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Abstract

In this paper, we discuss the normal product form of the density opera-
tor of multimode Gaussian states, and obtain the correlation equation be-
tween the kernel matrix R of the Gaussian density operator in the normal
product form and its kernel matrixG in the standard quadratic form. Fur-
ther, we explore the time evolution mechanism of R and obtain the Gaus-

sian dynamical equation under the normal product
·

R = i(RJH−HJR).
Our work is devoted to searching for another mechanism for Gaussian dy-
namics. By exploring the description of the normal ordered density matrix
under the coherent state representation, we find that our mechanism is
feasible and easy to operate.

PACS number(s): 03.65.-w, 03.65.Ud, 03.67.-a, 42.50.Ex

1 Introduction

Quantum information science with continuous variable systems is developing
rapidly, presenting many exciting prospects in both its experimental realization
and theoretical research. Concepts and protocols, such as entanglement and
teleportation, initially intended only for discrete quantum systems, have been
extended to continuous variable systems, allowing more efficient implementation
and measurements. In this context, Gaussian states, as continuous variable
quantum states, play an important role in both the experimental and theoretical
fields. Gaussian states are defined as quantum states that have Gaussian Wigner
functions, while Gaussian dynamics studies the time evolution mechanism of
Gaussian state under Gaussian unitary transformation. Two points should be
paid special attention to here, one is that the Gaussian state itself must be of
Gaussian type, and the other is that the Hamiltonian of the dynamical system
in which the Gaussian state evolves is of standard quadratic form.

∗To whom correspondence should be addressed. Email: heruim@wxc.edu.cn
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There are many works on the dynamics mechanism of Gaussian state evo-
lution in quadratic systems [1]-[5]. However, many studies focused on the evo-
lution mechanism of the covariance matrix of the Gaussian state, which almost
became the paradigm of Gaussian dynamics, and most of the research was done
in this way. Here, let us make a brief introduction to this mechanism. For a
standard quadratic system, its Hamiltonian can be written as follows

Ĥ =
1

2
ÂTHÂ, (1)

where T represents the transpose of the matrix and H is a positive definite,

Hermitian and symmetric 2n × 2n matrix, while Â = (â1, ..., ân, â1
†, ..., ân

†
)T ,

in which âi and âi
† represents the creation and annihilation operators for n-mode

Gaussian bosonic systems, satisfying the usual bosonic commutation relations
[âi, âj ] = [âi

†, âj
†] = 0 and [âi, âj

†] = δij . Then, for a Gaussian state, its
time-evolution covariance matrix σ(t) is according to the following rules [6]

·
σ(t) =

dσ(t)

dt
= (JH)σ + σ(JH)T , (2)

where J =

(
0 In
−In 0

)
, In is n×n identity matrix. Thus, by solving Eq. (2),

the time evolution of the Gaussian state can be mapped as

σ(t)→ S(t)σ(0)ST (t). (3)

Note that S(t) ≡ exp(JHt), which is a symplectic matrix and satifies with

STJS = SJST = J. (4)

However, can we directly give the law of the time evolution of the Gaussian
state ρG(t) itself? This is the main topic to be studied in the present paper.
In short, we give the law of the time evolution of the kernel R of the Gaussian
density matrix in the normal product form through effective theoretical deriva-
tion, which is an important development of the Gaussian dynamics mechanism.
Compared with the previous work, our work is dedicated to directly giving the
time evolution of the Gaussian density matrix, breaking the previous theoret-
ical paradigm with the covariance matrix as a bridge. Moreover, due to the
operational simplicity of the normal ordered operator in the coherent state rep-
resentation, we can in principle solve analytically many problems related to the
evolution of density matrices, such as the evolution of von Neumann entropy.

Our work is arranged as follows: In Sec. 2, we first give a brief review of the
Gaussian state and its covariance matrix. Then, we use the covariance matrix
of the Gaussian state ρG(t) as a bridge to obtain the algebraic relationship
between the kernel G of the Gaussian state density matrix and the kernel R of
the normal form of the density matrix, so that once we get R, we can give G,
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vice versa. In Sec. 3, we introduce the coherent state representation description
of the Gaussian state, which is the basis for our follow-up work. In Sec. 4, we
will show the time evolution law of the kernel matrix R of the normal product
of ρG(t)

·
R = i(RJH−HJR). (5)

2 Gaussian state and its covariance matrix

The density of a Gaussian state can generally be written as [7]

ρG =
e−Ĝ

Tr(e−Ĝ)
. (6)

Note that Ĝ = 1
2 Â

TGÂ. By Williamson’s theorem [8], for a positive definite,
Hermitian and symmetric 2n × 2n matrix G, it can be decomposed into the
following form

G = ST K̃S, (7)

where, S denotes a symplectic matrix, K̃ =

(
K 0

0 K

)
andK = diag(ω1, . . . , ωn).

According to [7], for the Gaussian state given by Eq. (6), its covariance matrix
can be written as

σ = S−1
ν̃S−T , (8)

in which, ν̃ =

(
ν 0

0 ν

)
, ν = diag(ν1, . . . , νn), and νi =

1+e−ωi

1−e−ωi
. Then

σ =
I+ e−ΩG

I− e−ΩG
Ω = coth(

ΩG

2
)Ω, (9)

where, Ω =

(
In 0

0 −In

)
.

We also know that the characteristic function of any Gaussian state can be
written as [9]

C(Z) = e−
1

2
Z

†
CZ. (10)

Note that Z = (z1, . . . , zn, z
∗
1 , . . . , z

∗
n)

T . By using

eZ
†
ΩÂ =: eZ

†
ΩÂ− 1

4
Z

†
Z : , (11)

where, : · · · : represents normal ordering. Then,

3



ρG =

∫
(dZ)eZ

†
ΩÂC(Z) (12)

=

∫
(dZ) : eZ

†
ΩÂ− 1

4
Z

†
Z : e−

1

2
Z

†
CZ

=

∫
(dZ) : e−

1

2
Z

†(C+ 1

2
I)ZeZ

†
ΩÂ : .

By using the technique of integration within ordered product (IWOP) [10] and
the integeral fomula

∫
(dZ)e−

1

2
Z

†
VZeZ

†
X =

1√
detV

e−
1

2
X

T
EV

−1
X, (13)

where, E =

(
0 In
In 0

)
, let us continue our derivation

ρG =
1√

det (C+ 1
2I)

: exp[−1

2
(ΩÂ)

T
E(C+

1

2
I)

−1
(ΩÂ)] : (14)

=
1√

det (C+ 1
2I)

: exp[−1

2
ÂTΩE(C+

1

2
I)

−1
ΩÂ] : .

Here, we can set R ≡ ΩE(C+ 1
2I)

−1
Ω, then

ρG =
√
detR : exp(−1

2
ÂTRÂ) : . (15)

Since the Wigner function of the Gaussian state ρG can be written as

W (Z) =
1√
detσ

exp(−Z†
σ

−1Z). (16)

Note that σ here is the covariance matrix in Eq. (2). According to the Fourier
transform relationship between C(Z) and W (Z), we can get

σ
−1

2
= ΩC−1Ω (17)

or

C =
1

2
ΩσΩ. (18)

Substituting Eq. (9) into Eq. (18), we have

C =
Ω

2

I+ e−ΩG

I− e−ΩG
. (19)
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Then, taking Eq. (19) into Eq. (14), we can get

R= ΩE(
I

2
+
Ω

2

I+ e−ΩG

I− e−ΩG
)−1

Ω (20)

= −2EΩ(I+Ω
I+ e−ΩG

I− e−ΩG
)
−1

Ω

= −2E(I+
I+ e−ΩG

I− e−ΩG
Ω)

−1

= −2(E+
I+ e−ΩG

I− e−ΩG
ΩE)

−1

= −2(E+
I+ e−ΩG

I− e−ΩG
J)−1

= −2(E+ JJ
−1 I+ e−ΩG

I− e−ΩG
J)−1

= −2(E+ J
I+ e−J

−1
ΩGJ

I− e−J−1ΩGJ
)
−1

= −2(E+ J
I+ e−EGJ

I− e−EGJ
)
−1

.

In this way, we obtain the relationship of the kernel matrix R of the normal
product of ρG(t) and G, which is exactly the same results as in [11]. In Gaussian
dynamics, as long as we know the time evolution ofR, we can infer the evolution
of G from Eq. (20). That is to say, we can directly calculate the time evolution
of the density matrix of the Gaussian state by using this method. Moreover,
according to the above calculation, we can also deduce the relationship between
R and σ

R = −2E(σ + I)−1. (21)

3 Coherent state representation of Gaussian state

Now we introduce n-mode coherent states |Z〉 ≡ |z1, ..., zn〉 and suppose that
ρ(Z) = 〈Z|ρG|Z〉. In normal product form, bosonic creation and annihilation
operators could be replaced by the complex parameter of the coherent state,
thus, we have

ρ(Z) =
√
detR〈Z| : exp(−1

2
ÂTRÂ) : |Z〉 (22)

=
√
detRe−

1

2
Z

T
RZ.

For a single-mode coherent state |z〉, we have

|z〉〈z|â = (z +
∂

∂z∗
)|z〉〈z|, (23)
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â†|z〉〈z| = (z∗ +
∂

∂z
)|z〉〈z|. (24)

We can generalize the relationship given by the above two equations to the
multimode case and have

Â|Z〉〈Z| =




â1
...
ân
â†1
...
â†n




|Z〉〈Z| =







z1
...
zn
z∗1
...
z∗n




+




0
...
0
∂

∂z1
...
∂

∂zn







|Z〉〈Z| (25)

= (Z+
E− J

2

∂

∂ZT
)|Z〉〈Z|.

Similarly, the following formula can be derived

|Z〉〈Z|ÂT = (ZT +
E+ J

2

∂

∂Z
)|Z〉〈Z|. (26)

Taking into account Eqs. (25) and (26), in the coherent state representation,
we obtain

〈Z|ρGÂ|Z〉 = 〈Z|ρG|Z〉(Z +

←−−−
∂

∂ZT

E− J

2
) (27)

= ρ(Z)(Z +

←−−−
∂

∂ZT

E− J

2
)

and

〈Z|ÂT ρG|Z〉 = (ZT +
E+ J

2

∂

∂Z
)〈Z|ρG|Z〉 (28)

= (ZT +
E+ J

2

∂

∂Z
)ρ(Z),

where, we have set ρ(Z) ≡ 〈Z|ρG|Z〉, which is actually a Husimi-Q function in
the phase space representation.

4 Gaussian dynamics equation in normal prod-

uct form

For an open dynamic system, the time evolution mechanism of the system is
determined by the following Lindblad equation [12]

·
ρ(t) = −i[Ĥ, ρ(t)] +

∑

i

[ĉiρ(t)ĉi
† − 1

2
ĉi

†ĉiρ(t)−
1

2
ρ(t)ĉi

†ĉi], (29)
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where Ĥ is quadratic, ĉi and ĉi
† are the linear forms of the creation and anni-

hilation operators. Although the content discussed in this paper can be fully
extended to the case where the quantum system is affected by the coherent en-
vironment, that is, considering the second term on the right side of Eq. (29), for
the sake of brevity and beauty of the text, we only analyze the time evolution
mechanism of Gaussian states in quadratic Hamiltonian systems independent of
the environment. That is to say, we only discuss the quantum Liouville equation

·
ρG(t) = i[ρG(t), Ĥ ]. (30)

Note that here Ĥ = 1
2 Â

THÂ and ρG = e−Ĝ

Tr(e−Ĝ)
=
√
detR : exp(− 1

2 Â
TRÂ) : .

Substituting Ĥ and ρG into Eq. (30), we get

d[
√
detR : exp(− 1

2 Â
TRÂ) : ]

dt
= − i

2

√
detR[ÂTHÂ, : exp(−1

2
ÂTRÂ) : ].

(31)
By using the commutation formula [AB,C] = A[B,C] + [A,C]B, we obtain

d[
√
detR : exp(− 1

2 Â
TRÂ) : ]

dt
(32)

= − i

2

√
detRÂTH[Â, : exp(−1

2
ÂTRÂ) : ]− i

2

√
detRÂT [H, : exp(−1

2
ÂTRÂ) : ]Â

− i

2

√
detR[ÂT , : exp(−1

2
ÂTRÂ) : ]HÂ.

Considering the following normal product properties [13]

:
∂

∂â
f(â, â†) : = [ : f(â, â†) : , â†], (33)

:
∂

∂â†
f(â, â†) : = [â, : f(â, â†) : ], (34)

and the derivation rule of quadratic matrix

d(XTAX)

dX
= 2XTA, (35)

d(XTAX)

dXT
= 2AX, (36)

under the condition A = AT (A is a symmetric matrix), we can simplify Eq.
(32) into the following form
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d[
√
detR : exp(− 1

2 Â
TRÂ) : ]

dt
(37)

= − i

2

√
detRÂTH : J

∂

∂ÂT
exp(−1

2
ÂTRÂ) : +

i

2

√
detR :

∂

∂Â
exp(−1

2
ÂTRÂ)J : HÂ

− i

2

√
detRÂT [H, : exp(−1

2
ÂTRÂ) : ]Â

=
i

2

√
detRÂTH : JRÂ exp(−1

2
ÂTRÂ) : − i

2

√
detR : ÂTR exp(−1

2
ÂTRÂ)J : HÂ

− i

2

√
detRÂT [H, : exp(−1

2
ÂTRÂ) : ]Â.

In the dynamics of phase space, the time evolution formula of Husimi-Q function
ρ(Z) can be derived as follow

dρ(Z)

dt
= Tr(

·
ρ|Z〉〈Z|) (38)

= −iT r(ρĤ |Z〉〈Z| − Ĥρ|Z〉〈Z|)
= −i〈Z|ρĤ |Z〉+ i〈Z|Ĥρ|Z〉,

In fact, we just need to average the coherent states on both sides of the Liouville
equation. By calculating the average value of the coherent states on both sides
of Eq. (37), we have

d[
√
detR〈Z| : exp(− 1

2 Â
TRÂ) : |Z〉]

dt
(39)

=
i

2

√
detR〈Z|ÂTHJR : exp(−1

2
ÂTRÂ)Â : |Z〉

− i

2

√
detR〈Z| : ÂT exp(−1

2
ÂTRÂ) : RJHÂ|Z〉

− i

2

√
detR〈Z|ÂT [H, : exp(−1

2
ÂTRÂ) : ]Â|Z〉.

We first calculate the third part of the right-hand side of Eq. (38) and have
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− i

2

√
detR〈Z|ÂT [H, : exp(−1

2
ÂTRÂ) : ]Â|Z〉 (40)

= − i

2

√
detR(ZT +

E+ J

2

∂

∂Z
)〈Z|[H, : exp(−1

2
ÂTRÂ) : ]|Z〉(Z +

←−−−
∂

∂ZT

E− J

2
)

= − i

2

√
detR(ZT +

E+ J

2

∂

∂Z
)(〈Z|H : exp(−1

2
ÂTRÂ) : |Z〉

−〈Z| : exp(−1

2
ÂTRÂ) : H|Z〉)(Z +

←−−−
∂

∂ZT

E− J

2
)

= − i

2

√
detR(ZT +

E+ J

2

∂

∂Z
)(H〈Z| : exp(−1

2
ÂTRÂ) : |Z〉

−〈Z| : exp(−1

2
ÂTRÂ) : |Z〉H)(Z +

←−−−
∂

∂ZT

E− J

2
)

= − i

2
(ZT +

E+ J

2

∂

∂Z
)(Hρ(Z) − ρ(Z)H)(Z+

←−−−
∂

∂ZT

E− J

2
).

Since ρ(Z) is a number,Hρ(Z)−ρ(Z)H = 0. So we show− i
2

√
detR〈Z|ÂT [H, : exp(− 1

2 Â
TRÂ) : ]Â|Z〉 =

0. We continue to calculate the first two terms on the right-hand side of Eq.
(39),

i

2

√
detR〈Z|ÂTHJR : exp(−1

2
ÂTRÂ)Â : |Z〉 (41)

=
i

2

√
detR(ZT +

E+ J

2

∂

∂Z
)[HJR〈Z| : exp(−1

2
ÂTRÂ)Â : |Z〉]

and

− i

2

√
detR〈Z| : ÂT exp(−1

2
ÂTRÂ) : RJHÂ|Z〉 (42)

= − i

2

√
detR〈Z| : ÂT exp(−1

2
ÂTRÂ) : RJH|Z〉(Z +

←−−−
∂

∂ZT

E− J

2
).

Then,
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dρ(Z)

dt
=

d[
√
detR〈Z| : exp(− 1

2 Â
TRÂ) : |Z〉]

dt
(43)

= −1

2

√
detRZT

·
RZ

˜
ρ(Z)+

d
√
detR

dt

˜
ρ(Z)

=
i

2

√
detR(ZT +

E+ J

2

∂

∂Z
)[HJR〈Z| : exp(−1

2
ÂTRÂ)Â : |Z〉]

− i

2

√
detR〈Z| : ÂT exp(−1

2
ÂTRÂ) : RJH|Z〉(Z+

←−−−
∂

∂ZT

E− J

2
)

=
i

2

√
detR(ZT +

E+ J

2

∂

∂Z
)[HJR

˜
ρ(Z)Z]

− i

2

√
detR[ZT ˜

ρ(Z)RJH](Z+

←−−−
∂

∂ZT

E− J

2
)

=
i

2

√
detRZT (HJR −RJH)Z

˜
ρ(Z) +

i

2

√
detR

E+ J

2

∂

∂Z
[HJR

˜
ρ(Z)Z]

− i

2

√
detR[ZT ˜

ρ(Z)RJH]

←−−−
∂

∂ZT

E− J

2
).

Note that here we have set
˜
ρ(Z) = ρ(Z)/

√
detR. Multipling E+ J on the

left-hand side of Eq. (43) and E− J on its right-hand side and noting that

(E+ J)
2
= 0 and (E− J)

2
= 0, we obtain

(E+ J)ZT
·
RZ (E− J)− 2 (E+ J)

1√
detR

d
√
detR

dt
(E− J) (44)

= −i (E+ J)ZT (HJR−RJH)Z (E− J) .

Because ZT
·
RZ , d

√
detR
dt

and ZT (HJR−RJH)Z are all numbers, Eq. (44) can
be written as

(E+ J) (E− J)Z
T

·
RZ− 2 (E+ J) (E− J)

d ln
√
detR

dt
(45)

= −i (E+ J) (E− J)ZT (HJR−RJH)Z.

Obviously, we have

ZT [
·
R− i(RJH−HJR)]Z =

d ln detR

dt
. (46)

For any R, H and Z, Eq. (46) always holds, then we get Eq. (5) given in the
introduction and d ln detR

dt
= 0. In this way, we derive the Gaussian dynamics

equation in the normal product form. At the same time, there is reason to
believe that ln detR is a constant that does not change with time. According
to the fomula det eA = eTr(A), we can obtain ln detR = Tr(lnR).
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Actually, in Eq. (43), as long as we know that i
2

√
detRE+J

2
∂
∂Z

[HJR
˜
ρ(Z)Z]

and − i
2

√
detR[ZT ˜

ρ(Z)RJH]
←−−
∂

∂ZT

E−J

2 ) are all numbers, then, because of the ex-

istence of E+ J and E− J, we can conclude that i
2

√
detRE+J

2
∂
∂Z

[HJR
˜
ρ(Z)Z]

and − i
2

√
detR[ZT ˜

ρ(Z)RJH]
←−−
∂

∂ZT

E−J

2 ) are both equal to 0. In addition, since
ln detR = Tr(lnR), then

d ln detR

dt
=

dT r(lnR)

dt
(47)

= Tr(
·
RR−1)

= Tr[i(RJH−HJR)R−1]

= iT r(RJHR−1 −HJ)

= i[Tr(RJHR−1)−Tr(HJ)]

= i[Tr(JH)−Tr(HJ)]

= 0.

So, we show that if
·
R = i(RJH−HJR), then d ln detR

dt
= 0 naturally satisfies.

Compared with Eq. (2) and Eq. (5), it is not difficult to draw

R(t) = U(t)R(0)U
T
(t), (48)

where U(t) ≡ exp(−iJHt). In this way, we get the solution of Eq. (5) smoothly.

5 Conclusion

The time evolution mechanism of Gaussian states is a long-standing and ever-
new topic. This paper mainly provides another mechanism for dealing with the
dynamics of Gaussian states. Different from the previous covariance mechanism,
our work gives the equation for the time evolution of the kernel matrix R of
Gaussian states in the normal product form, which provides a new perspective
for Gaussian quantum information processing.

The advantage of writing the density matrix of the Gaussian state in the
normal product form is that the specific functional form of the density matrix
under the coherent state representation can be directly given, which can be done
simply by replacing Bosonic operators in the density matrix with the complex
parameters of the coherent state. This processing method will bring us con-
venience to solve some problems. For example, for the operator matrix trace
problem, the product of matrices, such as Tr(AB), is often encountered. For
such problems, we can solve them analytically by writingA and B in the normal

product form (:
˜

A : and :
˜

B : ) and then inserting the completeness of the coher-

ent state representation (Tr(AB) =

∫∫
(dZdZ′)〈Z| :

˜

A : |Z′〉〈Z′| :
˜

B : |Z〉). It is
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difficult to solve such problems in a conventional way, especially in the multi-
mode case, and may also have to use numerical methods, while our method can
be solved analytically in principle. Moreover, in the normal product, we regard
Bosonic operators as numbers, so we can perform integration and differentia-
tion operations without any obstacles, which cannot be replaced by conventional
methods. This processing method undoubtedly has great potential and has the
value of further research and promotion.

Following the theoretical ideas proposed in this paper, in principle, the in-
coherent evolution of the Gaussian state that does not interact with the envi-
ronment can be extended to the case in which the system is coherent with the
environment, that is, the Lindblad equation can be solved smoothly, which will
be our follow-up work.
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