ξk of Hent follows the Marchenko-Pastur
(MP) distribution [32]. Therefore, we can quantify both
expressibility and entangling power of the PQC by look-

ing at the eigenspectrum of HPQC
ent , calculated from uni-

formly sampled variational parameters θ⃗.
In qLEET, entanglement spectrum function in the

analyzers module can be used for computing and plotting

the entanglement spectrum for any given PQC U(θ⃗). For
example, in Fig. 7, we use it to perform the entanglement
spectrum analysis on a 16 qubit PQC, which is made of
L layers comprising three rotation gates on each qubit

and CNOT gates between adjacent qubits, i.e., U(θ⃗) =∏L
l

(⊗15
i=0Rx(θ

1
i)Rz(θ

2
i)Rx(θ

3
i)
⊗14

i=0 CX(i, i+ 1)
)
. We

see that as the number of layers are increased in the

0 10 20 30 40 50 60
k

30

25

20

15

10

5

0

k

Marchenko-Pastur Distribution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

La
ye

rs

FIG. 7: Visualizing entanglement spectrum for a PQC

U(θ⃗) =∏L
1

(⊗12
i=1Rx(θ

1
i)Rz(θ

2
i)Rx(θ

3
i) . . .

⊗11
i=1 CX(i, i+ 1)

)
.

Here, ξk are the eigenvalues of H
U(θ⃗)
ent arranged in

descending order and cut off at −30. The solid lines
(blue to brown) represents the distribution ξk for
different layers L and the dotted line (black) represents
the ideal Marchenko-Pastur (MP) distribution. We see
that as the number of layers is increased, the
distribution of ξk becomes more similar to MP
distribution.

ansatz, the eigenvalue distribution becomes more and
more closer to the MP distribution. In fact, comput-
ing a divergence measure between these two distributions
can also be used as a quantification of capability of the
ansatz.

G. Parameter Histograms

For our M -parameter PQC Û(θ⃗), the parameters θi at
the start of the training process are sampled from some
prior probability distribution π0(θ). Through the train-
ing process, we desire to learn an optimized join proba-
bility distribution over the parameters π∗(θ). This learnt
parameter distribution

π∗ = argmin
π(θ)

E
θ∼π

C(θ⃗) = argmin
π(θ)

E
θ∼π

Tr[OÛ(θ⃗)ρÛ†(θ⃗)]

(9)
The evolution of the parameter distribution from π0 →

πt → π∗ is visualized by our parameter histogram mod-
ule. The probability distributions are analyzed by start-

ing with an ensemble of vectors θ⃗l ∼ π0, letting the entire
ensemble evolve using our classical optimization subrou-
tine, and sampling the vectors in the ensemble to get the

distribution over parameters at time t as πt(θ⃗).

The marginal distribution over each variable πt(θ⃗i) is
plotted at each timestep. Change in the profile of this
distribution over consecutive timesteps implies a role of

8

(a)

1

3 2 1 0 1 2 3

2

3
2

1
0

1
2

3

G
lo

ba
l

0.00

0.25

0.50

0.75

1.00

(b)

1

3 2 1 0 1 2 3

2

3
2

1
0

1
2

3

Lo
ca

l

0.00

0.25

0.50

0.75

1.00

(c)

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

2
G

lo
ba

l

(d)

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2
0.32

0.24

0.16

0.08

0.00

0.08

0.16

0.24

0.32

2
Lo

ca
l

FIG. 8: Here we show the emergence of barren plateaus in the task of learning an Identity gate using the ansatz
RX(0, θ1)RX(1, θ2)CZ(0, 1) solely based on the choice of the cost function. Figures (a) and (b) represents the loss
landscape for the CGlobal and local CLocal cost functions, respectively. Similarly, figures (c) and (d) represents
coloured heat maps for their corresponding gradients ∇θ2CGlobal and ∇θ2CLocal

those parameters in those timesteps of the learning pro-
cess.

IV. CHALLENGES

In this section, we will discuss some key challenges that
we come across in variational quantum computation and
possible ways to identify and mitigate these problems by
using tools provided in qLEET.

A. Effect of Noise

The quantum hardware that exists today are imper-
fect, as a result of which a computation being run on
them may suffer various kinds of errors [33]. Therefore,
in order to realistically simulate and characterize the per-
formance of a parameterized quantum circuit (PQC), we
must include these errors in our computation. Our li-
brary does so by using noise models from libraries such
as Cirq and Qiskit, which provides for errors related to
coherent gate errors, incoherent errors, and state prepa-
ration and measurement (SPAM) errors. Users can pro-

vide the NoiseModel to the CircuitSimulator function
in the simulator module while running the experiments.

Another source of error in quantum computation arises
from the limited number of times the circuit is repeatedly
executed for sampling. This restricts the precision with
which one can compute the Pauli observable Ô for calcu-
lating the cost function C as the number of measurements
m required for estimating the expectation value ⟨Ô⟩ with
precision ϵ would be O(1/ϵ2) [34]. In qLEET, the default
value of the number of repetitions is 1024 and is deter-
mined by the shots variable, which can be provided at
the time of calling any analysis function from the ana-
lyzer module.

B. Presence of Barren Plateaus

The main crux of the discussion presented in the previ-
ous section is that the choice of ansatz and the cost func-
tion together is crucial for successfully training a PQC
for a given task. One of the critical hindrances for the
training to go as expected is the barren plateau (BP)

phenomenon, where the partial derivatives ∂θkC(θ⃗) of the
cost function C(θ⃗) with respect to variational parame-

9

ters θk will, on average, exponentially vanish (Eq. 10).
This leads to the flattening of the loss landscape, travers-
ing through, which would require an exponentially large
number of shots (for more precision) against finite sam-
pling noise to determine the direction that minimizes the
cost. Moreover, it was recently shown in [35] that BPs
can also be induced due to noise present in the quan-
tum hardware. This could be a significant issue since it
could erase the potential computation advantage associ-
ated with quantum computation due to the exponential
scaling required to attain the necessary precision, making
the complexity comparable to classical algorithms.

Varθ⃗[∂θkC(θ⃗)] ∈ O

(
1

mN

)
, for m > 1 (10)

In qLEET, one can potentially visualize the BP phenom-
ena by visualizing the loss landscape for a chosen PQC
and cost function. This could allow users to see if BP can
be mitigated by tweaking either the structure of PQC it-
self or just the cost function. For example, in Fig. 8, we
show an example of BP dependent on the cost function in
a shallow ansatz [36]. Here we compare global CGlobal and
local CLocal cost functions for learning the Identity gate
using a very simple ansatz: RX(0, θ1)RX(1, θ2)CZ(0, 1).

CGlobal = ⟨ψ(θ⃗)| (I − |0 . . . 0⟩ ⟨0 . . . 0|) |ψ(θ⃗)⟩
= 1− p0...0

(11)

CLocal = ⟨ψ(θ⃗)|
(
I − 1

n

∑

j

|0⟩ ⟨0|j

)
|ψ(θ⃗)⟩

= 1− 1

n

∑

j

p0j

(12)

We see how the loss landscape flattens for the CGlobal

and the gradients vanish exponentially in comparison to
CLocal. In terms of the circuit structure, one way to pre-
dict the presence of the BP phenomena for an ansatz is
to look at how close its expressivity is to that of a unitary
2-design [37] or whether it exhibits excess entanglement
that could hinder its trainability [38]. To mitigate BP in
such cases require one to restrict the randomness in the
circuit by correlating some of the parameters and limit
the depth of the circuit by reducing the number of layers,
if possible. However, the optimal trade-off between the
circuit’s trainability and its ability to use quantum re-
sources as quantified by its expressibility and entangling
power depends on the nature of the problem and requires
a well-designed architecture. For example, for studying
spins systems, one might be able to tensor-network based
ansatz structure which allows high trainability with suf-
ficient expressibility if its depth is maintained to be shal-
low [39–41]. In addition to the BP phenomena, we also
notice the narrow gorge phenomena, where global min-
ima are contained in a steeply deep valley. This makes
it difficult for gradient-based optimization to reach the
global minima since it might not have a low learning rate
to not overstep inside the gorge.

C. Estimation of Reachability

Reachability quantifies whether a given PQC, Û(θ⃗),

with parameters θ⃗ is capable of representing a param-

eterized quantum state |ψ(θ⃗)⟩ that minimizes the cost
function C. Mathematically it is defined as [42]:

fR = minψ∈H ⟨ψ| C |ψ⟩ −minθ⃗ ⟨ψ(θ⃗)| C |ψ(θ⃗)⟩ , (13)

where the first and second term is the minimum over all
states |ψ⟩ sampled from the Haar measure and all states
that the PQC can represent, respectively. The reacha-
bility is equal or greater than zero fR ≥ 0, with fR = 0

when the PQC can generate an optimal state |ψ(θ⃗∗)⟩
that minimizes the objective function. This can be eas-
ily implemented in qLEET using the CircuitSimulator
function present in the simulator module.

V. CONCLUSION

This paper presents an open-source library called
qLEET and demonstrates its ability to analyze various
properties of parameterized quantum circuits (PQCs),
such as their expressibility and entangling power. We
motivate the importance of studying these properties
from the problem of trainability of PQCs. We have
discussed and showed how important insights could be
gained from visualizing loss landscapes and training tra-
jectories for variational quantum computation. We also
present the theory of expressibility and entangling capa-
bility of a PQC based on the deviation of the distribution
of parameterized states produced from the Haar measure,
which samples uniformly from the entire Hilbert space.
We also describe the idea of the entanglement spectrum,
which allows visualizing the previous two properties at
once. Overall, we demonstrate how different modules in-
cluded in qleet can be used by users to study various
variational algorithms and quantum machine learning
models. Finally, we discuss some critical challenges for
variational quantum algorithms such as Barren Plateaus
and Reachability. We conclude that qLEET will provide
opportunities for the quantum community to design new
hybrid algorithms by utilizing intuitive insights from the
ansatz capability and structure of the loss landscape.

DATA AVAILABILITY

The code created to run the presented simulations and
any related supplementary data could be made available
to any reader upon reasonable request.

10

ACKNOWLEDGEMENTS

We acknowledge the help and financial support of the
Unitary Fund for this project. We also acknowledge Prof.
Harjinder Singh for the fruitful discussions we had with

him throughout the development of this library.

DECLARATIONS

The authors have no competing interests to declare
relevant to this article’s content.

[1] J. Preskill, Quantum computing in the NISQ era and be-
yond, Quantum 2, 79 (2018).

[2] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug,
S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen,
J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C.
Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale
quantum algorithms, Rev. Mod. Phys. 94, 015004 (2022).

[3] J. Liu and H. Zhou, in 2020 IEEE International Sympo-
sium on Workload Characterization (IISWC) (2020) pp.
94–105.

[4] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid
quantum-classical algorithms and quantum error mitiga-
tion, J. Phys. Soc. Jpn. 90, 032001 (2021).

[5] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Pa-
rameterized quantum circuits as machine learning mod-
els, Quantum Sci. Technol. 4, 043001 (2019).

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, 2011).

[7] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J.
Love, and A. Aspuru-Guzik, Strategies for quantum com-
puting molecular energies using the unitary coupled clus-
ter ansatz, Quantum Sci. Technol. 4, 014008 (2018).

[8] A. Kandala, A. Mezzacapo, K. Temme, M. Takita,
M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-
efficient variational quantum eigensolver for small
molecules and quantum magnets, Nature 549, 242 (2017).

[9] H. L. Tang, V. Shkolnikov, G. S. Barron, H. R. Grim-
sley, N. J. Mayhall, E. Barnes, and S. E. Economou,
Qubit-ADAPT-VQE: An Adaptive Algorithm for Con-
structing Hardware-Efficient Ansätze on a Quantum Pro-
cessor, PRX Quantum 2, 020310 (2021).

[10] https://github.com/QLemma/qleet.
[11] U. Azad and A. Sinha, qLEET (2021).
[12] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibil-

ity and Entangling Capability of Parameterized Quantum
Circuits for Hybrid Quantum-Classical Algorithms, Ad-
vanced Quantum Technologies 2, 1900070 (2019).

[13] H. Abraham and et al., Qiskit: An Open-source Frame-
work for Quantum Computing (2019).

[14] Cirq Developers, Cirq (2021).
[15] R. S. Smith, M. J. Curtis, and W. J. Zeng, A Practi-

cal Quantum Instruction Set Architecture, arXiv e-prints
(2016), arXiv:1608.03355 [quant-ph].

[16] A. W. Cross, A. Javadi-Abhari, T. Alexander, N. de
Beaudrap, L. S. Bishop, S. Heidel, C. A. Ryan, J. Smolin,
J. M. Gambetta, and B. R. Johnson, OpenQASM 3: A
broader and deeper quantum assembly language, arXiv e-
prints (2021), arXiv:2104.14722 [quant-ph].

[17] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe,
B. Laugher, and F. Bruhin, Pytest x.y (2004).

[18] J. Lehtosalo, G. v. Rossum, I. Levkivskyi, and M. J. Sul-
livan, Mypy (2012).

[19] C. Willing, C. Meyer, J. Zijlstra, M. Naylor, Z. Dollen-
stein, C. Lees, R. Si, F. Hildén, and B. Taskaya, Black
(2018).

[20] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Gold-
stein, Visualizing the loss landscape of neural nets, Ad-
vances in neural information processing systems 31,
10.48550/arXiv.1712.09913 (2018).

[21] M. S. Rudolph, S. Sim, A. Raza, M. Stechly, J. R. Mc-
Clean, E. R. Anschuetz, L. Serrano, and A. Perdomo-
Ortiz, ORQVIZ: Visualizing High-Dimensional Land-
scapes in Variational Quantum Algorithms, arXiv e-
prints 10.48550/arXiv.2111.04695 (2021).

[22] E. Farhi, J. Goldstone, and S. Gutmann, A Quan-
tum Approximate Optimization Algorithm, arXiv e-prints
(2014), arXiv:1411.4028 [quant-ph].

[23] I. T. Jolliffe and J. Cadima, Principal component anal-
ysis: a review and recent developments, Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 374, 20150202 (2016).

[24] G. E. Hinton and S. Roweis, in Advances in Neural Infor-
mation Processing Systems, Vol. 15, edited by S. Becker,
S. Thrun, and K. Obermayer (MIT Press, 2002).

[25] K. R. Moon, D. van Dijk, Z. Wang, S. Gigante, D. B.
Burkhardt, W. S. Chen, K. Yim, A. van den Elzen,
M. J. Hirn, R. R. Coifman, N. B. Ivanova, G. Wolf, and
S. Krishnaswamy, Visualizing structure and transitions
in high-dimensional biological data, Nature Biotechnol-
ogy 37, 1482 (2019).

[26] E. Lorch, in ICML Workshop on Visualization for Deep
Learning (2016).

[27] R. Jozsa, Fidelity for Mixed Quantum States, Journal of
Modern Optics 41, 2315 (1994).

[28] D. A. Meyer and N. R. Wallach, Global entanglement in
multiparticle systems, J. Math. Phys. 43, 4273 (2002).

[29] P. J. Love, A. M. van den Brink, A. Y. Smirnov, M. H. S.
Amin, M. Grajcar, E. Il’ichev, A. Izmalkov, and A. M.
Zagoskin, A Characterization of Global Entanglement,
Quantum Inf Process 6, 187 (2007).

[30] Z.-C. Yang, C. Chamon, A. Hamma, and E. R. Muc-
ciolo, Two-Component Structure in the Entanglement
Spectrum of Highly Excited States, Phys. Rev. Lett. 115,
267206 (2015).

[31] R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla,
Y. B. Kim, and H. Yuen, Exploring Entanglement and
Optimization within the Hamiltonian Variational Ansatz,
PRX Quantum 1, 020319 (2020).

[32] M. Žnidarič, Entanglement of random vectors, J. Phys.
A: Math. Theor 40, F105 (2006).

[33] H. Chaudhary, B. Mahato, L. Priyadarshi, N. Roshan,
Utkarsh, and A. D. Patel, A software simulator

11

for noisy quantum circuits, Int. J. Mod. Phys. C.
10.1142/S0129183122501030 (2022).

[34] O. Higgott, D. Wang, and S. Brierley, Variational Quan-
tum Computation of Excited States, Quantum 3, 156
(2019).

[35] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone,
L. Cincio, and P. J. Coles, Noise-Induced Barren
Plateaus in Variational Quantum Algorithms, arXiv e-
prints (2020), arXiv:2007.14384 [quant-ph].

[36] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J.
Coles, Cost function dependent barren plateaus in shallow
parametrized quantum circuits, Nature Communications
12, 10.1038/s41467-021-21728-w (2021).

[37] A. W. Harrow and R. A. Low, Random quantum circuits
are approximate 2-designs, Communications in Mathe-
matical Physics 291, 257 (2009).

[38] C. O. Marrero, M. Kieferová, and N. Wiebe, Entangle-
ment induced barren plateaus (2020).

[39] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sorn-
borger, and P. J. Coles, Absence of barren plateaus in
quantum convolutional neural networks, Physical Review
X 11, 10.1103/physrevx.11.041011 (2021).

[40] K. Zhang, M.-H. Hsieh, L. Liu, and D. Tao, Toward train-
ability of quantum neural networks (2020).

[41] S. Sahoo, U. Azad, and H. Singh, Quantum phase recogni-
tion using quantum tensor networks, The European Phys-
ical Journal Plus 137, 10.1140/epjp/s13360-022-03587-6
(2022).

[42] V. Akshay, H. Philathong, M. E. S. Morales, and J. D. Bi-
amonte, Reachability Deficits in Quantum Approximate
Optimization, Phys. Rev. Lett. 124, 090504 (2020).

Supplementary: qLEET - Visualizing Loss Landscapes, Expressibility, Entangling
power and Training Trajectories for Parameterized Quantum Circuits

Utkarsh Azad∗ and Animesh Sinha†

Center for Computational Natural Sciences and Bioinformatics,
International Institute of Information Technology, Hyderabad.

Center for Quantum Science and Technology,
International Institute of Information Technology, Hyderabad.

(Dated: June 28, 2023)

S1. TUTORIAL: ENTAGLEMENT ABILITY ANALYSIS

In this section, we will learn how to calcualte expressibility of Parameterized Quantum Circuits (PQCs) using
qLEET, which could thought of as traversing power of a PQC in the Hilbert space. We look at different parameterized
states generated by the sampled ensemble of parameters for a given PQC. We then compare the resulting distribution
of state fidelities (F) generated by this sampled ensemble to that of the ensemble of Haar random states.

We currently support two expressibility measures - Kullback–Leibler Divergence and Jensen–Shannon Di-
vergence

Expressibility = DKL

(
P̂PQC(F ; θ)

∣∣PHaar(F)
)

Expressibility = D√
JSD

(
P̂PQC(F ; θ)

∣∣PHaar(F)
)

All circuit analysis using qleet begins with defining a parameterized quantum circuit using a library of choice, and
then passing it into qleet’s CircuitDescriptor interface.

params = [qiskit.circuit.Parameter(r"$\theta 1$")]

qiskit circuit = qiskit.QuantumCircuit(1)
qiskit circuit.h(0)
qiskit circuit.rz(params[0], 0)
qiskit descriptor = qleet.interface.circuit.CircuitDescriptor(

circuit=qiskit circuit , params=params, cost function=None
)

The analyze the expressibility, we can use the corresponding analyzer. We can get the expressibility using either of
the two supported measures.

qiskit expressibility = qleet.analyzers.expressibility.Expressibility(
qiskit descriptor , samples=100

)
expr jsd = qiskit expressibility.expressibility("jsd")
print("JSD Expressibility:", expr jsd)

expr kld = qiskit expressibility.expressibility("kld")
print("KLD Expressibility:", expr kld)

plt figure = qiskit expressibility.plot()

We look at different parameterized states generated by the sampled ensemble of parameters for a given PQC. We
then compare the resulting distribution of eigenvalues of the bipartite state generated by this sampled ensemble to
that of the ensemble of eigenvalues of Haar random states.

∗ utkarsh.azad@research.iiit.ac.in; Corresponding Author
† animesh.sinha@research.iiit.ac.in

ar
X

iv
:2

20
5.

02
09

5v
2

 [
qu

an
t-

ph
]

 2
6

Ju
n

20
23

2

We currently support two measures to calculate entanglement spectrum divergence (ESD) - Kullback–Leibler
Divergence and Jensen–Shannon Divergence

ESD = DKL

(
P̂PQC(Hent; θ)

∣∣PHaar(Hent)
)

ESD = D√
JSD

(
P̂PQC(Hent; θ)

∣∣PHaar(Hent)
)

params = [
qiskit.circuit.Parameter(r"$\theta 1$"),
qiskit.circuit.Parameter(r"$\theta 2$")

]
qiskit circuit = qiskit.QuantumCircuit(2)
qiskit circuit.rx(params[0], 0)
qiskit circuit.cx(0, 1)
qiskit circuit.rx(params[1], 1)
qiskit descriptor = qleet.interface.circuit.CircuitDescriptor(

circuit=qiskit circuit , params=params, cost function=None
)

analyzer = (
qleet.analyzers.entanglement.EntanglementCapability(

qiskit descriptor , samples=500
)

)

entanglement mw = analyzer.entanglement capability("meyer−wallach")
print("Entanglement Capability (Meyer Wallach Measure):", entanglement mw)

entanglement scott = analyzer.entanglement capability("scott")
print("Entanglement Capability (Scott Measure):", entanglement scott)

In this section, we will plot the entanglement spectrum.

def ansatz(params, cparams=None):
layers, num qubits , depth = params.shape
ansatz = qiskit.QuantumCircuit(num qubits)
for idx in range(layers):

if idx:
ansatz.barrier()

for ind in range(num qubits):
ansatz.rx(params[idx][ind][0], ind)
ansatz.rz(params[idx][ind][1], ind)
ansatz.rx(params[idx][ind][2], ind)

for ind in range(num qubits−1):
ansatz.cx(ind, ind+1)

return ansatz

data = []
results = []
num qubits = 12
for idx in range(1, 17):

print(idx, end=’ ’)
params = np.array([qiskit.circuit.Parameter(fr"$\theta {idx}$")

for idx in range(idx∗num qubits∗3)])
qiskit descriptor = qleet.CircuitDescriptor(

circuit=ansatz(np.array(params).reshape((idx, num qubits , 3))),
params=params, cost function=None

3

)
qiskit entanglement spectrum = \

qleet.analyzers.entanglement spectrum.EntanglementSpectrum(
qiskit descriptor , samples=100

)
pqc esd , mean eig = qiskit entanglement spectrum.entanglement spectrum("jsd")
results.append(pqc esd)
data.append(mean eig)

data = np.array(data)

fig = qiskit entanglement spectrum.plot(data)

S2. LOSS LANDSCAPE AND TRAINING TRAJECTORY ANALYSIS

For this section of the tutorial, we shall be constructing our circuits in the Cirq library, which is also supported
by our multi-backend analyzer. Using cirq, we define a parameterized quantum circuit, we define its parameters as
sympy symbols, and we define a cost function as a Pauli measurement on the outputs of this circuits. All of this is
passed into out CircuitDescriptor interface

graph = nx.gnm random graph(n=8, m=20)
qubits = cirq.GridQubit.rect(1, graph.number of nodes())
p = 5

params = sympy.symbols("q0:%d" % (2 ∗ p))
qaoa circuit = cirq.Circuit()
for qubit in qubits:

qaoa circuit.append(cirq.H(qubit))
for i in range(p):

for edge in graph.edges():
qaoa circuit += cirq.CNOT(qubits[edge[0]], qubits[edge[1]])
qaoa circuit += cirq.rz(params[2 ∗ i]).on(qubits[edge[1]])
qaoa circuit += cirq.CNOT(qubits[edge[0]], qubits[edge[1]])

for j in range(len(qubits)):
qaoa circuit += cirq.rx(2 ∗ params[2 ∗ i + 1]).on(qubits[j])

qaoa cost = cirq.PauliSum()
for edge in graph.edges():

qaoa cost += cirq.PauliString(1 / 2 ∗ cirq.Z(qubits[edge[0]]) ∗
cirq.Z(qubits[edge[1]]))

circuit = qleet.interface.circuit.CircuitDescriptor(
qaoa circuit , params, qaoa cost)

solver = qleet.simulators.pqc trainer.PQCSimulatedTrainer(circuit)

class MaxCutMetric(qleet.interface.metric spec.MetricSpecifier):

def init (self, graph):
super(). init ("samples")
self.graph = graph

def from samples vector(self, samples vector):
return np.mean([nx.algorithms.cuts.cut size(

self.graph, np.where(cut)[0]) for cut in samples vector])

def from density matrix(self, density matrix):
raise NotImplementedError

4

def from state vector(self, state vector):
raise NotImplementedError

metric = MaxCutMetric(graph)

plot = qleet.analyzers.loss landscape.LossLandscapePlotter(
solver, metric, dim=2)

solver.train(n samples=5000)
fig loss surface = plot.plot("surface", points=20)

trackers = qleet.interface.metas.AnalyzerList(
qleet.analyzers.training path.LossLandscapePathPlotter(plot),
qleet.analyzers.training path.OptimizationPathPlotter(mode="tSNE"),

)
for i in range(5):

solver.train(loggers=trackers, n samples=5000)
trackers.next()

fig loss traversal = trackers[0].plot()
fig training trace = trackers[1].plot()

7

8

9

10

11

(a) Metric Landscape (inverse of loss)
around obtained optima

(b) PCA plot with loss for training
trajectories of 5 runs

−50 0 50

−50

0

50

100

0

0.5

1

1.5

2

2.5

3

3.5

4
color

Training Trajectories

Parameter tSNE-1

Pa
ra

m
et

er
 tS

N
E-

2

(c) 2-D tSNE of training trajectories
from 5 runs

FIG. S1: Loss and Training Trajectory plots obtained on analyzing the circuit shown. Here, the analysis is shown
for a circuit representing max-cut on a graph with 8 nodes and 20 edges.

S3. ENTANGLEMENT ANALYSIS FOR MZ OPERATOR [?]

params = [qiskit.circuit.Parameter(r"$\theta 1$"),
qiskit.circuit.Parameter(r"$\theta 2$"),
qiskit.circuit.Parameter(r"$\theta 3$"),
qiskit.circuit.Parameter(r"$\theta 4$")]

qiskit circuit = qiskit.QuantumCircuit(4)
qiskit circuit.rx(params[0], 0)
qiskit circuit.rz(params[1], 0)
qiskit circuit.rx(params[2], 2)
qiskit circuit.rz(params[3], 2)
qiskit circuit.cx(0, 1)
qiskit circuit.cx(2, 3)

5

RX
1

RX
1

RZ
2

RZ
2

q0

q1

q2

q3
FIG. S2: MZ operator used in the quantum computing model based on entanglement degree allows to differentiate
between the non-orthogonal states of the form e1|0⟩+ e2|1⟩, with arbitrary accuracy [? ? ? ?].

qiskit descriptor = qleet.interface.circuit.CircuitDescriptor(
circuit=qiskit circuit , params=params, cost function=None

)

qiskit entg capability = (
qleet.analyzers.entanglement.EntanglementCapability(

qiskit descriptor , samples=1000
)

)

entanglement mw = qiskit entg capability.entanglement capability("meyer−Wallach")
>>> entanglement mw = 0.5010648894421558

entanglement scott = qiskit entg capability.entanglement capability("scott")
>>> en tang l emen t s co t t = array ([0 .4979689 , 0 .38654991])

S4. QUANTUM CIRCUITS FROM THE EXPERIMENTS

A. Loss Landscape and Training Trajectories (Fig. S3 → Fig. 3)

B. Expressibility (Fig. S4 → Fig. 5)

C. Entangling Capability (Fig. S5 → Fig. 6)

D. Entanglement Spectrum (Fig. S6 → Fig. 7)

6

FIG. S3: QAOA circuit for p=1. This circuit (except the first Hadamard layer) will be repeated k times for p = k.

7

RX
(0, 0, 0)

RX
(0, 1, 0)

RX
(0, 2, 0)

RX
(0, 3, 0)

RX
(0, 4, 0)

RZ
(0, 0, 1)

RZ
(0, 1, 1)

RZ
(0, 2, 1)

RZ
(0, 3, 1)

RZ
(0, 4, 1)

RX
(0, 0, 2)

RX
(0, 1, 2)

RX
(0, 2, 2)

RX
(0, 3, 2)

RX
(0, 4, 2)

q0

q1

q2

q3

q4

FIG. S4: Parameterized quantum circuit U(θ⃗) =
∏L

1

(⊗5
i=1Rx(θ

1
i)Rz(θ

2
i)Rx(θ

3
i) . . .

⊗
i<j CX(i, j)

)

RX
(0, 0, 0)

RX
(0, 1, 0)

RX
(0, 2, 0)

RX
(0, 3, 0)

RX
(0, 4, 0)

RZ
(0, 0, 1)

RZ
(0, 1, 1)

RZ
(0, 2, 1)

RZ
(0, 3, 1)

RZ
(0, 4, 1)

RX
(0, 0, 2)

RX
(0, 1, 2)

RX
(0, 2, 2)

RX
(0, 3, 2)

RX
(0, 4, 2)

q0

q1

q2

q3

q4

FIG. S5: Parameterized quantum circuit U(θ⃗) =
⊗5

i=1Rx(θ
1
i)Rz(θ

2
i)Rx(θ

3
i)

8

RX
(0, 0, 0)

RX
(0, 1, 0)

RX
(0, 2, 0)

RX
(0, 3, 0)

RX
(0, 4, 0)

RX
(0, 5, 0)

RX
(0, 6, 0)

RX
(0, 7, 0)

RX
(0, 8, 0)

RX
(0, 9, 0)

RX
(0, 10, 0)

RX
(0, 11, 0)

RZ
(0, 0, 1)

RZ
(0, 1, 1)

RZ
(0, 2, 1)

RZ
(0, 3, 1)

RZ
(0, 4, 1)

RZ
(0, 5, 1)

RZ
(0, 6, 1)

RZ
(0, 7, 1)

RZ
(0, 8, 1)

RZ
(0, 9, 1)

RZ
(0, 10, 1)

RZ
(0, 11, 1)

RX
(0, 0, 2)

RX
(0, 1, 2)

RX
(0, 2, 2)

RX
(0, 3, 2)

RX
(0, 4, 2)

RX
(0, 5, 2)

RX
(0, 6, 2)

RX
(0, 7, 2)

RX
(0, 8, 2)

RX
(0, 9, 2)

RX
(0, 10, 2)

RX
(0, 11, 2)

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

FIG. S6: Parameterized quantum circuit U(θ⃗) =
∏L

1

(⊗12
i=1Rx(θ

1
i)Rz(θ

2
i)Rx(θ

3
i) . . .

⊗11
i=1 CX(i, i+ 1)

)

