
ar
X

iv
:2

21
1.

07
22

2v
1

 [
qu

an
t-

ph
]

 1
4

N
ov

 2
02

2

A doubly stochastic matrices-based approach to optimal

qubit routing

Nicola Mariella∗ Sergiy Zhuk∗

November 15, 2022

Abstract

Swap mapping is a quantum compiler optimization that, by introducing SWAP gates,
maps a logical quantum circuit to an equivalent physically implementable one. The physical
implementability of a circuit is determined by the fulfillment of the hardware connectivity
constraints. Therefore, the placement of the SWAP gates can be interpreted as a discrete
optimization process. In this work, we employ a structure called doubly stochastic matrix,
which is defined as a convex combination of permutation matrices. The intuition is that
of making the decision process smooth. Doubly stochastic matrices are contained in the
Birkhoff polytope, in which the vertices represent single permutation matrices. In essence,
the algorithm uses smooth constrained optimization to slide along the edges of the polytope
toward the potential solutions on the vertices. In the experiments, we show that the proposed
algorithm, at the cost of additional computation time, can deliver significant depth reduction
when compared to the state of the art algorithm SABRE.

1 Introduction

In the quantum computing field, the qubit routing procedure is a fundamental component of the
quantum compiler. Its role is that of mapping logical qubits to physical ones while preserving the
resulting unitary (up to a permutation) and fulfilling the connectivity constraints of the target
hardware. The constraints consist of the set of pairs of physical qubits upon which a two-qubit
gate can be applied. One of the methods for solving this problem is called swap mapping [10, 11].

The routing is obtained by introducing SWAP gates, which determine a permutation of the
mapping between logical and physical qubits. The permutations are calculated so that the multi-
qubit gates of the compiled circuit do not violate the connectivity restrictions of the hardware. In
many architectures, the SWAP gate is constructed using three CNOTs, the latter, have usually
a higher error rate [9] when compared to single-qubit gates. Moreover, adding gates to the
circuit may enlarge the circuit depth, thus increasing decoherence-related issues. Consequently,
the qubit routing is an optimization problem that not only is required to fulfill the hardware
constraints, but also to minimize some function that depends on the number of added SWAPs
and possibly the depth of the resulting circuit. In literature this problem is found under several
designations, among others, we mention the qubit allocation, the layout synthesis and the qubit
placement.

The computational complexity of the combinatorial problem behind the swap mapping has
been proved in several forms. In [10] the mapping problem is formulated as a Hamiltonian cycle

∗IBM Quantum, IBM Research Europe - Dublin

1

http://arxiv.org/abs/2211.07222v1

problem, resulting in being NP-complete. A reduction from the sub-graph isomorphism problem
in [17] shows that the problem is NP-hard. This means that the design of practical algorithms
should employ a heuristic component. Among the heuristics, remarkable is the SWAP-based
BidiREctional (SABRE) algorithm [8]. At the time of writing, the latter is considered the state
of the art and is currently the default swap mapping method for the Qiskit framework [1].

Despite the long-standing research on the topic, in [18] it was surveyed that, there is still a
substantial optimality gap on the solutions produced by the most widespread tools for circuit
synthesis.

In this work we present a swap mapping algorithm based on mathematical optimization and
doubly stochastic matrices (DSM) [3]. Doubly stochastic matrices are convex combinations of
permutations matrices. The intuition is that, since the qubit allocation makes use of swaps
(permutations) we can model the decision process using a superposition of swap and identity
matrices. Such superposition is then tuned by means of continuous parameters controlled by
an optimizer. In addition, powerful algebraic properties of the resulting cost function allow the
modeling of swap count and depth minimization. On the optimizer side, we propose a solver
that scales linearly with the depth of the circuit, and our experiments show that for compil-
ing quantum-volume circuits on 8 qubits our solver outperforms the state-of-the-art algorithm
SABRE in terms of depth of the resulting circuit by 20 percentage points.

The paper is is organized as follows. In Section 2 we introduce the basic definitions of the
algebraic structures used throughout the formulation, Section 3.1 contains the construction of
the fundamental part of the optimization problem — the hardware cost function. Sections 3.2,
3.3 and 3.4 expand on the optimization problem, its key features and the numerical method.
In Section 4 we report the results from our experiments: numerical evaluation of the effect of
algorithm’s hyper-parameters on compilation outcome, and comparisons against the state of the
art algorithms. Finally the conclusions are elaborated in Section 5. All the proofs related to the
main results can be found in the appendix.

2 Mathematical preliminaries

Notation. We introduce the basic notational conventions adopted throughout this work. We
denote with Im the m × m identity matrix, also 1m denotes the vector of ones in the real
vector space Rm. Canonical basis vectors are identified with ei, also sometimes we highlight the

dimension of the vector space by denoting with e
(m)
i , the i-th (starting from zero) basis vector

for Rm. Given the relation with quantum computing we make use of the Dirac notation. In the
context of this work, we interpret |i〉m as the i-th canonical basis vector for Rm, that is |i〉m =

e
(m)
i . Consequently, the outer product |i〉m 〈j|m represents the rank-one matrix e

(m)
i

(
e
(m)
j

)⊤
.

For a vector v ∈ R
n and some integers i, j such that, 0 ≤ i ≤ j < n we denote with v[i . . j] the

sub-vector in R
j−i+1 obtained through the linear transformation

v[i . . j] =
m−1∑

k=0

|k〉m 〈k + i|n v, (1)

with m = j − i + 1. Given integers i, j such that i ≤ j, we denote the set [i, j] ∩ Z with [i . . j].
The Hadamard product of n×m matrices A,B is denoted with A⊙ B and the resulting n×m
matrix has entries (A ⊙ B)i,j = Ai,jBi,j , where Ai,j denotes the matrix entry at the i-th row
and j-th column.

2

Definition 1. We denote an n × n matrix A with non-negative entries, as doubly stochastic
(DSM), when

AJn =JnA = Jn, (2a)

where Jn = 1n1
⊤
n is the n× n matrix of ones. In other words both rows and columns of A sum

to 1 and Ai,j ≥ 0. Moreover, the Birkhoff–von Neumann theorem [3] asserts that any doubly
stochastic matrix can be decomposed as convex combination of permutation matrices, that is

A =

n!−1∑

i=0

λiPi (2b)

with λi ≥ 0,
∑

i λi = 1 and {Pi} the set of n× n permutation matrices.

We mention a well known result regarding the set of DSMs.

Lemma 2.1. The set of n× n doubly stochastic matrices form a monoid1 under matrix multi-
plication.

Definition 2. Given any n× n matrix A, we define the row-major vectorization operator vecr :
Mn,n(K)→ Kn ⊗Kn with rule

vecr(A) =

n−1∑

j=0

(A |j〉n)⊗ |j〉n =

n−1∑

i,j=0

Ai,j (|i〉n ⊗ |j〉n) , (3a)

where Mn,n(K) is the set of n × n matrices over some field K. A special case is given by the
identity matrix

vecr(In) =
∑

i

|i〉n ⊗ |i〉n , (3b)

which can be interpreted as a Greenberger–Horne–Zeilinger state (GHZ) up to a scalar factor.

Lemma 2.2. Let A be any n× n matrix, then

vecr(A) =(A⊗ In) vecr(In) =
(
In ⊗A⊤

)
vecr(In) . (4)

Proof in Appendix A.2. The next lemma presents some convenient identities that create a
link between vectorization, tensor and Hadamard products and trace.

Lemma 2.3. Let A,B be any n× n matrices, then

vecr(In)
⊤(A⊗B) vecr(In) =Tr

(
AB⊤

)
(5a)

=1⊤
n (A⊙B)1n. (5b)

Proof in Appendix A.2.

1A monoid is defined as a set endowed with a binary associative operation and an identity element. In other
words a monoid is a group without the inverse axiom. A counter-example to invertibility of DSMs is the following.
Take X to be any permutation matrix that swaps two elements, then its eigenvalues are {−1, 1}, now 1

2
(In +X)

is a DSM, but it has a zero eigenvalue, consequently it is singular.

3

H • H

H H
=

•

Figure 1: Reversal of the CNOT’s control-target qubits.

U0

U1

U2

U3

U4

U5

U6

U7

q4

q3

q2

q1

q0

Figure 2: Example of commutative layering for a circuit of 2-qubit blocks. The blocks represent
generic U(4) unitaries where the dots identify the qubits upon with each unitary acts. The
vertical dashed lines determine the layering, so for example take U0 and U1 from the first layer,
then (U0 ⊗ I⊗2)(I⊗2 ⊗ U1) = (I⊗2 ⊗ U1)(U0 ⊗ I⊗2), that is U0, U1 commute.

3 Main results

3.1 The hardware cost function

In this section we expand on the hardware cost function which, given a configuration of SWAP
gates, vanishes when the composition of SWAPs and circuit layers fulfill the connectivity con-
straints.

Let M represent the hardware graph, in which the vertices are interpreted as the physical
qubits and the edges the connectivity between them. For simplicity we assume the connectivity
to be undirected, also the graphM is assumed connected2 and nonempty. In the case of quantum
technologies where the only 2-qubit gate is the CNOT gate, the reversal of the control-target
of such gate (Figure 1) comes at no cost in terms of additional 2-qubit gates. Thus, the latter
justifies the choice for the undirected graphs. We associate to graph M the m ×m adjacency
matrix M . As consequence of the assumed structure ofM, we have that M is symmetric, that is
M = M⊤. Let Jm = 1m1⊤

m be the m×m matrix of ones, so denote Mc = Jm−M the adjacency
matrix of the complement graph toM.

As outlined in [11], we decompose the circuit into layers of commuting two-qubits gates. An
example of such circuit partitioning is presented in Figure 2. The same circuit is also presented
in Figure 3 using a diagrammatic form that capture the essential information required for the
swap mapping algorithm. Let G(t) denote the graph corresponding to the layer at time step
t ∈ [0 . . T − 1], and G(t) its adjacency matrix. The vertices of G(t) correspond to the logical
qubits, and the edges are the two qubit gates. Let VG(t) denote the set of vertices of the graph
G(t), then we impose |VM| = |VG(t) | = m and VG(t1) = VG(t2) for all t1, t2 ∈ [0 . . T − 1].

Now, let P be an m×m permutation matrix, then we devise the following cost function for

2We should also assume thatM is not fully-connected otherwise the swap mapping would not be necessary.

4

q4

q3

q2

q1

q0

U2

U3

U4

U5

U6

U7U0

U1

7→

q4

q3

q2

q1

q0

U2

U3

U4

U5

U6

U7

U0

U1

q3

q1

q2

q4

q0

Figure 3: The braid diagram with gate arcs (left) corresponding to the circuit in Figure 2. In this
example we assume the line connectivity, so on the right we propose a qubit allocation solution.
Note on the right-hand side that the initial and final qubit layouts do not match. Here the braids
on the right-hand side can be interpreted as the permutation of logical qubits (qk) associated to
physical ones (vertical positions).

layer t,

ℓ(t)(P) =1⊤
m

[(
PG(t)P⊤

)
⊙Mc

]
1m ≥ 0. (6)

We observe that the global minima (also matching with zeros) of ℓ(t) correspond to the permu-
tations of the logical qubits such that the two-qubits gates overlap hardware arcs. In general the
solution P to the problem of making ℓ(t)(P) vanish is not unique, however later we will add a
further restriction, that is the minimization of the number of SWAPs generating P .

We obtain an equivalent formulation for the cost function in (6). Using Lemmas 2.2 and 2.3
we have

ℓ(t)(P) =Tr
((

PG(t)P⊤
)
M⊤

c

)
(7a)

=Tr
(
PG(t) (McP)

⊤
)

(7b)

(5a)
= vecr(Im)⊤

(
PG(t)

)
⊗ (McP) vecr(Im) (7c)

= vecr(Im)⊤ (Im ⊗Mc) (P ⊗ P)
(
G(t) ⊗ Im

)
vecr(Im) (7d)

(4)
= vecr(Mc)

⊤ (P ⊗ P) vecr(G
(t)), (7e)

The new form in (7e) is convenient for the theory that follows, the key fact is that the cost
function is now linear with respect to P ⊗ P . The intent is that of obtaining a cost value as a
superposition of cost values (non-negative) for individual solutions. Specifically, each solution is
determined by a permutation matrix Pi, then given a set of candidate solutions {Pi} we obtain
the convex combination

∑

i

λiℓ
(t)(Pi) =

∑

i

λi vecr(Mc)
⊤ (Pi ⊗ Pi) vecr(G

(t)) (8a)

=vecr(Mc)
⊤

(
∑

i

λi (Pi ⊗ Pi)

)
vecr(G

(t)), (8b)

with λ ∈ ∆S where ∆S is the unit simplex in S dimensions [2]. In (8b) we have the first
appearance of an interesting structure, whose characterization is given by the following lemma.

5

q0 : •

q1 : •

q2 :

q3 :

q4 :

q5 : •

q6 :

7→

q0 : • q0

q1 : • • q2

q2 : • • q1

q3 : q3

q4 : q4

q5 : • q5

q6 : q6

❴ ❴ ❴ ❴ ❴
✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴

Figure 4: On the left-hand side, a circuit layer corresponding to the adjacency matrix G(t)

considered in Figure 5. Note that the CNOTs commute. On the right-hand side, the circuit
after the application of the swap (highlighted).

Lemma 3.1. Let Q =
∑

i λiPi be a doubly stochastic matrix, where Pi are m×m permutation
matrices. Then

K =
∑

i

λiPi ⊗ Pi (9)

is doubly stochastic.

Proof in Appendix A.2.
The function ℓ(t)(P) is the key component of what will be defined later as the hardware cost

function. In Figure 5 we provide a visual example of the cost function machinery, also Figure 4
presents the circuit related to the example matrices.

Remark 3.1. We highlight again the linearity of the optimization problem determined by (8a).
Take for simplicity the problem of minimizing the hardware cost function for the layer t. Consider
m qubits and fix the set of permutation matrices {Pi} corresponding to the representations of
the elements of the symmetric group Sm. Then the problem takes the form

min
λ∈Rm!

m!−1∑

i=0

λiℓ
(t)(Pi), (10a)

s.t.λi ≥ 0 ∀ i, (10b)
∑

i

λi = 1. (10c)

The latter is clearly a linear problem over a convex set, however the difficulty arises from the
cardinality m! of the set of permutations. We avoid this difficulty by introducing a construction
that produces a subgroup of permutations controlled by a polynomial number of parameters
(w.r.t. m).

△

The machinery for the swapping requires consistency between layers, that is, we have to
assure the connectivity of logical qubits as we pass from one layer to the next. Let P (t) be the
permutation applied before the layer at time step t, for all t ∈ [0 . . T − 1] . We define the finite
sequence

(
C(t)

)
t∈[0..T−1]

of permutations composed up to time t as

C(0) =P (0), (11a)

C(t) =P (t)C(t−1), 1 ≤ t ≤ T − 1, (11b)

6

M =

• • · · · · ·
• • • · · · ·
· • • • · · ·
· · • • • · ·
· · · • • • ·
· · · · • • •
· · · · · • •

, G(t) =

· · • · · · ·
· · · • · · ·
• · · · · · ·
· • · · · · ·
· · · · · · ·
· · · · · · •
· · · · · • ·

,

P =

• · · · · · ·
· · • · · · ·
· • · · · · ·
· · · • · · ·
· · · · • · ·
· · · · · • ·
· · · · · · •

, PG(t)P⊤ =

· • · · · · ·
• · · · · · ·
· · · • · · ·
· · • · · · ·
· · · · · · ·
· · · · · · •
· · · · · • ·

.

Figure 5: In this example we illustrate the matrices involved in (6). We define graphically with
·, • the values 0, 1 respectively. In the circuit adjacency matrix G(t) (corresponding to left part
of Figure 4) we see that some of the non-zero entries do not overlap with the hardware topology
M . However, after applying the permutation P we see that the total overlap is established in
PG(t)P⊤, hence ℓ(t)(P) vanishes.

expanded, the sequence takes the following form

C(0) =P (0),

C(1) =P (1)P (0),

...

C(T−1) =P (T−1) · · ·P (1)P (0) .

Given a sequence of permutations
(
P (t)

)
t∈[0..T−1]

we obtain the hardware cost function for

the overall circuit, so

L
(
(P (t))t

)
=

T−1∑

t=0

ℓ(t)
(
C(t)

)
, Note that the

sequence
(
C

(t)
)

t
depends on(
P

(t)
)

t
.

(12)

again it can be shown that the global minima (zeros) correspond to the set of permutations that
implements the circuit on allowable hardware arcs (the edges of graphM). In relation to Figure
3, the permutations P (t) correspond to the braids, and the graphs G(t) match the layers with the
gate arcs implementing the edges.

The limited connectivity of the hardware structure3 implies that the permutations P (t) must
be generated by the swaps corresponding to the directly connected vertices of graphM. However,
before expanding the aforementioned restriction we first proceed with the definition of SWAP.
Let m be the number of qubits of the circuit and assume m ≥ 2. We define the swap operator
w.r.t. distinct vertices i, j ∈ [0 . .m− 1], as

SWAPm(i, j) :=Im − |i〉m 〈i|m − |j〉m 〈j|m + |i〉m 〈j|m + |j〉m 〈i|m , (13)

3The hardware graphM is assumed to be not fully-connected.

7

equivalently the operator is determined by its action on the vectors |k〉m with k ∈ [0 . .m− 1],

SWAPm(i, j) |k〉m =

|j〉m , k = i,

|i〉m , k = j,

|k〉m , otherwise .

Remark 3.2. The SWAPm defined in (13) should be considered as the classical counterpart of
the swap operator SWAPQ

m in the context of quantum circuits. The SWAPm(i, j) operator acts
on a space having dimension m, also the result of its action is the swap of the the basis vectors
|i〉m and |j〉m. The SWAPQ

m(i, j) instead, acts on a space of dimension 2m and its action swaps
2m−1 basis vectors. The latter is represented diagrammatically using the symbol ×

×
, however

in the context of this work, the same symbol is used to indicate both operators interchangeably.
△

We obtain the set of generators for the permutations implementing the swap mapping, so

PM = {SWAPm(i, j)|Mi,j = 1, i < j} , (14)

where M is the adjacency matrix for the hardware couplings. In other words, each permutation
P (t) for layer t, is constructed by composing a subset of elements of PM. Later we will introduce
an objective that aims at minimizing the number of elements of such construction.

We extend again the approach by introducing a sort of ’smooth swap’, that is a swap operator
in superposition with the identity. We define the smooth swap operator SSWAPm(i, j, θ) as one
of the following equivalent forms

SSWAPm(i, j, θ) := cos2(θ)Im + sin2(θ)SWAPm(i, j) (15a)

=Im + sin2(θ) (SWAPm(i, j)− Im) (15b)

=Im + sin2(θ) (|i〉m 〈j|m + |j〉m 〈i|m − |i〉m 〈i|m − |j〉m 〈j|m) , (15c)

which can be shown to be convex combinations of the identity matrix and the swap acting
on vertices i, j. It follows from the Birkhoff–von Neumann theorem that SSWAPm(i, j, θ) is a
doubly stochastic matrix [7]. The specific structure of the matrix SSWAPm(i, j, θ) is also known
as an elementary doubly stochastic matrix [3]. By Lemma 2.1, the set of DSM of the same size
is closed under matrix multiplication, so by composing multiple SSWAP operators we obtain
another matrix of the same class. Notably, in our case, when the θs are integer multiples of
π
2 we obtain a vertex of the Birkhoff polytope, that is a permutation matrix. This means that
we can substitute the component P ⊗ P in (7e) with a composition (depending on some hyper-
parameters) of operators of the form,

PSSWAPm(i, j, θ) := cos2(θ)I⊗2
m + sin2(θ)SWAPm(i, j)⊗2 (16a)

=I
⊗2
m + sin2(θ)

(
SWAPm(i, j)⊗2 − I

⊗2
m

)
(16b)

=
1

2

(
I
⊗2
m + SWAPm(i, j)⊗2

)
+

cos(2θ)

2

(
I
⊗2
m − SWAPm(i, j)⊗2

)
. (16c)

Note that here we extended the concept of SSWAP to that of PSSWAP, where the prefix P
stands for ’parallelized’ which resembles the effect of the tensor power. In the next section we
continue with the substitution of the PSSWAP in the cost function (12), resulting in the weighted
sum of costs corresponding to the superposition of solutions determined by the parameters θs.

Remark 3.3. In relation to the definition of PSSWAP, we highlight that in general

PSSWAP(i, j, θ) 6= SSWAPm(i, j, θ)⊗2 . (17)

△

8

q4

q3

q2

q1

q0

U0

U1

U2

U3

U4

U5

U6

U7

×

×

×

×

×

× ×

×

q3

q1

q2

q4

q0

Figure 6: The final circuit corresponding to the input circuit in Figure 2.

3.2 The optimization problem: formulation

We start by defining the constructor generating the permutations P (t) at each time step t. We
recall that we denote by T the number of layers of the input circuit, so the layer index t belongs
to [0 . . T − 1]. Also each layer determines S continuous parameters, so overall we have S × T
parameters, which will be denoted by θ ∈ R

ST .
The constructor configuration (hyper-parameters) is a pair (p1, p2) of functions p1, p2 :

[0 . . S − 1] → VM mapping a sequence index s to a physical qubit4. Moreover, in the scope
of this section we consider the functions (p1, p2) as arbitrary, however Section 3.3 will develop
a specific structure for them. At each time step t the hyper-parameters determine a sequence
of S swaps SSWAPm(p1(s), p2(s), θs

(t)) for s ∈ [0 . . S − 1]. So, given a vector of continuous

parameters θ =
(
θs

(t)
)
t,s
∈ R

ST , the hardware cost function assumes the form

L(θ) =

T−1∑

t=0

Lt(θ), (18)

with

Lt(θ) =β(t) vecr(Mc)
⊤K(t) vecr(G

(t)), (19a)

and

P (t) =PSSWAPm(p1(0), p2(0), θ0
(t)) · · ·PSSWAPm(p1(S − 1), p2(S − 1), θS−1

(t)), (19b)

K(0) =P (0), (19c)

K(t) =P (t)K(t−1), 1 ≤ t ≤ T − 1 . (19d)

In (18), each term is scaled by the function β : R→ R which is assumed decreasing and positive
valued. The function β, is one of the key components of the heuristic solver — the adaptive
feasibility, which is introduced in Section 3.4. Note that each continuous parameter θs

(t1) appears
as PSSWAP argument, one time for all terms in (18) such that t ≥ t1. Also L(θ) ≥ 0 for all θ.

We obtain the ideal form for the optimization problem, that is

min
θ∈RST

card(θ), (20)

s.t. L(θ) = 0,

4We also require that i = p1(s) 6= p2(s) = j for all s, so we always have distinct targets {i, j} for the swap.

9

where card(θ) is the cardinality5 of the vector θ. The structure of the problem is justified

by the fact that for θs
(t) = 0, the corresponding PSSWAP is the identity permutation. The

next proposition shows that an optimization problem with cardinality as objective and whose
constraint matches a certain structure, can be solved by an equivalent differentiable problem.

Proposition 3.2. Given the structure of the hardware cost function L, the following optimization
problems are equivalent

{
min

θ∈RST

‖θ‖22,

s.t. L(θ) = 0,
∼=

{
min

θ∈RST

card(θ),

s.t. L(θ) = 0 .
(21)

Proof in Appendix A.2. This proposition demonstrates that the problem in (20) can be solved
by considering the squared l2-norm of θ instead of its cardinality.

Let us study the characterization of the stationary points of the hardware cost function L.
The next proposition shows that vectors θ ∈ R

ST such that the individual elements are integer
multiples of π

2 , are a sufficient condition for the stationary points of the hardware cost function.

Proposition 3.3. Consider the hardware cost function (18) and the element θs
(t) with index

(s, t) belonging to the vector θ ∈ R
ST . Let Ω =

{
k π

2

∣∣k ∈ Z
}
be the set of integer multiples of

π/2. Then

1. θ
⊤es

(t) ∈ Ω =⇒ ∂L(θ)

∂θs
(t) = 0.

If ∂L(θ)

∂θs
(t) = 0, for some θ ∈ R

ST , then, either

2. θ
⊤
es

(t) ∈ Ω,

3. or θ
⊤
es

(t) /∈ Ω and ∂L(θ̂)

∂θs
(t) = 0 for θ̂ ∈

{
θ + res

(t)
∣∣r ∈ R

}
.

Proof in Appendix A.2.

Remark 3.4. Note that Case 3 of Proposition 3.3 proposition suggests that the constraint is
locally “flat” in the direction es which means that multiple solutions are possible, but this
ambiguity is resolved by 2-norm minimization which simply picks 0 in this case. Let us further
illustrate Case 3: given circuits C1 and C2, we define the equivalence relation C1 ∼ C2 whenever
the circuits implement the same unitary up to a permutation. Now, assume the line connectivity
and consider the swap mapping process that follows.

q0 : •

q1 :

q2 :

SWAP
→

q0 : ×
θ0

q1

q1 : × • q0

q2 : q2

∼

q0 : ×
θ0

q1

q1 : × ×
θ1

q2

q2 : × • q0

(22)

With circuit swap gates interpreted as SSWAPs controlled by a parameter θk ∈ R. The central
circuit reports a solution with θ0 = π/2, however adding another swap (q1 → q2) as depicted on
the right-hand side does not alter the hardware cost function, consequently the partial derivative
corresponding to the second swap is zero for any θ1 ∈ R.

In other words, there may exist configurations of the parameters vector θ such that one or
more elements of such vector determine a flat cost. However, the objective of the optimization
problem (20), being a cardinality, favors the zero value for the free parameters.

△
5The cardinality of a vector x ∈ R

n is defined as card(x) := |{i|xi 6= 0}|, where | · | is the set cardinality.

10

Figure 7: IBM’s heavy-hex lattice topology. The graph depicts three unit cells, with vertices
representing the qubits, and edges the connectivity constraints.

3.3 The optimization problem: constraint specification for different

topologies

In the construction of the hardware cost function L, we claimed that the sequence of PSSWAPs
in (19b) depends on some hyper-parameters. In the present section we determine the structure of
the PSSWAPs for the case of the line connectivity between qubits. Despite the simplicity of the
present topology, the results obtained here are key for the generalization to the arbitrary con-
nectivity. In relation to general topologies, we notice that recently there have been a widespread
adoption of quantum processing unit topologies based on hexagonal lattices [15]. An example
is depicted in Figure 7. Moreover, the results obtained in this section are extend to the general
case in Appendix A.1.

The line connectivity model is defined as a chain of m qubits (assuming m ≥ 3) where the
neighborhoods of qubit k ∈ [1 . .m− 2] are qubits k − 1 and k + 1. The extremes of the chain,
that is qubits 0 and m− 1, have neighborhood, respectively, qubit 1 and qubit m− 2.

Assume for simplicity that the number of qubits m is an odd integer greater than two. Then
the set of generating swaps PM defined in (14), contains m− 1 elements. We partition the set
PM into the following subsets

Γ1 = {SWAP(2k, 2k + 1)|k ∈ [0 . . (m− 1)/2]} , (23)

Γ2 = {SWAP(2k + 1, 2k + 2)|k ∈ [0 . . (m− 1)/2]} ,

so PM = Γ1 ∪ Γ2. We note that for any Q1, Q2 ∈ Γ1, then Q1Q2 = Q2Q1, similarly it also holds
for Γ2.

The next lemma extends the commutativity from the generating permutations to the gener-
ated DSM. The result is immediate, so we state the claim without proof.

Lemma 3.4. Let P1, P2 be m × m permutation matrices such that P1P2 = P2P1, that is the
permutations commute. Then the following doubly stochastic matrices6 also commute

Qk = (1− αk)Im + αkPk, (24)

with αk ∈ [0, 1], for k = 1, 2. That is, Q1Q2 = Q2Q1.

Consequently, the product of doubly stochastic matrices obtained from either Γ1 or Γ2 com-
mute. Using (16b) we define the composition of such commuting matrices (PSSWAPs) controlled

6Equivalent to the SSWAP defined in (15a), or the PSSWAP defined in (16a).

11

by the continuous parameters θ, so

C(Γk, θ) =
∏

Pi∈Γk

(
I
⊗2
m + sin2(θi)

(
P⊗2
i − I

⊗2
m

))
. (25)

To complete the construction, we specialize the definition of P (t) related to the hardware cost
function in (19b), with a (finite) sequence of alternating structures of the form C(Γk, θ), that is

P (t) =C
(
Γ1, θ

(t)
1

)
· C
(
Γ2, θ

(t)
2

)
· C
(
Γ1, θ

(t)
3

)
· C
(
Γ2, θ

(t)
4

)
· · · (26)

q0 : ×
q1 : × ×
q2 : × ×
q3 : × ×
q4 : ×

❴❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴❴

❴❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴❴

Figure 8: Example of the pattern of swaps for the line connectivity with m = 5 qubits. The
dashed frames represent respectively the set Γ1 and Γ2.

The next lemma shows one of the motivations that justify this construction, that is efficient
matrix multiplication for permutations within the same partition.

Lemma 3.5. Let a, b ∈ Sm be distinct, involutory and commuting elements of the symmetric
group of degree m, that is a 6= b, a2 = b2 = e and a ◦ b = b ◦ a, where e ∈ Sm is the identity
element. Let Pa, Pb be the permutation representations [16] of a and b, respectively. Then

PaPb =Pa + Pb − Im. (27)

Proof in Appendix A.2. As a corollary, it can be readily proven that given a (finite) non-
empty set of n, m × m permutation matrices {Pt}

n
t=1, in which each pair of elements Pa, Pb,

fulfills the conditions of the Lemma, then

n∏

t=1

Pt =

(
n∑

t=1

Pt

)
− (n− 1)Im . (28)

We also note that the maximum number of disjoint and thus commuting permutation matrices
is n = ⌊m/2⌋.

The next step is that of applying the latest result to a product of doubly stochastic matrices
whose generating permutations fulfill the conditions of Lemma 3.5.

Proposition 3.6. Let {Pt}
n
t=1 be a non-empty set of m × m matrices such that each element

is involutory and each pair commutes. Then the following identity holds for the composition of
elementary DSM generated by the Pt,

n∏

t=1

(
Im + sin2(θt) (Pt − Im)

)
=Im +

n∑

t=1

sin2(θt) (Pt − Im) . (29)

Proof in Appendix A.2. Finally we apply the results just obtained to the definition of layer
of PSSWAPs (25), so

C(Γk, θ) =I
⊗2
m +

∑

Pi∈Γk

sin2(θi)
(
P⊗2
i − I

⊗2
m

)
. (30)

12

Assume we havem qubits, then it can be shown that the repetition of patterns constructed as
depicted in Figure 8, generates a set of permutations that contains a subgroup of the symmetric
group Sm. Also as one may expect, increasing the number of replica creates subgroups that
approach in term of order, the group Sm. So, it would be interesting obtaining results regarding
the required number of repetitions and their efficiency. For now however, we do not expand the
latter point which will be addressed in future research. To conclude, we claim without proving
that this construction favors the minimization of the resulting circuit depth. However, evidence
for the latter assertion emerges in the experiments section.

3.4 The optimization problem: numerical method

In this section we develop a heuristic for the solution of problem (20). We start from a well-known
technique called Rolling Horizon (RH). The latter consists of partitioning a decision problem
into a sequence of sub-problems whose aggregated solutions constitute a solution for the whole
problem. The sub-problems often are identified by time windows of fixed length. Examples of
the aforementioned strategy can be found in [12, 6].

We build on the RH strategy to obtain a process we call adaptive feasibility. The terminology
finds the following motivation – we call it adaptive because the RH depth adjusts to the best sub-
problem where we can reach feasibility. Considering the structure of the hardware cost function,
we note that for all s, the variables θs

(τ), appear in the terms Lt of (18) with t ≥ τ . Since the
permutation at time t influences the permutations of the subsequent layers, then we favor the
feasibility of lower layers (w.r.t. time t) using the decreasing function β(t) introduced in (19a).
Now, it follows from Proposition 3.2 that the optimization problem takes the equivalent form

min
θ∈RST

‖θ‖
2
2 ,

s.t. L(θ) = 0,

which we solve using the Differential Multiplier Method [14]. The method, by introducing the
Lagrange multiplier λ, produces a sequence of updates for the variables θ and λ, so

θ ←θ − ηθ∇θ

(
‖θ‖22 + λL(θ)

)
, (31a)

λ←λ+ ηλ∇λ

(
‖θ‖

2
2 + λL(θ)

)
, (31b)

until a stop condition is reached. We denoted with ηθ and ηλ the step sizes for the variables θ
and λ, respectively. Interestingly, since L(θ) ≥ 0, the second update corresponds to a monotonic
increase of λ, that is

λ←λ+ ηλL(θ) . (32)

The latter can be used to prove that the optimizer gets attracted by the stationary points of L,
but according to Proposition 3.3, such points have a known and convenient structure.

The entire procedure is split into two algorithms, the DSM-SWAP and the Knitter, with the
former being the main algorithm.

3.4.1 The Knitter algorithm

The Knitter7 algorithm can be interpreted as a global solver (w.r.t. the circuit) for the swap
mapping problem. But the input circuit is split into sections using the RH strategy so the
Knitter only acts upon each of the sub-circuits separately.

7The name Knitter is inspired by the braid diagrams (Figure 9) used to represent the iteration of the SWAPs.

13

We describe the steps of the algorithm as presented in Algorithm 1. The input circuit is given
as a sequence of graphs G(t), the latter is used alongside the hardware graph M to construct
(function BuildHardwareCost) the hardware cost function L. The construction depends on the
machine topology, details are elaborated in sections A.1 and 3.3.

In the for-loop at line 6 the vector θ is updated in a gradient descent fashion using the
gradient of the function f(θ) = ‖θ‖

2
2 + λL(θ). Since the problem is non-convex, the iteration

is executed max trials ≥ 1 times. At the end of each iteration, the projection8 PΩST ′ onto

the set ΩST ′

is applied to the vector θ, with Ω defined as in Proposition 3.3. Furthermore, the
application of the projector is justified by Proposition 3.3.

Completed the trials at line 15, we use the merit function g(θ) = ‖θ‖
2
2 + αL(θ) to choose

the best solution 9. Here the parameter α > 0 is a trade-off between swaps minimization and
feasibility maximization. Once the best solution is realized, at line 16 we count the number l of
subsequent layers, starting from the first, that fulfill the hardware constraints. Here we denote
with δ{0} the indicator function10 for the set {0} ⊂ R. Remarkably, line 16 constitutes one of
the key elements for the adaptive feasibility. Finally the algorithm returns the sub-vector of θ∗

corresponding to the first l layers.

Algorithm 1: The pseudocode for the Knitter algorithm.

Data: Sequence of T ′ circuit layers as graphs G(t). Hardware connectivity graphM.
Result: θ

∗; // Parameters for the feasible layers

1 R← ∅; // Set of solutions from trials

2 L ← BuildHardwareCost

(

(

G(t)
)T

′

t=1
,M

)

; // Prepare the hardware cost function

3 for t← 1 to max trials do

4 θ ∼ UST ′ (0, ǫ) ; // Sample initial θ ∈ R
ST

′

, with ǫ > 0 a small constant.

5 λ ∼ U (0, ǫ) ; // Sample initial λ. U is the uniform distribution.

6 for τ ← 1 to max optim steps do

7 θ ← θ − ηθ∇θ

(

‖θ‖22 + λL(θ)
)

; // Update θ with GD step

8 λ← λ+ ηλL(θ) ; // Update λ

9 if ‖∇θL(θ)‖
2
2 ≤ γ then

10 break ; // Early stopping condition met

11 end

12 end

13 R← R ∪
{

P
ΩST ′ (θ)

}

; // Store projection of current θ

14 end

15 θ∗ ← argmin
θ∈R

‖θ‖22 + αL(θ) ; // Best solution selection policy

16 l← argmin
k∈[0..T ′]

δ{0}

(

∑

k−1
i=0 Li(θ∗)

)

− k ; // Count feasible layers in l

17 if l is 0 then

// No feasible layers

18 θ
∗ ←nil;

19 return;

20 end

21 θ∗ ← θ∗ [1 . . l ∗ S] ; // Select parameters (sub-vector) for the l feasible layers

8The definition of projection is given in the proof of Lemma A.4.
9In our specific implementation we choose the solution that maximizes the number of feasible layers, conse-

quently the adaptive horizon step is maximized, leading to a reduction of the overall computation time for the
method.

10The indicator function for a subset C ⊆ U is defined as the extended real-valued function δC : U → R∪ {∞}

with rule δC(x) =

{

0, x ∈ C,

∞, otherwise.

14

3.4.2 The DSM-SWAP algorithm

The DSM-SWAP algorithm in essence partitions the input circuit into sub-circuits upon which the
Knitter algorithm is executed. The pseudocode is presented in Algorithm 2, also we recall that
we denote with T the number of layers of the circuit and with S the number of parameters
(equivalently SWAPs) per layer. The depth of the sub-circuits is given by the hyper-parameter
horizon, however the starting point for the horizon advances adaptively (line 13) depending on
the feasibility reached by the previous iteration.

Function ThetasToSwaps invoked at lines 6 and 16 takes a vector of angles θ to a sequence
of permutations matrices. We note that the elements of the vector θ are expected to belong to
the set Ω (Proposition 3.3), that is the angles represent a vertex of the Birkhoff polytope. But
this is consistent with the value returned by function Knitter.

We remark one additional point at line 7. The permutations applied to layer t, influence
all the subsequent layers from t + 1 to T − 1. Consequently, we make the algorithm consistent
with the mechanism by pre-permuting the qubits of each block C with the permutations from
the previous layers. In the specific expression at line 7 we denote with (·) • (·) the action of the
permutation P on the circuit C.

Finally the result of the method consists of a sequence of T × S involutory permutation
matrices (either identity or SWAP). In Figure 7 the reader can appreciate the resulting structure
visually.

Algorithm 2: The pseudocode for the DSM-SWAP algorithm.

Data: Sequence of T circuit layers as graphs G(t). Hardware connectivity graphM.
Result: R; // Sequences of swaps for each layer

1 θ
∗ ← () ; // Init empty vector (dimθ

∗ = 0) for the parameters

2 t← 0;

3 while t < T do

// Iterate over circuit layers

4 h← min (horizon, T − t) ; // Compute effective horizon

5 C ←
(

G(τ)
)t+h

τ=t
; // Construct sub-circuit with depth up to horizon

6 P ← ThetasToSwaps(θ∗);
7 C ← P • C ; // Apply the resulting permutation up to layer t
8 θ ← Knitter (C,M) ; // Run Knitter on permuted sub-circuit C
9 if θ is nil then

// If there are no feasible layers

// fail or run alternative strategy

10 R← nil ; // Nil result

11 return;

12 end

13 t← t+ (dim θ)/S ; // Adaptively update the next horizon starting point

14 θ∗ ← θ∗ ⊕ θ ; // Extend the vector of parameters

// Note dimθ
∗ = t× S ≤ T × S.

15 end

// The final θ
∗ belongs to R

ST

16 R← ThetasToSwaps(θ∗) ; // Obtain swaps for all layers

4 Experiments

The purpose of the experiments is two fold. On one hand we aim at obtaining a clearer view of
the effects of the hyper-parameters. On the other one, we compare the results of the proposed
method with other well known algorithms in literature.

15

The algorithm DSM-SWAP has been implemented11 on top of the frameworks Qiskit [1] and
PyTorch [13]. From the Qiskit library, we also made use of the algorithm SABRE and the circuit
generators for the multi-controlled X gate and Quantum Volume.

The circuits involved in the experiments may present features with different distributions,
depending on patterns and number of qubits. Also the measurements we are considering are
taken both before and after the application of the swap mapping process. To evaluate the
generalization of the strategy we consider several circuit patterns, specifically the Quantum
Volume (QV12) circuits [5] and the multi-cX gates compiled with an alphabet consisting of
CNOT and single qubit gates. Given a circuit pattern C and a feature X , we denote with X0(C)
and Xs(C) the random variables for the feature X measured on C, respectively before and after
the swap mapping. Then given the samples x0 ∼ X0(C) and xs ∼ Xs(C), assuming x0 6= 0, we
define the relative measure as d = xs−x0

x0
. The features we consider are the number of CNOTs

and the circuit depth13. The features are computed on the circuit resulting from the invocation
of the Qiskit 14 transpiler with optimization level three15. We note that the transpiler embodies
algorithms based on the stochastic approach, thus modeling using random variables is justified.
Take for example the number of CNOTs and let c0, cs be their count before and after the swap
mapping. Then the relative measure dcnots = cs−c0

c0
represents the fractional increase in the

number of CNOTs as a result of the qubit allocation. So for example, if the circuit prior to the
swap mapping contains 100 CNOTs and the process produces a fractional increase of 0.75 units
(dcnots = 0.75), then the final circuits contains 175 CNOTs. Similarly we denote the fractional
increase in depth with ddepth.

4.1 Study of the hyper-parameters

We start by describing the structure of the sampling. We generate 250 QV circuit instances for
each qubit count from 5 to 8 (both inclusive). Each circuit instance is then processed by the DSM-
SWAP algorithm configured with combinations of increasing horizon {1, 2, 4} and maximum
optimizer steps {10, 30, 100}.

In Figure 10 we highlight the general positive effect of a longer horizon on both dcnots and
ddepth. Moreover, Figure 9 provides the same evidence using braid diagrams. In Figure 11 we
observe vague evidence that a higher number of steps increases the quality of the results. This
means that the optimizer converges quite fast so we conclude that there is not much difference
between 30 and 100 steps, thus the former value is set as the default.

4.2 DSM-SWAP vs SABRE

We compare the new method with the algorithm SABRE configured with the lookahead strategy
[8]. The circuits considered are the Quantum Volume and the multi-cX gates. The data for
DSM-SWAP is the same one obtained for the hyper-parameters investigations16 we denote the
corresponding features with dcnotsdsm and ddepthdsm. In addition we execute SABRE on the
same circuits and measure the features dcnotssabre and ddepthsabre. In Figures 12 and 13, we

11Source code available at https://github.com/qiskit-community/dsm-swap.
12In the interest of space, we denote with QV{n} a Quantum Volume circuit with n qubits. Moreover, the

latter is generated via the function qiskit.circuit.quantumcircuit.QuantumCircuit(n, seed=seed), where seed
determines the circuit instance.

13We consider the Qiskit [1] definition of circuit depth which can be be obtained through the method
qiskit.circuit.QuantumCircuit.depth.

14Qiskit 0.36.1 and Qiskit Terra 0.20.1.
15Specifically, the structure of the invocation is qiskit.compiler.transpile(..., optimization level=3).
16We fix the hyper-parameter max optim steps = 30.

16

https://github.com/qiskit-community/dsm-swap

plot the eCDFs for the features gaps

dcnots =dcnotssabre − dcnotsdsm (33a)

ddepth =ddepthsabre − ddepthdsm. (33b)

Since the selected features, the smaller they are the better the performance, then points on
the positive abscissa correspond to DSM-SWAP performing better than SABRE. In Figure 12
we see that for horizon ≥ 2, the new method has at least 80% chances to produce a shallower
circuit. In Figure 13 we distinguish the results for QV8 circuits assuming line and ring couplings.
Surprisingly, in the ring connectivity case, the gap is remarkable even for horizon = 1. We think
that the latter could be an important clue for the development of new swap mapping methods.

In Figure 15 we obtain the average values for the merit measure defined as

merit =dcnots+ ddepth, (34)

which can be interpreted as the overall increase in both CNOT count and depth, as a consequence
of the swap mapping. The latter figure shows how our method compares to SABRE as the
horizon increases, also we consider MCX and QV8 circuits.

Remark 4.1. We expand on the reason for the choice of QV and MCX circuits. The Quantum
Volume circuits have the property that each layer is represented by a graph G(t) that has the
maximum number of edges such that the corresponding two-qubit gates commute. This feature
can be appreciated in Figure 9 by observing the columns (layers) of red edges.

On the other hand, MCX circuits, compiled with an alphabet of CNOT and single qubit
gates, present layers that tend to have a single edge, consequently they represent the opposing
case to QV.

△

Following the previous remark we assert that the case of the QV circuits is the most advanta-
geous for DSM-SWAP since the construction of the SWAPs (Sections 3.3 and A.1) can maximize
the parallelism of the permutations. The MCX circuits instead should be the opposing case,
indeed we observe in Figure 15 that we need a longer horizon to obtain a neat advantage over
SABRE.

5 Conclusions

The swap mapping process is fundamental for the quantum compiler and increasing its efficiency
is essential for improving the performance of the hardware. In this work we obtained a procedure
that combines both mathematical optimization and heuristic strategies. In literature however,
methods based on mathematical optimization have not recorded particular successes when ap-
plied to this problem. Conscious of the computation complexity hardness of the problem we
understand that, to be practical, the algorithm must include an heuristic component.

The decision process for the insertion of the SWAPs has been modeled as a smooth optimiza-
tion based on doubly stochastic matrices. Also we obtained a procedure to build the pattern
of SWAPs depending on the topology of the target hardware. One of the bottlenecks in the
evaluation of the cost function is determined by the number of matrix multiplications, however,
using the commutativity properties of the pattern we devised an efficient scheme for reducing
the computational cost. The solver heuristic is inspired by the rolling horizon policy and it
offers linear scaling of the computational complexity with respect to the depth of the circuit.
The algorithm has been implemented on top of the frameworks Qiskit and PyTorch, also we

17

q0

q1

q2

q3

q4

q5

q6

q7

(a) QV8, horizon=1

q0

q1

q2

q3

q4

q5

q6

q7

(b) QV8, horizon=4

Figure 9: Braid diagrams for the swap mapping applied to a Quantum Volume circuit with 8
qubits. The results, starting from the top, correspond to respectively horizon 1 and 4. It can be
noticed that in the bottom case the density of the braids (permutations) is visibly lower.

made the code open source. The experiments revealed clues regarding the algorithm hyper-
parameters and its relation with the state of the art algorithm SABRE. The optimality of the
results has been measured using the relative increment in CNOT gate count and depth. For
the hyper-parameters, we found that an increased horizon for the adaptive feasibility influences
positively the performance of the results. The comparison with the algorithm SABRE shown
that at the cost of increased computational time and while preserving the number of CNOTs,
the new method delivers significant reduction in the depth of the resulting circuit. We see the
potential application of our method to the compiling of quantum libraries where the processing
time can be penalized in favor of depth and CNOTs optimality.

Despite the positive results, further research is required to extend the applicability of the
method to the upcoming quantum hardware where we expect the number of qubits to climb to
hundreds if not thousands.

Acknowledgment

This study has received funding from the Disruptive Technologies Innovation Fund (DTIF), by
Enterprise Ireland, under project number DTIF2019-090 (project QCoIR). The literature review
is based on some unpublished work by Claudio Gambella, Andrea Simonetto, Anton Dekusar and
Giacomo Nannicini. The open source implementation was realized thanks to the collaboration
of Anton Dekusar, Albert Akhriev and Kevin Krsulich. The authors are highly thankful to Ali
Javadi-Abhari, Dr. Martin Mevissen and Tara Murphy for their support and suggestions.

References

[1] Qiskit: An open-source framework for quantum computing, 2021.

[2] Amir Beck. First-Order Methods in Optimization. SIAM-Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2017.

18

0.0 0.5 1.0 1.5

dcnots

0.0

0.2

0.4

0.6

0.8

1.0

p

horizon=1

horizon=2

horizon=4

0.0 0.5 1.0 1.5 2.0

ddepth

(a) QV{5, 6, 7, 8}

0.0 0.5 1.0 1.5

dcnots

0.0

0.2

0.4

0.6

0.8

1.0

p

horizon=1

horizon=2

horizon=4

0.0 0.5 1.0 1.5 2.0

ddepth

(b) QV8

Figure 10: The eCDFs for features dcnots (left column) and ddepth (right column) measured on
the algorithm DSM-SWAP. The top row configuration consists of increasing horizon (horizon =
1, 2, 4) over QV{5, 6, 7, 8} circuits and maximum optimizer steps fixed to 30. The bottom row
corresponds to the same configuration, however it relates exclusively to the QV8 circuits.

19

0.0 0.5 1.0 1.5

dcnots

0.0

0.2

0.4

0.6

0.8

1.0

p

max optim steps=10

max optim steps=30

max optim steps=100

0.0 0.5 1.0 1.5

ddepth

(a) QV{5, 6, 7, 8}

0.25 0.50 0.75 1.00 1.25 1.50

dcnots

0.0

0.2

0.4

0.6

0.8

1.0

p

max optim steps=10

max optim steps=30

max optim steps=100

0.5 1.0 1.5

ddepth

(b) QV8

Figure 11: The eCDFs for features dcnots (left column) and ddepth (right column) measured on
the algorithm DSM-SWAP. The top row configuration consists of increasing maximum optimizer
steps (max optim steps = 10, 30, 100) over QV{5, 6, 7, 8} circuits and horizon fixed to 2. The
bottom row corresponds to the same configuration, however it relates exclusively to the QV8
circuits.

20

−1.0 −0.5 0.0 0.5

dcnots

0.0

0.2

0.4

0.6

0.8

1.0

p

horizon=1

horizon=2

horizon=4

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

ddepth

Figure 12: The eCDFs for features gap dcnots (left) and ddepth (right) for the comparative
case DSM-SWAP vs SABRE. The DSM-SWAP algorithm is configured with increasing horizon
(horizon = 1, 2, 4) and max optim steps = 30. The vertical gray line at abscissa zero determines
the threshold where the two algorithms produce the same result (w.r.t. the current feature),
whereas on the right-hand side, the DSM-SWAP yields more favorable results.

[3] Richard A. Brualdi. Combinatorial Matrix Classes. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 2006.

[4] Gavin E. Crooks. Gradients of parameterized quantum gates using the parameter-shift rule
and gate decomposition. 2019.

[5] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta.
Validating quantum computers using randomized model circuits. Physical Review A, 100(3),
sep 2019.

[6] Claudio Gambella, Enrico Malaguti, Filippo Masini, and Daniele Vigo. Optimizing reloca-
tion operations in electric car-sharing. Omega, 81:234–245, 2018.

[7] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,
USA, 2nd edition, 2012.

[8] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for nisq-era quan-
tum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 1001–1014, 2019.

[9] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. Characterizing quantum gates
via randomized benchmarking. Physical Review A, 85(4), apr 2012.

[10] Dmitri Maslov, Sean M Falconer, and Michele Mosca. Quantum circuit placement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(4):752–763,
2008.

[11] Giacomo Nannicini, Lev S Bishop, Oktay Gunluk, and Petar Jurcevic. Optimal qubit
assignment and routing via integer programming, 2021.

[12] Rodrigo Palma-Behnke, Carlos Benavides, Fernando Lanas, Bernardo Severino, Lorenzo
Reyes, Jacqueline Llanos, and Doris Sáez. A microgrid energy management system based
on the rolling horizon strategy. IEEE Transactions on Smart Grid, 4(2):996–1006, 2013.

21

−0.75 −0.50 −0.25 0.00 0.25 0.50

dcnots

0.0

0.2

0.4

0.6

0.8

1.0
p

line, qv8, horizon=1

line, qv8, horizon=2

line, qv8, horizon=4

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

ddepth

(a) QV8-line

−0.4 −0.2 0.0 0.2 0.4

dcnots

0.0

0.2

0.4

0.6

0.8

1.0

p

ring, qv8, horizon=1

ring, qv8, horizon=2

ring, qv8, horizon=4

−0.25 0.00 0.25 0.50 0.75 1.00

ddepth

(b) QV8-ring

Figure 13: The same experiment as that in Figure 12 except that here we distinguish the case
with QV8 circuits with line (top row) and ring (bottom row) coupling maps.

1 2 3 4

horizon

20

40

60

80

100

ti
m
e
(s
ec
)

QV, coupling map line

qv5

qv6

qv7

qv8

1 2 3 4

horizon

QV, coupling map ring

qv5

qv6

qv7

qv8

Figure 14: Average time for the DSM-SWAP obtained at increasing horizon with QV circuits.

22

1 2 3 4 5 6 7 8

horizon

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
m
er
it

MCX

mcx5 - line

mcx6 - line

mcx7 - line

mcx8 - line

dsm-swap

sabre

1 2 3 4

horizon

QV8

qv8 - line

qv8 - ring

dsm-swap

sabre

Figure 15: Comparison DSM-SWAP vs SABRE w.r.t. the merit function defined in (34), on
MCX (left) and QV8 (right) circuits.

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An impera-
tive style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[14] John Platt and Alan Barr. Constrained differential optimization. In D. Anderson, editor,
Neural Information Processing Systems, volume 0. American Institute of Physics, 1987.

[15] IBM Quantum. The ibm quantum heavy hex lattice. Available at
https://research.ibm.com/blog/heavy-hex-lattice (2021/07/07).

[16] Bruce E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and
Symmetric Functions. Springer New York, New York, NY, 2001.

[17] Marcos Yukio Siraichi, Vinicius Fernandes Dos Santos, Caroline Collange, and Fer-
nando Magno Quintão Pereira. Qubit Allocation. In CGO 2018 - International Symposium
on Code Generation and Optimization, pages 1–12, Vienna, Austria, February 2018.

[18] Bochen Tan and Jason Cong. Optimality study of existing quantum computing layout
synthesis tools. IEEE Transactions on Computers, 70(9):1363–1373, sep 2021.

[19] V. G. Vizing. Critical graphs with given chromatic class. Metody Diskret. Analiz., 5:9–17,
1965.

23

https://research.ibm.com/blog/heavy-hex-lattice

A Appendix

A.1 Arbitrary topology

We extend the results obtained in the previous section from line connectivity to arbitrary topol-
ogy. The disjoint partitioning PM = Γ1 ∪ Γ2 of the set of generating swaps, obtained in (23),
can be interpreted as a special case of the graph edge coloring problem. In Figure 16 we provide
an example of line connectivity related to the partitioning and its relation to edge coloring.

q0

q1

q2

q3

q4
→

{
Γ1 = {SWAP5(0, 1), SWAP5(2, 3)} ,

Γ2 = {SWAP5(1, 2), SWAP5(3, 4)} .

Figure 16: An example of edge coloring for the line connectivity. On the LHS we have the graph
M with the line pattern representing the color of the edge. On the RHS we have the partitions
obtained in (23).

We recall that the m swap targets i, j for each swap SWAPm(i, j) ∈ PM, and the swaps in
PM, correspond respectively to the vertices and the edges of the hardware connectivity graph
M. Then the minimum number of partitions ofM, such that no two incident edges are in the
same subset, is called the edge chromatic index. For a graph G we denote its chromatic index
with χe(G). Therefore the optimal partitions Γk correspond to the colors in the edge coloring
problem. An example for this general case is provided in Figure 17.

q0

q1

q2

q3

q4
→

Γ1 = {SWAP5(0, 1), SWAP5(2, 3)} ,

Γ2 = {SWAP5(1, 2), SWAP5(3, 4)} ,

Γ3 = {SWAP5(0, 2), SWAP5(1, 3)} .

Figure 17: An example of edge coloring and the corresponding partitioning of the generators set.
On the LHS we have the graphM with the line pattern representing the color of the edge.

Assume that the hardware graphM corresponds to an arbitrary topology. Then, by applying
the edge coloring procedure, we determine the optimal partitioning

PM =

χe(M)⋃

k=1

Γk, (35)

such that fixed any k ∈ [1 . . χe(M)], we have that Pa, Pb ∈ Γk implies PaPb = PbPa.
Given the max degree of a graph G, denoted by ∆(G), a well known result by Vizing [19]

establishes the boundaries for its chromatic index. We report the aforementioned theorem.

Proposition A.1 (Vizing). Given any finite and simple graph G, then ∆(G) ≤ χe(G) ≤ ∆(G)+1.

In other words we need at most ∆(M) + 1 subsets for the partitioning of PM.
In relation to the heavy-hex lattice topology depicted in Figure 7, we notice that graphs of

such form are planar and have maximum degree 3. Consequently, by Theorem A.1, a hexagonal
lattice connectivity requires not more than 4 partitions.

24

A.2 Proofs

Proof of Lemma 2.2. The first equality follows immediately from the definitions of vecr(In) and
vecr(A). For the second one, consider the decomposition A =

∑
i,j Ai,j |i〉n 〈j|n, then

(
In ⊗A⊤

)
vecr(In) =

In ⊗

∑

i,j

Ai,j |j〉n 〈i|n

∑

k

|k〉n ⊗ |k〉n (36a)

=
∑

i,j

(|i〉n ⊗ (Ai,j |j〉n)) = vecr(A) . (36b)

Proof of Lemma 2.3. We prove the equality between the left-hand side (LHS) of (5a) and (5b),
so

vecr(In)
⊤(A⊗B) vecr(In) =

(
∑

i

〈i| ⊗ 〈i|

)
(A⊗B)

∑

j

|j〉 ⊗ |j〉

 (37a)

=
∑

i,j

〈i|A |j〉 ⊗ 〈i|B |j〉 (37b)

=
∑

i,j

Ai,jBi,j = 1⊤
n (A⊙B)1n . (37c)

Using Lemma 2.2, we prove the trace identity. First note that, for some i, j ∈ [0 . . n− 1],
|j〉 ⊗ (〈i| In |j〉) = |i〉 when i = j and 0 otherwise. Then

Tr
(
AB⊤

)
=

n−1∑

i=0

〈i|AB⊤ |i〉 (38a)

=

n−1∑

i,j=0

〈i|AB⊤ |j〉 ⊗ 〈i| In |j〉 (38b)

= vecr(In)
⊤(AB⊤ ⊗ In) vecr(In) (38c)

= vecr(In)
⊤(A⊗ In)(B

⊤ ⊗ In) vecr(In) (38d)

(4)
= vecr(In)

⊤(A⊗ In)(In ⊗B) vecr(In) (38e)

= vecr(In)
⊤(A⊗B) vecr(In) . (38f)

Proof of Lemma 3.1. Since Q is doubly stochastic, then
∑

i λi = 1 and λi ≥ 0. We verify the
Definition 1, so

K(Jm ⊗ Jm) =

(
∑

i

λiPi ⊗ Pi

)
(Jm ⊗ Jm) (39a)

=
∑

i

λi(PiJm)⊗ (PiJm) (39b)

=

(
∑

i

λi

)
Jm ⊗ Jm = Jm ⊗ Jm . (39c)

25

Similarly, it can be proved for the left-hand side multiplication by Jm⊗Jm. Thus K(Jm⊗Jm) =
(Jm ⊗ Jm)K = Jm ⊗ Jm, hence the implication follows.

Lemma A.2. The partial derivatives of the hardware cost function (18) w.r.t. θs
(t), follow the

parameter shift rule [4], that is

∂L(θ)

∂θs
(t)

=L
(
θ +

π

4
es

(t)
)
− L

(
θ −

π

4
es

(t)
)
, (40)

where es
(t) is the standard basis vector whose index is (t, s).

Proof. First note that

∂ sin2(θ)

∂θ
=2 sin θ cos θ = sin(2θ) (41a)

=

(
1

2
+

1

2
sin(2θ)

)
−

(
1

2
−

1

2
sin(2θ)

)
(41b)

=

(
1

2
−

1

2
cos
(
2θ +

π

2

))
−

(
1

2
−

1

2
sin
(
2θ −

π

2

))
(41c)

= sin2
(
θ +

π

4

)
− sin2

(
θ −

π

4

)
. (41d)

Consider the matrix-valued function SSWAPm((·); i, j) : R→Mm, then fixed some v,w ∈ R
m,

we have

∂
(
v⊤SSWAPm(i, j, θ)w

)

∂θ
=
∂ sin2(θ)

∂θ

(
v⊤SWAPm(i, j)w − v⊤w

)
(42a)

=v⊤SSWAPm

(
i, j, θ +

π

4

)
w − v⊤SSWAPm

(
i, j, θ −

π

4

)
w, (42b)

and similarly for PSSWAP. But the LHS of (42a) corresponds to the form of ∂Lt(θ)

∂θs
(t) . Also, since

the variables θs
(t) appear not more than once in each term of the cost in (18) then by linearity

the result follows.

Lemma A.3. Let Q be an m × m DSM, then the ℓ1-norm of vectors from the non-negative
orthant Rm

+ is preserved under the action of Q. That is

v ∈ R
m
+ =⇒ ‖Qv‖1 = ‖v‖1, (43)

for all m×m DSMs Q.

Proof. Since v ∈ R
m
+ , so each component vi is non-negative, then the ℓ1-norm can be written

as ‖v‖1 = 1⊤
mv. Note that for any m × m permutation matrix P , we have P1m = 1m. Let

Q =
∑

j λjPj be any m×m DSM, where λj and Pj follow Definition 1. Hence

‖Qv‖1 =

∥∥∥∥∥∥

∑

j

λjPjv

∥∥∥∥∥∥
1

=
∑

j

λj1
⊤
mPjv (44a)

=1⊤
mv
∑

j

λj = ‖v‖1, (44b)

consequently the claim is proved.

26

Proof of Proposition 3.3. From Lemma A.2 and the structure of the function L, it follows that
the partial derivative w.r.t. θs

(t) takes the form

∂L(θ)

∂θs
(t)

=

T−1∑

τ=t

v⊤
τ

(
I
⊗2
m + sin2

(
θs

(t) +
π

4

)
F
)
wτ (45a)

−

T−1∑

τ=t

v⊤
τ

(
I
⊗2
m + sin2

(
θs

(t) −
π

4

)
F
)
wτ ,

with

F =
(
Ss

(t)
)⊗2

− I
⊗2
m , (45b)

where vτ ,wτ are some fixed vectors and Ss
(t) is the swap corresponding to the parameter θs

(t).
We note that the vectors vτ ,wτ may depend on the elements of θ excluding the selected θs

(t).
Equating (45a) with zero we obtain

sin2
(
θs

(t) +
π

4

)∑

τ

(
v⊤
τ Fwτ

)
=sin2

(
θs

(t) −
π

4

)∑

τ

(
v⊤
τ Fwτ

)
, (46)

then by (41d), we immediately see that the latter holds when sin
(
2θs

(t)
)
= 0, that is θs

(t) ∈ Ω.

Consequently, points 1. and 2. follow.
For point 3., it is sufficient to show that v⊤

τ Fwτ can be zero, then the value of θs
(t) is

uninfluential. Therefore, the partial derivative w.r.t. the same variable is zero, independently
from the value of θs

(t).
Vectors vτ ,wτ are the result of some DSM applied to the non-zero vectors, with non-negative

entries, vecr
(
G(t)

)
and vecr (Mc). By Lemma A.3 the DSM action on those vectors preserves

the ℓ1-norm, then vτ 6= 0,wτ 6= 0. Thus v⊤
τ Fwτ = 0 only as a result of the action of F .

We show that there exist basis vectors |a〉m , |b〉m such that the latter equality holds. Assume

Ss
(t) = SWAPm(i, j) for some i 6= j such that i, j are distinct from a, b, then

〈a|
⊗2
m F |b〉

⊗2
m = 〈a|

⊗2
m SWAPm(i, j)⊗2 |b〉

⊗2
m − 〈a|

⊗2
m |b〉

⊗2
m = 0, (47a)

since SWAPm(i, j) fixes |a〉m , |b〉m. Hence there exist vτ ,wτ such that v⊤
τ Fwτ vanishes, so

point 3. is proved.

Lemma A.4. Consider the C1 function g : Rn → R+, such that g(x∗) = 0 =⇒ x∗ ∈ Z
n and

g(x+ 2ei) = g(x) for all i = 0 . . n− 1, with {ei} the canonical basis for R
n. In other words the

zeros of g occur at points having integer entries, additionally the function is entry-wise periodic
with fundamental period 2. Then the following optimization problems are equivalent

{
min
w∈Rn

‖w‖22,

s.t. g(w) = 0,
∼=

{
min
w∈Rn

card(w),

s.t. g(w) = 0,
(48)

where card(·) denotes the cardinality of the argument.

Proof. A consequence of the periodicity is that for any x ∈ R
n and y = (2

∑
i kiei) ∈ 2Zn, with

ki ∈ Z, we have g(x+ y) = g(x).

27

Let x∗ ∈ Z
n fixed, and consider the projection17 P2Z of x∗ onto the set 2Z, so let

y∗ ∈ P2Z(x
∗) = argmin

y∈2Zn

{
‖x∗ − y‖22

}
, (49)

then x∗ − y∗ ∈ {−1, 0, 1}n, so

‖x∗ − y∗‖22 =
∑

i

(x∗
i − y∗i)

2 =
∑

i

|x∗
i − y∗i | (50a)

=‖x∗ − y∗‖1 (50b)

=card(x∗ − y∗) (50c)

Now, consider the first optimization problem in (48) and perform the substitution w = x − y,
to obtain

min
x∈Rn,y∈2Zn

‖x− y‖22, (51)

s.t. g(x− y) = g(x) = 0 .

Let G = {x ∈ R
n|g(x) = 0} be the set of feasible points, then by assumption, x ∈ G =⇒ x ∈

Z
n, that is G ⊂ Z

n. Since the constraint is independent from the variable y, we rewrite the
optimization problem considering the feasible set, so

min
x∈G,y∈2Zn

‖x− y‖22,
∼= min

y∈2Zn
min
x∈G

‖x− y‖22, (52)

then by (49) and (50a), the optimal y∗ is the one such that x∗ − y∗ ∈ {−1, 0, 1}n and the
cardinality of x∗ − y∗ is minimized. Hence the equivalence in (48) is established.

Proof of Proposition 3.2. We sketch a proof based on Lemma A.4. The aforementioned lemma
can be adapted to the periodicity of the hardware cost function L. It follows from (16b) that
the period of L is π. Define the function

g(x) =L
(πx

2

)
, (53)

which has period 2. Also the cardinality function is invariant to a non-zero vector scaling, that
is card(x) = card(αx) for all α ∈ R \ {0}. Then by applying Lemma A.4, the claim follows.

Proof of Lemma 3.5. Under the assumptions that P 2
a = P 2

b = Im and PaPb = PbPa we obtain

that (PaPb)
2
= PaPbPaPb = PaPbPbPa = Im, then we need that

(Pa + Pb − Im)2 =Im + 2 [PaPb − (Pa + Pb − Im)] = Im, (54)

which is true if and only if PaPb = (Pa + Pb − Im). The latter being the claim proves the
lemma.

Proof of Proposition 3.6. First we note that, for m ×m permutation matrices Pa, Pb, fulfilling
the conditions of Lemma 3.5, then

(Pa − Im)(Pb − Im) =PaPb − Pa − Pb + Im
(27)
= 0 . (55)

17We highlight a technicality regarding the projection P2Z. Since the set 2Zn is non-empty closed but non-
convex, then we cannot assure that the projection is a singleton [2, first projection theorem], consequently we
assume P2Z to be a set-valued operator, with the non-emptiness resulting from the set 2Zn being non-empty and
close.

28

In other words, given any pair of distinct, commuting and involutory permutations (acting on
the same vector space), the product of their shift by the identity vanishes.

We proceed by induction. Equation (29) is clearly true for n = 1, furthermore, assume it is
true for an arbitrary n ≥ 1, then consider the case n + 1 by multiplying both sides of equation
(29) by Im + sin2(θn+1) (Pn+1 − Im) to get

n+1∏

t=1

(
Im + sin2(θt) (Pt − Im)

)
=Im +

n+1∑

t=1

sin2(θt) (Pt − Im) (56a)

+

n∑

t=1

sin2(θt) sin
2(θn+1) (Pt − Im) (Pn+1 − Im)︸ ︷︷ ︸

0 by (55)

(56b)

=Im +

n+1∑

t=1

sin2(θt) (Pt − Im) , (56c)

hence the claim is proved.

29

	1 Introduction
	2 Mathematical preliminaries
	3 Main results
	3.1 The hardware cost function
	3.2 The optimization problem: formulation
	3.3 The optimization problem: constraint specification for different topologies
	3.4 The optimization problem: numerical method
	3.4.1 The Knitter algorithm
	3.4.2 The DSM-SWAP algorithm

	4 Experiments
	4.1 Study of the hyper-parameters
	4.2 DSM-SWAP vs SABRE

	5 Conclusions
	A Appendix
	A.1 Arbitrary topology
	A.2 Proofs

