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Abstract. This paper investigates quantum error correction schemes for fully-correlated noise
channels on an n-qubit system, where error operators take the formW⊗n, withW being an arbitrary
2 × 2 unitary operator. In previous literature, a recursive quantum error correction scheme can be
used to protect k qubits using (k + 1)-qubit ancilla. We implement this scheme on 3-qubit and
5-qubit channels using the IBM quantum computers, where we uncover an error in the previous
paper related to the decomposition of the encoding/decoding operator into elementary quantum
gates.

Here, we present a modified encoding/decoding operator that can be efficiently decomposed into
(a) standard gates available in the qiskit library and (b) basic gates comprised of single-qubit
gates and CNOT gates. Since IBM quantum computers perform relatively better with fewer basic
gates, a more efficient decomposition gives more accurate results. Our experiments highlight the
importance of an efficient decomposition for the encoding/decoding operators and demonstrate the
effectiveness of our proposed schemes in correcting quantum errors.

Furthermore, we explore a special type of channel with error operators of the form σ⊗n
x , σ⊗n

y and

σ⊗n
z , where σx, σy, σz are the Pauli matrices. For these channels, we implement a hybrid quantum

error correction scheme that protects both quantum and classical information using IBM’s quantum
computers. We conduct experiments for n = 3, 4, 5 and show significant improvements compared
to recent work.
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1. Introduction

Quantum information science concerns the use of quantum systems as computational resources to
store, communicate, and process information. One of the obstacles for building quantum computers
is decoherence, which is a process caused by the coupling between a quantum system and its
environment. A pure state, to be used as a computational resource, becomes a dirty mixed state due
to decoherence, which makes the computational outcome unreliable. There are different strategies
to fight against decoherence and quantum error correcting codes (QECC) is one of them. The main
idea of QECC is to embed quantum information into a higher dimensional Hilbert space so that
either

(i) the error acting on the physical qubits may be identified by introducing the error syndrome
measurement qubits, so that the initial quantum information is recovered after applying
appropriate corrections, or

(ii) the error operator acts only on a part of the Hilbert space, keeping the initial quantum
information intact.
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The second QECC scheme is often called the “error-avoiding” coding scheme. Decoherence free
subspace (DFS) and noiseless subsystem (NS) are two popular examples of error-avoiding QECC
schemes [1-14].

In this paper, we consider the second approach to deal with quantum channels in which all
physical qubits involved in coding suffer from the same error operators with a certain probability
distribution. Such a channel is what we refer to as a channel with fully-correlated noise. Mathe-
matically, if we let U(2) be the group of 2× 2 unitary matrices, and µ be a probability measure on
U(2), then a channel with fully correlated noise can be represented as an operator Φ that transforms
an n-qubit state ρ̂ into

(1) Φ(ρ̂) =

∫
W⊗nρ̂(W⊗n)†dµ(W ).

As mentioned in [18], there are two relevant cases in which such error operators are in action;
(i) when the size of a quantum computer is much smaller than the wavelength of the external
disturbances, and (ii) when photonic qubits are sent one by one through an optical fiber with a
fixed imperfection. In both cases, the qubits suffer from the same errors leading to decoherence.
Another instance in which such encoding is useful is when Alice sends quantum information to Bob,
possibly billions of light years away, without knowing which basis vectors Bob employs. In this
case, mismatching of the basis vectors is common for all qubits and such mismatching is regarded
as collective noise.

In [19], an explicit recursive implementation of encoding/decoding circuits for an arbitrary
number n of physical qubits was presented. Remarkably, the scheme depends only on the algebra
generated by the error operators W⊗n with W ∈ U(2), but not affected by the probability measure
µ(W ). The study demonstrates that for an n-qubit channel with n = 2k + 1, the scheme can
protect data encoded in k logical qubits using the other k+ 1 qubits. This leads to the asymptotic
encoding rate of 1/2. In [16], the maximum dimension 2k of the error correction code corresponding
to the subspace in C2n immune to collective noise operators of the form W⊗n was determined. The
study shows that the encoding rate k/n approaches 1 as the positive integer n gets much larger.
Nevertheless, as mentioned in [18], the recursive scheme in [19] is more practical compared to other
schemes; for example, see [11, 20].

In this paper, we implement the recursive QECC scheme proposed in [15] for channels with fully-
correlated noise using the IBM quantum computers and study the mathematical issues associated
with the process. During our investigation, we identify an error in the decomposition of the
encoding/decoding operator into elementary quantum gates as illustrated in the quantum circuits
in [15]; see also [18]. We fix the error by finding a new encoding operator U for the fully-correlated
channels on 3 qubits, which is the base case for the recursive scheme. In particular, the matrix U can
be decomposed into a product of three CNOT gates, a single-qubit gate and two controlled-gates,
which are standard gates available in qiskit—the Python library used to interface with the IBM
quantum computers. We then implement the scheme using the IBM quantum computers for the
fully-correlated channels on 3 qubits and 5 qubits. However, the numerical results vary among
different quantum computers. It turns out that the IBM quantum computers would decompose
the standard gates into more basic gates to run the program, and the decomposition varies on
different machines on different runs. In response, we further decompose our encoding operator
U into a product of 6 CNOT gates and 8 single qubit gates before feeding the circuit into the
IBM quantum computers. Intriguingly, qiskit has an internal algorithm that further adjusts the
decomposition based on the specific machine being utilized.

To deepen our understanding of the errors in the implementation process, we compare our numer-
ical results on different quantum computers and their associated factors such as qubit connections,
gate errors, decoherence time, etc. In Section 2, we will present and analyze these results.
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In Section 3, we consider the special case of fully-correlated channels that use only the error
operators W⊗n for W = I2, σx, σy, σz, where σx, σy, σz are the Pauli matrices and I2 is the 2 × 2
identity matrix. As mentioned before, the general recursive scheme is good for fully correlated
quantum channels with any probability distribution Dµ(U). In this special case, the probabilities
are nonzero only for the four special choices of W , and thus it simplifies the error structure
significantly. As a result, we can have a much more efficient quantum error correction scheme.
In [17], a hybrid quantum error correction scheme was proposed for this special case, where a 1-
qubit ancilla can be used to protect 2k qubits of quantum information, and a 2-qubit ancilla can
be used to protect 2k qubits of quantum information and 2 bits of classical information. While the
scheme was implemented on IBM quantum computers in [17], the results were not satisfactory for
4-qubit and 5-qubit channels. In our study, we present an improved implementation of the hybrid
scheme with significantly better computational results. Furthermore, we analyze the error patterns
of different quantum computers with different qubit connections, gate errors, decoherence time, etc.

Finally, in Section 4, we conclude this paper with a short summary of our work and a discussion
of future research topics.

2. The recurrence scheme and the correction of previous error

Denote the space of all N×N complex matrices by MN and consider the fully-correlated channel
Φ : M2n → M2n defined in (1) with n = 2k + 1. In [19] (see also [18]), a recursive quantum error
correction scheme was presented for protecting k-qubits. Suppose we wish to protect k-qubits of
data, realized as a density matrix ρ in M2k . First, we will embed the information into a higher-

dimensional Hilbert space having initial state ρ ⊗ σ where σ = |u〉〈u| and |u〉 = |0〉⊗k ⊗ |v0〉 is
the product state of k copies of the pure state |0〉 and one arbitrary qubit |v0〉. Then, we apply a
carefully-chosen encoding operator E : M2n →M2n such that the encoded state is equal to E(ρ⊗σ)
and the decoded state of the system after going through the noisy channel is

E−1 ◦ Φ ◦ E(ρ⊗ σ) = ρ⊗
(
|0〉〈0|

)⊗k
⊗ |v1〉〈v1|.

Finally, we can take a partial trace to recover the data state ρ.
It is worth noting that in some scenarios, error correction may need to be done multiple times,

such as periodically when the data state ρ is attacked by the correlation error regularly before the
computation or transmission process is done. In such cases, there is no need to do the encoding
and decoding multiple times, as doing so may cause additional errors. One only needs to let the
encoded state E(ρ⊗ σ) stay in the environment, going through m rounds of error attack, and then
apply the decoding scheme E−1 to obtain the final decoded state

(E−1ΦmE)(ρ⊗ σ) = (E−1ΦE)m(ρ⊗ σ) = ρ⊗
(
|0〉〈0|

)⊗k
⊗ |vm〉〈vm|.

In the following, we will use the IBM quantum computers to implement the recursive quantum
error correction schemes for the fully correlated channel for 3-qubits (k = 1) and 5-qubits (k = 2).

2.1. Three-qubit case. For convenience, we will reorder the positions of the data qubits and the
ancilla qubits. The basic case is when k = 1, and the encoding operation is done by

Ê(|0〉〈0| ⊗ ρ⊗ |v0〉〈v0|) = U
(
|0〉〈0| ⊗ ρ⊗ |v0〉〈v0|

)
U †,

where ρ = |ψ〉〈ψ| is the data qubit to be transmitted, |v0〉 is an arbitrary qubit, and the unitary
matrix U is chosen such that for any W ∈ U(2), we have

(2) U †(W ⊗W ⊗W )U = µW

(
(I2 ⊗W )⊕ FW

)
= µW

(
|0〉〈0| ⊗ (I2 ⊗W ) + |1〉〈1| ⊗ FW

)
,
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for some complex unit µW and some FW ∈M4. The existence of such a U is guaranteed by a result
in representation theory (see [5] and [19]). Thus, for any qubit |ψ〉, we have

(3) U †(W ⊗W ⊗W )U
(
|0〉|ψ〉|v0〉

)
= µW

[
(I2 ⊗W )⊕ FW

](
|0〉|ψ〉|v0〉

)
= |0〉|ψ〉(µWW |v0〉).

In other words, one can use an arbitrary qubit |v0〉 and the qubit |0〉 to protect a given quantum
bit |ψ〉. This effect is illustrated in the circuit diagram in Figure 1(a). This scheme was utilized in
[18] with the unitary matrix U given in Figure 1(b).

|v0〉

U

W

U †

µWW |v0〉

|ψ〉 W |ψ〉

|0〉 W |0〉

(a) The circuit diagram of (3).



0 0 0 0 1 0 0 0√
2/3 0 0 0 0

√
1/3 0 0

−
√

1/6 0
√

1/2 0 0
√

1/3 0 0

0
√

1/6 0
√

1/2 0 0
√

1/3 0

−
√

1/6 0 −
√

1/2 0 0
√

1/3 0 0

0
√

1/6 0 −
√

1/2 0 0
√

1/3 0

0 −
√

2/3 0 0 0 0
√

1/3 0
0 0 0 0 0 0 0 1


(b) A unitary matrix U satisfying (2).

Figure 1

0

1

2

|v〉 σz

|ψ〉 Ry(
−π
2 )

|0〉 Ry(θ)

Ry(α) = exp(−iα2σy)

=

(
cos(α2 ) − sin(α2 )

sin(α2 ) cos(α2 )

)
Here θ satisfies sin( θ2) = −

√
2/3.

Figure 2. The (erroneous) circuit diagram presented in [19] for the decomposition
of the matrix in Figure 1(b).

To implement the quantum error correction scheme, it is necessary to decompose the encoding
operator U into elementary gates/operations that the IBM quantum computers can carry out. In
[19], the matrix U in Figure 1(b) was supposed to have a simple realization by the circuit diagram in
Figure 2, where the part surrounded by the broken line is not needed if |v〉 = |0〉, as claimed in the
paper. However, we found that the product of the 6 elementary gates do not actually produce the
matrix U as asserted (see Appendix 1). With some effort, we identified a different decomposition
of the unitary matrix in Figure 1(b) to construct a circuit diagram for implementation. However, it
requires 9 standard gates in the IBM quantum computer library including the use of a Toffoli gate,
and the implementation of the scheme using the IBM quantum computers did not yield satisfactory
results.

To get around the problem, we modify the encoding matrix U , satisfying equation (2), given by

(4) U =



0 0 0 0 0 0 0 −1√
2/3 0 0 0

√
1/3 0 0 0

−
√

1/6 0
√

1/2 0
√

1/3 0 0 0

0
√

1/6 0
√

1/2 0 −
√

1/3 0 0

−
√

1/6 0 −
√

1/2 0
√

1/3 0 0 0

0
√

1/6 0 −
√

1/2 0 −
√

1/3 0 0

0 −
√

2/3 0 0 0 −
√

1/3 0 0
0 0 0 0 0 0 1 0


.
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It is worth noting that the modification of the unitary matrix was based on the fact that any
unitary matrix U with the first four columns equal to that of the unitary matrix in Figure 1(b) will
satisfy equation (2).

Now, for the matrix U in (4), we have U = P1P2P3Q1Q2Q3, where Q1 is the single qubit gate
Q1 = σz ⊗ I4; while Q2 and Q3 are the controlled gates

Q2 =
1√
2

(
I2 −I2
I2 I2

)
⊕ I4 Q3 =


−
√

1
3 0

√
2
3 0

0 1 0 0√
2/3 0

√
1/3 0

0 0 0 1

⊗ I2;
and P1, P2 and P3 are the CNOT gates

P1 =


0 0 I2 0
0 I2 0 0
I2 0 0 0
0 0 0 I2

 , P2 = I4 ⊕ (I2 ⊗ σx), P3 = I2 ⊗


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

This decomposition is illustrated in the circuit diagram in Figure 3. (See Appendix 2 for a Matlab
script to verify this decomposition.) Moving forward, we will refer to this as the standard gates
decomposition of U .

=

|q0〉

U

|q0〉 σz

|q1〉 |q1〉 Ry(
π
2 )

|q2〉 |q2〉 Ry(α)σx

Figure 3. Here, U is the matrix in (4) and α = 2 arcsin(
√

1/3).

Using this decomposition, we implement the error correction scheme illustrated in Figure 1(a)
using six IBM quantum computers: ibmq valencia, ibmq santiago, ibmq vigo, ibmq 5 yorktown,
ibmq ourense and ibmq athens. The results are shown in Figure 4(a). Here, we set W to be the
Hadamard gate H defined as:

H =
1√
2

(
1 1
1 −1

)
and we measure only the data qubit (middle qubit). The results are quite satisfactory as shown in
Figure 4(a). Specifically, the protected qubit is set to |0〉 and most outputs show a measurement
of |0〉 higher than 80%. Furthermore, we also performed experiments using alternative choices of
W and obtained comparable results.

It turns out the IBM quantum computers will further decompose the standard gates into basic
gates when they execute the encoding and decoding scheme. These decompositions will usually
create many CNOT gates. (For example, see the circuit diagrams produced by ibmq valencia in
Figure 19(b) of Appendix 3). In view of this, we try to improve the accuracy by decomposing U
into a product of 6 CNOT gates and 8 single qubit gates as shown in Figure 5. (See Appendix 2
for a Matlab script to verify this decomposition.) From here on out, we refer to this decomposition
of U as the basic gates decomposition of U .

As shown in Figure 4(b), we obtain improvements in all the machines except for ibmq valencia

when we use the basic gates decomposition. It is also worth noting that the IBM quantum computers
will still make small changes before carrying out the user-specified decomposition of the scheme.
(See Figure 19(d) in Appendix 3.)
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(a) (b)

Figure 4

=

|q0〉

U

|q0〉 σz

|q1〉 |q1〉 σx Ry(
π
4 ) Ry(−π

4 ) σx

|q2〉 |q2〉 Ry(−α
2 ) σxRy(

α
2 ) σx

Figure 5. Decomposition of the matrix U in (4) as a product of 6 CNOT gates
and 8 single qubit gates.

2.2. Five-qubit case. As shown in [19] and [18], one can then apply the error correction scheme
recursively to protect two qubits of data using a 3-qubit ancilla having a product state |0〉|0〉|v〉,
where |v〉 is an arbitrary qubit. The circuit diagram used in the error correction scheme is shown
in Figure 6. Recursively, we can protect k data qubits using k+1 ancillary qubits having a product

state |0〉⊗k|v〉, where |v〉 is an arbitrary qubit.

|0〉

Û

Φ

Û †

|0〉

|ψ1〉 |ψ1〉

|v〉

U U †

|v̂〉

|ψ2〉 |ψ2〉

|0〉 |0〉

|0〉 Ry(θ)σx W σxRy(−θ) |0〉

|ψ1〉 Ry(
π
2 ) W Ry(−π

2 ) |ψ1〉

|v〉 σz σz W σz σz |v̂〉

|ψ2〉 Ry(
π
2 ) W Ry(−π

2 ) |ψ2〉

|0〉 Ry(θ)σx W σxRy(−θ) |0〉

Figure 6. The circuit for the recursive coding scheme for 2 protected data qubits
|ψ1〉 and |ψ2〉.

Setting W = H, |ψ1〉 = |ψ2〉 = |0〉, and using the decomposition in Figure 6, we get the results
shown in Figure 7 upon measurement of the data qubits (second and fourth qubit positions). On
the other hand, if we utilize the decomposition of U given in Figure 5, we obtain the results shown
in Figure 8. We observe that the results using the basic gates decomposition of U in Figure 5 are
worse than those using the standard gates decomposition of U in Figure 3. This suggests that the
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internal algorithm used by the IBM computers to decompose standard gates into basic gates work
well with the machines even though more CNOT gates are used.

Figure 7. 5-qubit QECC with circuit diagram illustrated in Figure 6

Figure 8. 5-qubit QECC using the basic gates decomposition of U .

We conducted the same experiments a few more times and used a variety of error operators;
readers can view the results of these additional experiments in Appendix 4. The Jupyter notebooks
used to run these experiments are also available in the following Github repository:

https://github.com/dcpelejo/QECC/tree/main/WWW%20experiments

To further understand the performance of our scheme on different IBM quantum computers, we
compare the results in relation to factors such as gate errors, qubit connections, decoherence time
of the machines.
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Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error

2 ibmqx2 28 47 23.4 0.44666 32 ibmq vigo 52 43 24.2 0.59411
3 ibmqx2 28 47 23.5 0.44995 33 ibmq vigo 51 43 24.7 0.61817
4 ibmqx2 28 47 23.8 0.45362 34 ibmq vigo 74 48 24.3 0.62061
5 ibmqx2 28 42 23.5 0.4574 35 ibmq vigo 57 37 24.7 0.6239
6 ibmqx2 28 42 23.6 0.4646 36 ibmq vigo 56 48 24.7 0.63574
7 ibmqx2 24 37 23.7 0.50671 37 ibmq vigo 55 32 24.7 0.63647
8 ibmqx2 24 37 23.6 0.51978 38 ibmq vigo 46 37 24.5 0.63782
9 ibmqx2 24 32 23.6 0.52954 39 ibmq vigo 59 47 25 0.64087
10 ibmqx2 24 37 23.6 0.53271 40 ibmq vigo 56 43 24.3 0.65393
11 ibmqx2 28 47 23.6 0.53491 41 ibmq vigo 65 37 24.8 0.65563
12 ibmqx2 24 32 23.6 0.53662 42 ibmq vigo 70 47 24.6 0.65857
13 ibmqx2 24 32 23.4 0.53674 43 ibmq vigo 61 48 24.5 0.65943
14 ibmqx2 28 47 23.7 0.55128 44 ibmq vigo 63 37 24.6 0.66198
15 ibmqx2 28 47 23.6 0.55139 45 ibmq vigo 75 48 24.7 0.67016
16 ibmqx2 24 37 23.7 0.55212 46 ibmq vigo 50 48 24.4 0.67163
17 ibmqx2 28 47 23.7 0.55249 47 ibmq vigo 75 48 24.2 0.67688
18 ibmqx2 28 47 23.5 0.55774 48 ibmq vigo 55 48 24.2 0.67945
19 ibmqx2 24 37 23.8 0.56031 49 ibmq vigo 57 37 24.7 0.68066
20 ibmqx2 24 37 23.3 0.5647 50 ibmq vigo 66 47 24.4 0.68579
21 ibmqx2 28 47 23.7 0.5697 51 ibmq vigo 76 37 24.4 0.69226
22 ibmqx2 28 47 23.6 0.57092 52 ibmq vigo 75 32 24.3 0.69812
23 ibmqx2 24 37 23.7 0.5719 53 ibmq vigo 77 37 24.5 0.70642
24 ibmqx2 28 47 23.7 0.57239 54 ibmq vigo 76 37 24.4 0.70862
25 ibmqx2 28 47 23.5 0.57702 55 ibmq vigo 82 37 24.7 0.71264
26 ibmqx2 24 37 23.5 0.57886 56 ibmq vigo 85 32 24.4 0.71852
27 ibmqx2 24 37 23.5 0.58618 57 ibmq vigo 71 47 24.6 0.71862
28 ibmqx2 24 37 23.5 0.59118 58 ibmq vigo 79 37 24.4 0.71973
29 ibmqx2 24 37 23.6 0.59143 59 ibmq vigo 83 37 24.2 0.72742
30 ibmqx2 24 37 23.4 0.59949 60 ibmq vigo 78 37 24.6 0.7284

Table 1

Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error

61 ibmq valencia 54 47 26.2 0.44653 91 ibmq santiago 56 48 29.4 0.08997
62 ibmq valencia 76 37 26.1 0.46509 92 ibmq santiago 47 42 29.2 0.24755
63 ibmq valencia 61 43 26.2 0.48779 93 ibmq santiago 43 47 29.3 0.2666
64 ibmq valencia 58 48 26.4 0.48951 94 ibmq santiago 41 47 30.1 0.27209
65 ibmq valencia 52 48 26.3 0.50683 95 ibmq santiago 41 47 29.3 0.27466
66 ibmq valencia 51 43 26.2 0.5072 96 ibmq santiago 36 37 29.4 0.27686
67 ibmq valencia 69 48 26.7 0.54016 97 ibmq santiago 47 37 29.9 0.30688
68 ibmq valencia 57 37 26.4 0.54566 98 ibmq santiago 64 44 29.9 0.33849
69 ibmq valencia 61 47 27.2 0.55395 99 ibmq santiago 41 47 29.3 0.34558
70 ibmq valencia 73 43 26.3 0.5561 100 ibmq santiago 45 42 29.3 0.35779
71 ibmq valencia 50 48 28.3 0.55689 101 ibmq santiago 39 32 29.6 0.36523
72 ibmq valencia 61 48 26.2 0.55737 102 ibmq santiago 42 37 30 0.36963
73 ibmq valencia 75 48 26.2 0.5642 103 ibmq santiago 39 37 29.7 0.37707
74 ibmq valencia 73 48 26.5 0.56653 104 ibmq santiago 45 47 30 0.37964
75 ibmq valencia 58 37 26.5 0.56811 105 ibmq santiago 41 47 30.2 0.40259
76 ibmq valencia 55 37 26.6 0.57018 106 ibmq santiago 75 48 29.7 0.40746
77 ibmq valencia 65 47 27 0.57727 107 ibmq santiago 39 37 29.3 0.41809
78 ibmq valencia 57 37 25.7 0.59423 108 ibmq santiago 81 49 29.3 0.42933
79 ibmq valencia 67 47 26.5 0.59656 109 ibmq santiago 76 49 29.5 0.43847
80 ibmq valencia 79 37 26.6 0.60193 110 ibmq santiago 64 49 29.7 0.4486
81 ibmq valencia 48 32 26.3 0.60865 111 ibmq santiago 42 37 29.5 0.45057
82 ibmq valencia 57 32 25.8 0.61817 112 ibmq santiago 70 32 29.2 0.45972
83 ibmq valencia 77 32 26.2 0.62121 113 ibmq santiago 90 49 29.3 0.47802
84 ibmq valencia 82 37 26.9 0.62414 114 ibmq santiago 37 37 29.2 0.47998
85 ibmq valencia 79 37 28.8 0.62793 115 ibmq santiago 37 37 29.4 0.48816
86 ibmq valencia 78 37 26.7 0.63269 116 ibmq santiago 89 37 29.5 0.49084
87 ibmq valencia 76 37 25.6 0.64087 117 ibmq santiago 86 37 29.6 0.49268
88 ibmq valencia 52 37 26.4 0.64539 118 ibmq santiago 98 37 29.7 0.50769
89 ibmq valencia 76 37 26.4 0.65515 119 ibmq santiago 98 37 29.3 0.51819
90 ibmq valencia 75 48 26.7 0.67785 120 ibmq santiago 46 32 29.3 0.52808

Table 2

3. Correlated channels with error operators σ⊗nx , σ⊗ny , σ⊗nz

In [17], a hybrid quantum error correction scheme for fully-correlated channels with error op-
erators σ⊗nx , σ⊗ny , σ⊗nz was implemented using the IBM quantum computers. Theoretically, this
scheme allows the use of a single arbitrary ancilla to protect n− 1 data qubits if n is odd, and use
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Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error

121 ibmq london 51 43 26.2 0.42481 151 ibmq ourense 58 43 24.4 0.44519
122 ibmq london 51 48 27 0.46583 152 ibmq ourense 54 43 24.7 0.46521
123 ibmq london 55 48 26.7 0.53126 153 ibmq ourense 51 48 24.5 0.47558
124 ibmq london 69 48 26.1 0.53809 154 ibmq ourense 54 48 24.4 0.47607
125 ibmq london 56 47 26 0.57495 155 ibmq ourense 50 48 24.7 0.48536
126 ibmq london 75 48 26.2 0.5896 156 ibmq ourense 55 43 24.6 0.50342
127 ibmq london 56 48 26.9 0.60388 157 ibmq ourense 51 48 24.3 0.51037
128 ibmq london 73 47 26.4 0.61389 158 ibmq ourense 43 37 24.5 0.51086
129 ibmq london 57 37 26.5 0.61646 159 ibmq ourense 57 48 24.4 0.51136
130 ibmq london 70 42 26.5 0.61828 160 ibmq ourense 67 48 24.4 0.5127
131 ibmq london 49 37 26.2 0.61963 161 ibmq ourense 44 32 24.6 0.52661
132 ibmq london 49 37 26.1 0.62097 162 ibmq ourense 51 48 24.6 0.53199
133 ibmq london 60 32 26.2 0.62988 163 ibmq ourense 67 37 24.7 0.55139
134 ibmq london 68 32 26.7 0.63488 164 ibmq ourense 75 48 24.9 0.58118
135 ibmq london 75 43 26.2 0.63574 165 ibmq ourense 75 48 24.6 0.58545
136 ibmq london 73 48 26.2 0.65588 166 ibmq ourense 75 48 24.3 0.59705
137 ibmq london 56 48 26.9 0.66662 167 ibmq ourense 55 37 24.6 0.59901
138 ibmq london 73 37 26.5 0.67187 168 ibmq ourense 73 47 24.6 0.60351
139 ibmq london 75 48 27.1 0.67663 169 ibmq ourense 77 37 24.5 0.61182
140 ibmq london 61 37 27.2 0.68847 170 ibmq ourense 70 37 24.8 0.61487
141 ibmq london 70 32 25.8 0.69874 171 ibmq ourense 79 32 24.7 0.62146
142 ibmq london 84 49 26.2 0.70264 172 ibmq ourense 77 37 24.5 0.63
143 ibmq london 85 37 26 0.70374 173 ibmq ourense 70 37 24.5 0.64563
144 ibmq london 76 37 26 0.70727 174 ibmq ourense 82 37 24.6 0.65759
145 ibmq london 77 37 26.2 0.7091 175 ibmq ourense 79 37 24.5 0.66126
146 ibmq london 76 37 26.8 0.71545 176 ibmq ourense 73 37 24.3 0.6615
147 ibmq london 77 37 26.4 0.72277 177 ibmq ourense 76 32 24.9 0.66333
148 ibmq london 71 47 26.6 0.72364 178 ibmq ourense 77 37 24.7 0.66407
149 ibmq london 77 37 26.2 0.73962 179 ibmq ourense 74 48 24.7 0.66541
150 ibmq london 78 37 27.4 0.75379 180 ibmq ourense 83 37 24.3 0.67969

Table 3

Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error Machine No. of
CNOTS

No. of
SQG

Run Time
(sec)

Error

181 ibmq essex 56 48 28.5 0.46703 211 ibmq burlington 67 37 27.5 0.59753
182 ibmq essex 53 44 27.7 0.49805 212 ibmq burlington 56 48 27 0.64014
183 ibmq essex 59 47 26.3 0.50977 213 ibmq burlington 66 47 27.7 0.65491
184 ibmq essex 54 48 26.8 0.50977 214 ibmq burlington 54 48 27.5 0.66919
185 ibmq essex 84 37 26.2 0.52673 215 ibmq burlington 54 43 26.6 0.67151
186 ibmq essex 66 47 27.6 0.57995 216 ibmq burlington 74 48 27.1 0.67774
187 ibmq essex 55 37 29.5 0.58056 217 ibmq burlington 70 32 26.5 0.67883
188 ibmq essex 75 48 26 0.58582 218 ibmq burlington 74 48 26.8 0.67956
189 ibmq essex 57 37 26 0.58776 219 ibmq burlington 74 43 26.4 0.68115
190 ibmq essex 73 47 26.1 0.59496 220 ibmq burlington 74 48 27.3 0.68225
191 ibmq essex 70 37 29.9 0.60022 221 ibmq burlington 63 37 26.2 0.68555
192 ibmq essex 70 37 25.8 0.60949 222 ibmq burlington 76 43 26.7 0.68897
193 ibmq essex 72 48 28.8 0.61486 223 ibmq burlington 63 37 26.6 0.69165
194 ibmq essex 57 37 26.7 0.61547 224 ibmq burlington 61 48 28.5 0.69543
195 ibmq essex 70 32 27 0.61572 225 ibmq burlington 84 49 28.5 0.69678
196 ibmq essex 66 42 29.1 0.61621 226 ibmq burlington 70 32 26.6 0.70667
197 ibmq essex 56 48 27.5 0.62451 227 ibmq burlington 75 32 26.4 0.70788
198 ibmq essex 61 32 27 0.63611 228 ibmq burlington 71 47 28.5 0.71106
199 ibmq essex 73 48 27.2 0.63977 229 ibmq burlington 58 37 27.3 0.71289
200 ibmq essex 55 37 29.2 0.64588 230 ibmq burlington 61 37 26.8 0.71729
201 ibmq essex 79 37 27.9 0.64735 231 ibmq burlington 61 37 28.1 0.71936
202 ibmq essex 79 44 28.9 0.64807 232 ibmq burlington 70 47 26.5 0.71997
203 ibmq essex 76 37 27.4 0.65466 233 ibmq burlington 75 48 27.6 0.72449
204 ibmq essex 78 37 28.8 0.65845 234 ibmq burlington 79 37 27.3 0.7262
205 ibmq essex 73 47 26.8 0.66565 235 ibmq burlington 76 37 28 0.72791
206 ibmq essex 76 37 26.8 0.67787 236 ibmq burlington 55 37 27.3 0.73254
207 ibmq essex 74 47 26 0.68432 237 ibmq burlington 76 37 27.6 0.73791
208 ibmq essex 77 32 27.5 0.69323 238 ibmq burlington 76 37 27.4 0.74341
209 ibmq essex 65 47 27.9 0.71521 239 ibmq burlington 84 49 27.7 0.74366
210 ibmq essex 57 37 29.1 0.71863 240 ibmq burlington 76 37 27.6 0.77649

Table 4

two classical bits to protect n − 2 data qubits and yet preserving the two classical bits. However,
their numerical experiments using the IBM quantum computers failed to produce good results for
n = 4 and n = 5. Here, we conducted additional experiments and discovered that we can indeed
obtain reasonable results as shown in Appendix 4. Conceivably, the IBM quantum computers may
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have undergone improvements since our initial implementation. For ease of reference, we provide
the circuit diagrams for the recursive scheme in Figures 9-12.

|q0〉 H
Φ

H |q0〉

|q1〉 |q1〉

Figure 9. Hybrid QECC when n = 2 and |q1q0〉 ∈ {|00〉, |01〉, |10〉, |11〉}

|q0〉

Φ

|q0〉
|q1〉 |q1〉
|q2〉 |q̂2〉

Figure 10. Hybrid QECC when n = 3, where |q2〉 can be any qubit state

|q0〉

Pn−2

Φ

P †n−2

|q0〉
...

...

|qn−3〉 |qn−3〉

|qn−2〉 |qn−2〉

|qn−1〉 |q̂n−1〉

Figure 11. Hybrid QECC for odd n, where |qn−1〉 can be any qubit state

|q0〉

Pn−1
Φ

P †n−1

|q0〉
...

...

|qn−2〉 H H |qn−2〉

|qn−1〉 |qn−1〉

Figure 12. Hybrid QECC for even n and |qn−1qn−2〉 ∈ {|00〉, |10〉, |01〉, |11〉}

Here Pn denotes the encoding matrix for the n-qubit case. That is, P2 = 1√
2
(I2 ⊗ σz + σx ⊗ σx)

and P3 is the permutation matrix such that for any a, b, c ∈ {0, 1}, P3|abc〉 = |a⊕ c〉|a⊕ b〉|a⊕ b⊕ c〉
or

P3

[
v000 v001 v010 v011 v100 v101 v110 v111

]T
=
[
v000 v111 v101 v010 v110 v001 v011 v100

]T
and for k ≥ 2,

P2k = (I2 ⊗ P2k−1)(P2 ⊗ I22k−2) and P2k+1 = (I4 ⊗ P2k−1)(P3 ⊗ I22k−2)

3.1. Experimental results using Qiskit. The Jupyter notebooks used to run these experiments
are also available in the following Github repository:

https://github.com/dcpelejo/QECC/tree/main/XYZ%20hybrid%20experiments
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3.1.1. Pure state, arbitrary state, and improvements. First, we implemented the QECC scheme for
n = 3 as illustrated in Figure 10. The results improved those in [17] as shown in Figure 13(a).
Note that experiments on this section were done on ibmq burlington.

(a) |q2q1q0〉 = |000〉 (b) |q2q1q0〉 = Ry( 3π
4 )|0〉 ⊗ |00〉

Figure 13. 3-qubit QECC with circuit diagram illustrated in (10)

Besides using the pure state |0〉 as the protection qubit, we may use any other qubit state.
From Figure 13(b), we observe that the results using the protection qubit |q2〉 = |0〉 and using
|q2〉 = Ry(

3π
4 )|0〉 are fairly similar. Since the quantum channel only has error operator W⊗n for

W = {I2, σx, σy, σz}, it is not surprising that we have a more effective scheme compared to the
one in Section 2. Moreover, we only need to use one ancilla qubit to protect two qubits, and the
experimental results are better than that of the general scheme which uses three ancilla qubits to
protect two qubits as shown in Section 2.2.

(a) |q3q2q1q0〉 = |0000〉 (b) |q3q2q1q0〉 = Ry( 3π
4 )|0〉 ⊗Ry(π4 )|0〉 ⊗ |00〉

Figure 14. 4-qubit QECC with circuit diagram illustrated in (12)
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Next, we implemented the scheme for n qubits with n = 4, 5. Now, for the 4-qubit channel, we
may use two pure classical ancillas or two arbitrary ancillas to protect two qubits. The experimental
results are similar as shown in 14a and 14b. Note that if we want to protect two classical bits of
information encoded in the ancillas as well, then we must use two pure classical ancillas. The result
of experiments where the protection ancillas |q3q2〉 are set to be |01〉, |10〉 or |11〉 can be found in
Appendix 5.

(a) |q4q3q2q1q0〉 = |00000〉

(b) |q4q3q2q1q0〉 = Ry( 3π
4 )|0〉 ⊗ |0000〉

Figure 15. 5-qubit QECC with circuit diagram illustrated in (11)

Figure 15(a)-(b) show the 5-qubit scheme with pure classical and arbitrary state protection
qubits respectively. In [17], the experimental results for 4 and 5-qubit schemes were not satisfactory.
However, our new experiments produced significantly improved outcomes, as demonstrated in our
current findings.

3.1.2. Errors across different IBM machines. We note that our implementation uses only CNOT
gate and Hadamard gates, which are basic gates in the IBM quantum computers. We posited that
the choice of whether to use arbitrary or pure classical state protection qubits will not impact our
results. Therefore, in this subsection, we will focus on letting the protection qubits be any arbitrary
state since, in practice, an arbitrary qubit is less expensive to prepare than pure classical ones.

For our numerical experiments in this subsection, we use 5 different IBM machines: ibmq santiago,
ibmq vigo,ibmq valencia, ibmq ourense, and ibmq yorktown. In [17], ibmq yorktown does not
yield satisfactory results in 4 and 5-qubit experiments. However, we can see the improvement of
this machine now, as it produces reasonable results using our implementation.
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(a) σ⊗3
x error (b) σ⊗3

y error (c) σ⊗3
z error

Figure 16. Results of σ⊗3x , σ⊗3y , σ⊗3z errors with arbitrary state protection in 5 IBM
machines

We would like to note that since the two protection qubits are corrupted in the 4-qubit scheme,
only the other two qubits are measured.

(a) σ⊗4
x error (b) σ⊗4

y error (c) σ⊗4
z error

Figure 17. Results of σ⊗4x , σ⊗4y , σ⊗4z errors with arbitrary state protection in 5 IBM
machines

From the figures above, we can conclude that ibmq ourense is the best machine for 3-qubit
schemes and ibmq santiago is best for 4 and 5 qubit schemes. Also, results from all machines
match our predictions.

4. Conclusion and further research

In our study, we implemented a general recursive quantum error correction scheme for fully-
correlated channels on n-qubits with error operators of the form W⊗n using different IBM quantum
computers. This scheme was proposed in earlier papers, where an erroneous decomposition of the
encoding operator was given for the 3-qubit channels. We modified the encoding operator so that
it can be decomposed as the product of simple standard quantum gates which the IBM quantum
computers can readily implement. We compared the errors on different IBM quantum computers,
and tried to find out the key factors that will affect the accuracy of the results. Furthermore, we
decomposed the encoding matrix as the product of basic gates, namely, CNOT gates and single
unitary gates, and improved the results in all but one of the IBM quantum computers we used.
Then, we implement the recurrence scheme for 5-qubit channels. It was somewhat surprising
that better results were obtained by the standard gates decomposition instead of the basic gate
decomposition despite the fact that much more CNOT gates were used in the former decomposition.

We also implemented a hybrid quantum error correction scheme for the subclass of fully-correlated
channels where the error operators has the special form σ⊗nx , σ⊗ny , σ⊗nz for the n-qubit channels
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(a) σ⊗5
x error

(b) σ⊗5
y error

(c) σ⊗5
z error

Figure 18. Results of σ⊗5x , σ⊗5y , σ⊗5z errors with arbitrary state protection in 5 IBM
machines

when n = 4, 5. The scheme was implemented and good results were obtained, which covered cases
a previous paper failed to handle.

There are a number of future research directions worth pursuing and we suggest a few of them
in the following.
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(1) Implement the QECC schemes in our study for n-qubit channels for higher n by improving
our schemes or finding better quantum computers.

(2) Implement other quantum error correction schemes on IBM or other quantum computers.
(3) In our study, we performed numerical experiments using different IBM quantum computers

aiming to test how the architecture (e.g. network connections between the qubit nodes,
range of approximate gate or measurement errors) of the quantum computers may perform
differently, and to examine if some general beliefs in quantum computing are valid in
practice. For instance, in general, one would believe that the use of more CNOT gates will
cause more errors. In our case, we manually found a decomposition of our encoding and
decoding operators using as few CNOT gates as possible. However, different IBM quantum
computers may provide different decompositions, often with more CNOT gates. Yet, the
accuracy is comparable or even better than. So, it is of interest to examine the issues of
how to optimize the performance of numerical implementations of quantum algorithms in
connection to the hardware.

(4) While our study focused on comparing different IBM quantum computers, as pointed out by
the referee, it would be interesting to perform experiments of our scheme on other quantum
computing platforms such as Origin Quantum.
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Appendix 1. The circuit decomposition in Figure 2 does not produce the unitary
matrix in Figure 1b.

We can construct the simple gates corresponding to Yθ, Yπ/4, I2 ⊗ I2 ⊗ σz, and the three control
gates, as U1, U2, . . . , U6 as follows.

a1 = [1 -sqrt(2)]’/sqrt(3); a2 = [sqrt(2), 1]’/sqrt(3);

b1 = [1 -1]’/sqrt(2); b2 = [1 1]’/sqrt(2);

e0 = [1 0]’; e1 = [0 1]’;

U1 = [kron(e0,kron(e0,e0)),kron(e0,kron(e0,e1)),kron(a1,kron(e1,e0)),kron(a1,kron(e1,e1)),

kron(e1,kron(e0,e0)), kron(e1,kron(e0,e1)), kron(a2,kron(e1,e0)), kron(a2,kron(e1,e1))];

U2 = [kron(e0,kron(b1,e0)),kron(e0,kron(b1,e1)),kron(e0,kron(b2,e0)),kron(e0,kron(b2,e1)),

kron(e1,kron(e0,e0)), kron(e1,kron(e0,e1)), kron(e1,kron(e1,e0)), kron(e1,kron(e1,e1))];

Z = [1 0;0 -1];

U3 = kron(eye(2), kron(eye(2), Z) );

U4 = [kron(e0,kron(e0,e0)),kron(e1,kron(e0,e1)),kron(e0,kron(e1,e0)),kron(e1,kron(e1,e1)),

kron(e1,kron(e0,e0)), kron(e0,kron(e0,e1)), kron(e1,kron(e1,e0)), kron(e0,kron(e1,e1))];

U5 = [kron(e0,kron(e0,e1)),kron(e0,kron(e0,e0)),kron(e0,kron(e1,e0)),kron(e0,kron(e1,e1)),

kron(e1,kron(e0,e1)), kron(e1,kron(e0,e0)), kron(e1,kron(e1,e0)), kron(e1,kron(e1,e1))];

U6 = [kron(e0,kron(e0,e0)),kron(e0,kron(e0,e1)),kron(e0,kron(e1,e0)),kron(e0,kron(e1,e1)),

kron(e1,kron(e1,e0)), kron(e1,kron(e1,e1)), kron(e1,kron(e0,e0)), kron(e1,kron(e0,e1))];

U6*U5*U4*U3*U2*U1 =

0 0 0 0 0 -1.0000 0 0

0.7071 0 0.4082 0 0 0 0.5774 0

-0.7071 0 0.4082 0 0 0 0.5774 0

0 0 0 0.8165 0 0 0 -0.5774

0 0 -0.8165 0 0 0 0.5774 0

0 0.7071 0 -0.4082 0 0 0 -0.5774

0 -0.7071 0 -0.4082 0 0 0 -0.5774

0 0 0 0 1.0000 0 0 0

[sqrt(2/3), sqrt(1/3), sqrt(1/6), 1/sqrt(2)] = [0.8165, 0.5774, 0.4082, 0.7071]

So, we see that U 6= U6U5U4U3U2U1.
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Appendix 2. Matlab scripts to verify the circuit decompositions of the matrix U .

Decomposition in Figure 3.

U=[0,0,0,0,0,0,0,-1; sqrt(2/3),0,0,0,sqrt(1/3),0,0,0;

-sqrt(1/6),0,sqrt(1/2),0,sqrt(1/3),0,0,0; 0,sqrt(1/6),0,sqrt(1/2),0,-sqrt(1/3),0,0;

-sqrt(1/6),0,-sqrt(1/2),0,sqrt(1/3),0,0,0; 0,sqrt(1/6),0,-sqrt(1/2),0,-sqrt(1/3),0,0;

0,-sqrt(2/3),0,0,0,-sqrt(1/3),0,0; 0,0,0,0,0,0,1,0];

E0=[1,0;0,0]; E1=[0,0;0,1]; Z=[1,0;0,-1]; X=[0,1;1,0];

P1=kron(eye(2),kron(E1,eye(2)))+kron(X,kron(E0,eye(2)));

P2=kron(E1,kron(eye(2),X))+kron(E0,eye(4));

P3=kron(eye(2),kron(X,E1))+kron(eye(2),kron(eye(2),E0));

Q1=kron(eye(4),Z);

A2=sqrt(1/2)*[1,-1;1,1];

Q2=kron(E0,kron(A2,eye(2)))+kron(E1,eye(4));

A3=[-sqrt(1/3),sqrt(2/3);sqrt(2/3),sqrt(1/3)];

Q3=kron(A3,kron(E0,eye(2)))+kron(eye(2),kron(E1,eye(2)));

P1*P2*P3*Q1*Q2*Q3-U %must close to zero matrix

Decomposition in Figure 5.

a=pi/8;

t=asin(sqrt(1/3))/2; %alpha/4

A=[cos(a),-sin(a);sin(a),cos(a)]; %Ry(pi/4)

B=[cos(t),-sin(t);sin(t),cos(t)]; %Ry(alpha/2)

S1=kron(B’,eye(4));

S2=kron(X*B,eye(4));

S3=kron(eye(2),kron(A,eye(2)));

S4=kron(eye(2),kron(A’,eye(2)));

X1=kron(eye(2),kron(X,eye(2)));

X2=kron(X,eye(4));

Z0=kron(eye(4),Z);

%C-control-target

C12=kron(X,kron(E1,eye(2)))+kron(eye(2),kron(E0,eye(2)));

C21=kron(E1,kron(X,eye(2)))+kron(E0,kron(eye(2),eye(2)));

C01=kron(eye(2),kron(X,E1))+kron(eye(2),kron(eye(2),E0));

C20=kron(E1,kron(eye(2),X))+kron(E0,kron(eye(2),eye(2)));

X1*C12*C20*C01*Z0*S4*X2*C21*S3*C21*S2*C12*S1*X1-U %must close to zero matrix
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Appendix 3. Circuits Generated by IBMQ

Here we demonstrate how the IBM quantum machines may process the same user-input circuit
differently for two separate runs.

(a) user-input circuit diagram to implement QECC scheme

(b) Two different circuits generated by the transpiler for ibmq valencia given the input circuit in (a).

(c) user-input circuit diagram to implement QECC scheme

(d) Two different circuits generated by the transpiler for ibmq valencia given the input circuit in (c).

Figure 19
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Appendix 4. Results from the 5-qubit QECC implementation on the IBM Quantum
Computers

In this appendix, we present more experimental results for the implementation of the 5-qubit
QECC presented in Section 2.2. Each experiment is run three times in the IBM quantum computers
ibmq valencia, ibmq santiago, ibmq vigo, ibmq 5 yorktown, ibmq ourense and ibmq athens.
The leftmost histograms show the best (least error or highest probability for | ∗ 0 ∗ 0∗〉) of the three
runs, while the rightmost histogram shows the worst of the three runs.

Figure 20. using the standard gate decomposition of U and W = H

Figure 21. using the basic gate decomposition of U and W = H

Figure 22. using the standard gate decomposition of U and W = X

Figure 23. using the basic gate decomposition of U and W = X



QUANTUM ERROR CORRECTION SCHEME FOR FULLY-CORRELATED NOISE 21

Figure 24. using the standard gate decomposition of U and W = Y

Figure 25. using the basic gate decomposition of U and W = Y

Figure 26. using the standard gate decomposition of U and W = Z

Figure 27. using the basic gate decomposition of U and W = Z

Figure 28. using the standard gate decomposition of U and W = I
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Figure 29. using the basic gate decomposition of U and W = I

Appendix 5.

The following illustrate the results obtained in implementing the 4-qubit QECC illustrated in
equation )12) using |q3q2〉 ∈ {01, 10, 11} and the IBM machines ibmq santiago and ibmq athens.

(a) using ibmq santiago and |q3q2q1q0〉 = |0100〉

(b) using ibmq athens and |q3q2q1q0〉 = |0100〉

Figure 30
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(a) using ibmq santiago and |q3q2q1q0〉 = |1000〉

(b) using ibmq athens and |q3q2q1q0〉 = |1000〉

Figure 31
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(a) using ibmq santiago and |q3q2q1q0〉 = |1100〉

(b) using ibmq athens and |q3q2q1q0〉 = |1100〉

Figure 32
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