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Abstract

The impact of a noisy Gaussian channel on a wide range of non-Gaussian input states is
studied in this work. The nonclassical nature of the states, both input and output, is developed
by studying the corresponding photon statistics and quasi-probability distributions. It is found
that photon addition has more robust quantum mechanical properties as compared to the photon
subtraction case. The threshold value of the noise parameter corresponding to the transition
from partial negative (W and P ) and zero (Q) to completely positive definite, at the center
of phase space, depends not only on the average number of thermal photons in the state, but
also on the squeezing parameter. In addition it is observed that the nonclassicality of the kth

number filtrated thermal state could be further enhanced by adding photon(s).

Keywords— Non-Gaussian state, Gaussian Channel, Nonclassicality

1 Introduction

Quantum information is an application of quantum mechanics to information theory, arising from its funda-
mental properties [1, 2]. It exploits concepts such as state superposition, entanglement, and wave function
collapse to establish new paradigms in the field of information processing, for example, for computing ap-
plications [3], cryptography [4], and simulation of quantum phenomena [5]. To harness the quantum system
behaviour it is necessary to focus on quantum state engineering [6,7]. Quantum engineering advances these
concepts by implementing them in a realistic scenario, as well as developing algorithms, protocols, devices
and systems.

The existence of quantum systems in complete isolation is a very rare occurrence. Generally, the dy-
namics is that of an open system where the system of interest evolves under the influence of interactions
with its surroundings [8, 9]. It is essential to understand how the environment affects quantum systems, in
order to investigate their properties. The idea of open quantum system plays an important role in quantum
state engineering. States engineered, both Gaussian and non-Gaussian, are impacted by their environment
which could be modelled by (non-)Gaussian channels [10,11]. These play an important role in the physics of
continuous-variable quantum systems. Here, Gaussian channels have attracted considerable attention [12].
A study of Gaussian channels has been conducted to study their impact on the evolution of Gaussian states
in the physics of continuous-variable quantum systems [12]. Over the past decade, a number of studies have
been carried out on Gaussian states, both from theoretical as well as experimental perspectives. Neverthe-
less, many quantum technologies [13] beyond the realm of Gaussian states, demand non-Gaussian elements
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to be introduced.

It should be noted that while Gaussian states have been a great success both experimentally and theo-
retically [14–16], they have a significant disadvantage when it comes to quantum technology: all Gaussian
measurements can be efficiently simulated [17]. A non-Gaussian operation was argued to be necessary for
the implementation of a universal quantum computer in pioneering work on CV quantum computation [18].
It is particularly difficult to implement common schemes based on the cubic phase gate in realistic setups
[19–22]. In addition, the information encoded by these protocols is highly non-Gaussian in nature, such as
the Gottesman-Kitaev-Preskill state [23]. However, these states are quite difficult to create even though they
could also be used to implement non-Gaussian gates [24]. Although non-Gaussian states present practical
difficulties, in the CV regime one must venture into non-Gaussian territory to achieve a quantum compu-
tational advantage [25]. In this sense, it is important to have a general understanding of the properties of
non-Gaussian states and the way they behave.
In recent years, many proposals have been put forward to generate highly nonclassical quantum states by
appropriate operators acting on light fields [26–34]. With the advent of quantum state engineering [35–38]
and quantum information processing ([39] and references therein), the study of non-classical properties of
engineered quantum states have become a prominent field [40]. This is so because only the presence of non-
classical features in a quantum state can provide quantum supremacy. In the recent past, various techniques
for quantum state engineering have been developed [35–38,41,42]. There are many methods of quantum state
construction. Prominent among these are the use of the state superposition principle of quantum mechanics
and operators acting on the light field state. An important class of non-Gaussian states, the photon-added
thermal state (PATS), which does not exhibit squeezing, was introduced in [43]. Multi-photon schemes can
be realized in a laboratory, as the initial thermal (even coherent) fields contain a very small number of
photons. The non-classicality of a single-photon-subtracted Gaussian state as well as a photon-added-then-
subtracted thermal state was investigated in [44]. Photon subtraction and addition represented by bosonic
annihilation and creation operators â and â†, respectively, have been employed to transform a field state to a
desired one. Focusing only on optics, these methods rely mainly on the use of beam splitters and detectors,
as well as postselection measurements. Such techniques are useful in creating holes in the photon number
distribution [45] and in generating finite-dimensional quantum states [37], both of which are non-classical.
They are also useful in realizing non-Gaussianity inducing operations, like photon addition and subtraction
[46,47]. Recently, nonclassical properties of photon-added and subtracted displaced Fock states were studied
using various witnesses of lower- and higher-order nonclassicality [48, 49]. Hole burning operations are also
very relevant, since the states investigated are extremely nonclassical when quantified through a nonclassi-
cality measure [50, 51]. The decoherence of photon-added thermal, photon-added squeezed thermal states
and photon-subtraction squeezed thermal states have been studied in a photon-loss channel in terms of neg-
ativity of Wigner function [52–54]. However, the construction of photons filtered from the thermal state and
subsequent photon addition on it and the investigation of its quantum properties have not yet been reported.

In this work, our aim is to study the impact of a Gaussian channel on various non-Gaussian states viz.
photon added thermal state (PATS), photon-subtracted thermal state (PSTS), photon-added kth-number
filtered thermal state (PAKFTS), photon-added squeezed thermal state (PASTS) and photon-subtracted
squeezed thermal state (PSSTS). By a comparison of input and output states for various parameters of
nonclassicality witness, for example, sub-Poissonian photon statistics, Mandel QM parameter, second or-
dered correlation function g2, zeros of Q function, negative region of Wigner W and Sudarshan-Glauber P
functions, the effect of noise on non-classicality or decoherence is brought out.

Making use of the technique of integration within an ordered product (IWOP) of operators [55], quan-
tum operators in optical fields are arranged into products in a unified manner (normal ordering, antinormal
ordering, Weyl (symmetric) ordering). This technique was proposed to utilize the power of Dirac’s symbolic
method [56] and representation theory. An ordered product symbol is constructed by arranging noncommu-
tative operators in a way that enables them to commute by the IWOP technique. However, the nature of
the operators remains unchanged, they are still q-numbers, instead of c-numbers. After the integration over
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c-numbers within an ordered product is performed, one can get rid of the normal ordering symbol.
The paper is organized as follows. The input non-Gaussian states are introduced in Sec. II, followed by

an introduction of bosonic Gaussian channel in Sec. III. The resulting output states, after passing through
the Gaussian channel, are then discussed. In Sec. V, we describe the phase space distribution for the input
and output states. The photon statistics of the input and output states are studied in Section VI. We then
make our conclusions.

2 Input State

Here we introduce the input Gaussian states to be subsequently passed through the Gaussian quantum
channel, discussed in Sec. III. As examples of Gaussian states we consider the thermal and squeezed thermal
states and apply generalized m-photon addition/subtraction to the thermal and squeezed thermal states, to
generate the corresponding non-Gaussian states. We also discuss hole burning in the thermal state.

2.1 Thermal State

The Hamiltonian of a single mode harmonic oscillator in thermal equilibrium is Ĥ = â†â~ω and the state is
described by the density operator ρ̂th [57, 58],

ρ̂th =
(

1− e−β~ω
)
e−β~ωn̂, β =

1

kBT
, (2.1)

where, ω represents the frequency of a single mode in thermal equilibrium at temperature T , kB is the
Boltzmann constant, and n̂ = â†â, the number operator.
The Eq. (2.1) can be written as follows in normal order:

ρ̂th = A : e−Aâ
†â :, A =

(
1− e−β~ω

)
=

1

1 + nth
, (2.2)

where, nth = [exp(β~ω)− 1]−1 is the average photon number in the thermal state and : Ô : is indicative of
normal ordering of operator Ô.

A. Photon Added Thermal State
The m-photon-added scheme, denoted by the mapping ρ̂ → â†mρ̂âm, was first proposed by Agarwal and

Tara [43]. Theoretically, the photon added thermal state (PATS) can be obtained by repeatedly operating
the photon creation operator â† on the thermal state. Thus, the density operator for photon added thermal
state ρ̂PATS is given by,

ρ̂PATS =
â†mρ̂thâ

m

Tr [â†mρth (â)m]
= N−1

m : â†me−Aâ
†ââm : . (2.3)

Here, m is positive integer number andNm is the normalization constant which is determined in Appendix
[A].

B. Photon Subtracted Thermal State
The photon subtracted thermal State (PSTS) can be obtained by repeatedly operating the photon anni-

hilator operator â on the thermal state. Hence the density operator for the photon subtracted thermal state
ρ̂PSTS is,

ρ̂PSTS =
âmρ̂thâ

†m

Tr[âmρ̂thâ†m]
.

Any density operator ρ̂ in terms of the coherent state, can be written as,

ρ̂ =

∫
P (α)|α〉〈α|d

2α

π
,
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where P (α) is a weight function sometimes known as the Glauber-Sudarshan P -function [59]. The P -
function is a prominent quasi-probability distribution [60]. The Eq. (2.1) can be written in terms of coherent
state, as

ρ̂th =
1

nth

∫
d2α

π
e
− |α|

2

nth |α〉〈α|. (2.4)

Using Eq. (2.4), we get following density operator ρ̂PSTS for the photon subtraction thermal state,

ρ̂PSTS = N−1
m− â

m

∫
d2α

π
e
− |α|

2

nth |α〉〈α|â†m = N−1
m−

∫
d2α

π
(α∗α)me

− |α|
2

nth |α〉〈α|, (2.5)

where, m is positive integer number represent subtracted photons and Nm− is the normalization constant
which is determined in Appendix [A].

C. Photon Added Hole Burning Thermal State
In terms of Fock basis, the thermal state can be described as:

ρ̂th =
(

1− e−β~ω
)∑
n=0

e−β~ωn̂ |n〉 〈n| =
(

1− e−β~ω
)∑
n=0

e−β~ωn |n〉 〈n|. (2.6)

There are a number of ways in which hole burning can be done for given states. It is possible to determine
the hole burning state at a particular position (for example, the kth number state in the photon number
distribution) by filtering the kth-number state from the thermal state. This hole burning state, is also known
as kth-number filtered thermal state (KFTS).
In the KFTS, the density operator ρ̂KFTS can be expressed as:

ρ̂KFTS =
(

1− e−β~ω
) ∑
n=0,n6= k

e−β~ωn |n〉 〈n| =
(

1− e−β~ω
)[∑

n=0

e−β~ωn |n〉 〈n| − e−β~ωk |k〉 〈k|
]
.

With the use of IWOP techniques, the above equation can be written as follows:

ρ̂KFTS = A

[
: e−Aâ

†â : − e−β~ωk

k!
: â†ke−â

†ââk :

]
, (2.7)

where, A =
(
1− e−β~ω

)
= 1

1+nth
.

Theoretically, photon added KFTS can be obtained by operating the creation operator on the kth-number
state filtration of thermal state. The density operator for photon added kth-number filtered thermal state
(PAKFTS) can be expressed as follows:

ρ̂PAKFTS = N−1
km

[
: â†me−Aâ

†ââ
m

: − e−β~ωk

k!
: â†(m+k)e

−â†â
â(m+k) :

]
. (2.8)

Here, Nkm is the normalization constant which is determined in Appendix [A].

2.2 Squeezed Thermal State

The squeezed thermal state (STS) can be obtained from the thermal state by applying the single mode
squeezing operator,

ρ̂s = S1
†ρ̂thS1,

where S1 = 1√
µ

∫
dq
∣∣∣ qµ〉 〈q| ; µ = eλ is the single-mode squeezing operator with λ being the squeezing

parameter [57,61,62].
The above method enables one to obtain the normally ordered form of STS directly [63],
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ρ̂s =
1√
A

: exp

[
C

2
(â†2 + â2) + (B − 1)â†â

]
:, (2.9)

where we have set,
A = n2

th + (2nth + 1)cosh2λ, B = nth
A

(nth + 1), C = 2nth+1
2A

sinh 2λ.

A. Photon Added Squeezed Thermal State
The photon added squeezed thermal state (PASTS) can be obtained by repeatedly applying creator

operators to squeezed thermal states. From Eq. (2.9) a photon added squeezed thermal state ρ̂PASTS can
be obtained as:

ρ̂PASTS =
N−1
a,m√
A

: â†m exp

[
C

2
(â†2 + â2) + (B − 1)â†â

]
âm : . (2.10)

Here, m is a non-negative number and Na,m is the normalization that is calculated in Appendix [A].

B. Photon Subtracted Squeezed Thermal State (PSSTS)
Additionally, we introduce the photon subtracted thermal state (PSSTS), which can be generated by

repeatedly applying the annihilator operator to squeezed thermal states.
From Eq. (2.9) the photon added squeezed thermal state ρ̂PASTS can be obtained as:

ρ̂PSSTS =
âmρ̂sâ

†m

Tr[âmρ̂sâ†m]
=
N−1
a,m−√
A

âm : exp

[
C

2
(â†2 + â2) + (B − 1)â†â

]
: â†m. (2.11)

Using the over-completeness relation for the coherent states, expressed as an integral over the complex
α-plane, as ∫

d2α

π
|α〉〈α| = 1

in Eq. (2.11), we have:

ρ̂PSSTS =
N−1
a,m−√
A

∫ ∫
d2α

π

d2β

π
âm|α〉〈α| : exp

[
C

2
(â†2 + â2) + (B − 1)â†â

]
: |β〉〈β|â†m

=
N−1
a,m−√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2 + |β|2

2

]
|α〉〈β|. (2.12)

Na,m− is the normalization calculated in Appendix [A].

3 Bosonic Gaussian Channels

Bosonic Gaussian channels are the results of zero-mean random Gaussian shifts in the phase space of bosonic
modes, which provide a completely positive map (CPM) on the phase space [64]. By applying this CPM to
an input state /hat[/rho], the output state /mathrm/Phis/left(/hat/rho/right) may be obtained:

Φs (ρ̂) =

∫
D̂z ρ̂ D̂

†
zG (z) d2z. (3.1)

Here D̂z = ezâ
†−z∗â is the displacement operator in the phase space of the bosonic mode, where the

bosonic creation and annihilation operators obey the commutation relation [â, â†] = 1, and the classical-

noise Gaussian distribution, G (z) = e−|z|
2/s

πs
, has zero mean and phase-space variance σ2 = s. The complex

number α = (p+iq)/
√

2 corresponds to the phase-space points of a single-mode harmonic oscillator described
by position q and momentum p. It is also possible to write the Eq. (3.1) in terms of Kraus operators as:
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Figure 1: Noisy Gaussian Channel

Φs (ρ̂) =
∑
i

K̂iρK̂
†
i , (3.2)

where, the Kraus operators K̂i =
√
G (z) D̂(z). Here, the Gaussian channel φs(ρ) satisfies the semigroup

property with respect to the parameter s (with s ≥ 0). Hence s can be used to parameterize the evolution
time [65].

4 Output State

As the input state passes through the noisy Gaussian channel, it gets influenced by the channel resulting in
the corresponding output state at the other end, see Fig. (1). We now provide analytic expressions for various
output states corresponding to the input states. This is made possible by the use of IWOP techniques.

4.1 Thermal State

A. Photon Added Thermal State
From Eq. (2.3), we have,

D̂z ρ̂PATSD̂
†
z = N−1

m : (â† − z∗)m exp

[
−A(â† − z∗)(â− z)

]
(â− z)m : . (4.1)

Here, we use the following properties of displacement operator for normal ordered function Fn(â, â†)-

D̂zF
n(â, â†)D̂z

†
= Fn(â− z, â† − z∗). (4.2)

From Eqs. (3.1) and (4.1), shifting, (â− z)→ −z,

Φs (ρ̂PATS) = N−1
m

∫
d2z

πs
: (z∗z)

m
exp

[
− (A+ 1/s) |z|2 +

â†z

s
+
âz∗

s
− â†â

s

]
: .

∫
d2z

π
znz∗n exp[A|z|2 +Bz + Cz∗] = e−BC/A

∑
l=0

n!m!

l!(n− l)!(m− l)!(−A)n+m−l+1
Bm−lCn−l, (4.3)

Re(A) < 0. ∫
d2z

π
exp

[
ζ|z|2 + ξz + ηz∗ + fz2 + gz∗2

]
=

1√
ζ2 − 4fg

exp

[
−ζξη + ξ2g + η2f

ζ2 − 4fg

]
(4.4)

whose convergent condition is Re(ζ ∓ f ∓ g) < 0 and Re
(
ζ2−4fg
ζ∓f∓g

)
< 0.

Using Eq. (4.3), along with the IWOP technique, we get the following output state for PATS

Φs (ρ̂PATS) = N−1
m : exp−

Aâ†â
As+1

m∑
l=0

m!2
(
â†
)m−l

(â)m−l sl

l!(m− l)!)2 (As+ 1)2m−l+1
: . (4.5)
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B. PSTS
For photon subtracted thermal state from Eq. (2.5),

D̂z ρ̂PSTSD̂
†
z = N−1

m−

∫
d2α

π
(α∗α)me

− |α|
2

nth D̂z|α〉〈α|D̂†z.

Using the following property for the displacement operator,

D̂z|α〉 = exp

[
1

2
(zα∗ − z∗α)

]
|α+ z〉, (4.6)

the output state for PSTS can be written as (using Eqs. (2.5), (4.6) and (3.1)),

Φs (ρ̂) = N−1
m−

∫ ∫
d2α

π

d2z

πs
(α∗α)m exp

[
− |α|

2

nth
− |z|

2

s

]
|α+ z〉〈α+ z|. (4.7)

C. PAKFTS
From Eq. (2.8), we have,

D̂†z ρ̂KFTSD̂
†
z = N−1

km

(
D̂z : â†me−Aâ

†ââ
m

: D̂†z −
e−β~ωk

k!
D̂z : â†(m+k)e

−â†â
â(m+k) : D̂†z

)
. (4.8)

From Eqs. (4.2), (2.8) and (4.8), shifting, (â− z)→ −z,

φs(ρ̂PAKFTS) = N−1
km

∫ (
: (z∗z)me−A|z|

2+
(â†−z∗)(â−z)

s : − e−β~ωk

k!
: (z∗z)m+ke−|z|

2+
(â†−z∗)(â−z)

s :

)
d2z

πs
.

Using Eq. (4.4), the output state for PAKFTS can be written as

φs(ρ̂PAKFTS) = N−1
km

[
: e−

Aâ†â
As+1

m∑
l=0

m!2â†m−lâm−lsl

l!(m− l)!2(As+ 1)2m−l+1
:

− e−β~ωk

k!
: e−

â†â
s+1

m+k∑
l=0

(m+ k)!2â†m+k−lâm+k−lsl

l!(m+ k − l)!2(s+ 1)2(m+k)−l+1
:

]
. (4.9)

4.2 For Squeezed Thermal State

A. Noisy PASTS
For PASTS, we have (using Eqs. (4.2) and (2.10)),

D̂z ρ̂PASTSD̂z
†

=
N−1
a,m√
A

:
(
â† − z∗

)m
exp

[
C

2
((â† − z∗)2 + (â− z)2) + (B − 1)(â† − z∗)(â− z)

]
(â− z)m : .

(4.10)

From Eqs. (3.1) and (4.10),

Φs (ρ̂PASTS) =
N−1
a,m√
A

∫
d2z

π s
: (â† − z∗)m exp

[
C

2
((â† − z∗)2 + (â− z)2) + (B − 1)(â† − z∗)(â− z)− |z|

2

s

]
(â− z)m :.

The advantage of using the IWOP technique is that the operators â and â† can be regraded as parameters
in the integrations and can be permuted, allowing for the shifting (z − â −→ z),

Φs (ρ̂PASTS) =
N−1
a,m√
A

∫
d2z

πs
: (z∗z)

m
exp

[
C

2
(z∗

2
+ z2) + (B − 1− 1/s) |z|2 +

â†z

s
+
âz∗

s
− â†â

s

]
:

=
N−1
a,m√
A
∂mY

∫
d2z

πs
: exp

[
C

2
(z∗

2
+ z2)− Y |z|2 +

â†z

s
+
âz∗

s
− â†â

s

]
:,
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where Y = (−B + 1 + 1/s).
Using the Eq. (4.4), we get the following output state for PASTS

Φs (ρ̂PASTS) =
N−1
a,m

s
√
A

: exp

(
− â
†â

s

)
∂mY

[
(Y 2 − C2)

−1/2
exp

[
C
2

(â†2 + â2)− Y â†â
s2(Y 2 − C2)

]]
: . (4.11)

B. PSSTS
From Eq. (2.12) we have,

D̂z ρ̂PSSTS0D̂†z =
N−1
a,m−√
A

∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2 + |β|2

2

]
D̂z|α〉〈β|D̂†z.

From the above and Eq. (3.1), the output state for PSSTS is seen to be

φs (ρ̂PSSTS) =
N−1
a,m−√
A

∫
d2z

sπ

d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2 + |β|2

2
− |z|

2

s

]
D̂z|α〉〈β|D̂z

†
.

Using the Eq. (4.6), the above equation can be expressed as

φs(ρ̂PSSTS) =
N−1
a,m−√
A

∫
d2z

sπ

d2α

π

d2β

π
(β∗α)m

× exp

[
C

2
(α∗2 + β2) +Bα∗β +

1

2
{z(α∗ − β∗)− z∗(α− β)} − |α|

2 + |β|2

2
− |z|

2

s

]
|α+ z〉〈β + z|.

(4.12)

5 Quasi-Probability Distribution

An important aspect in the quest for the understanding of the quantumness of states, discussed above, would
be the study of the corresponding quasi-probability distributions, for example, the W , P and Q distributions.
These can be studied on a common platform by the use of Cahill and Glauber’s κ-parameterized function
[66],

χ (γ, κ) = Tr
[
ρ̂ exp

(
γâ† − γ∗â+ (κ/2) |γ|2

)]
, (5.1)

where κ = −1, 0, 1 corresponds to Q, W and P quasi-probability distributions, respectively. Pκ (α) are
connected to the family of characteristics functions in CV systems through the complex Fourier transform,

Pκ (α) =
1

π

∫
exp (γ∗α− γα∗)χ (γ, κ)

d2γ

π
. (5.2)

These distributions are called quasi-probability distributions, because even though they sum up to unity,
their behavior is not entirely consistent with that expected of probability distributions. In particular, there
are (infinitely many) quantum states ρ for which the function Pκ (α) is not a regular probability distribution
for some values of κ, as it can assume negative values or even be singular in certain points of the phase
space [60, 67–70]. An exception is the case κ = −1, which corresponds to the Husimi ‘Q-function’ [71]
and represents a non-negative and regular distribution for any quantum state ρ. Zeros of Q function are
a witness of non-classicality [72]. The case κ = 0 corresponds to the so-called Wigner ‘W -function’ [73].
Wigner function’s negativity is another witness of non-classicality. The symmetrically ordered characteristic
function would thus be χ (γ, 0). Finally, κ = 1 yields the so-called ‘P -representation’, which was introduced
independently by Glauber and Sudarshan [74]. The P distribution can become negative or even singular
(namely, more singular than a Dirac δ) when the state ρ deviates from a mixture of coherent states. For this
reason, the regularity and positivity of the P -representation is often adopted as an indicator of ‘classicality’
of a CV state ρ [75].

8



We now take up the states introduced above and obtain their characteristic function and thence the
probability distribution function. This is done for both the input as well as the output states, obtained by
sending the input state through the bosonic Gaussian channel. This enables a characterization of quantum-
ness in the states as well as the contrast obtained due to the effect of the channel, which brings out the
impact of noise.

5.1 Thermal States

A. Photon Added Thermal State

5.1.1 Input State

We begin with the characteristic function (CF),

χ (γ, κ) = Tr
[
eγâ
†
ρ̂PATSe

−γ∗â
]
e
κ+1
2
|γ|2 . (5.3)

Since,

Tr
[
eγâ
†
ρ̂PATSe

−γ∗â
]

=

∫
(α∗α)m exp

[
−A|α|2 + γα∗ − γ∗α

]d2α
π
,

making use of Eq. (4.3),

Tr
[
eγâ
†
ρ̂PATSe

−γ∗â
]

= N−1
m

m∑
l=0

m!2(−γ∗γ)m−l

l!((m− l)!)2A2m−l+1
e−
|γ|2
A .

Using this in Eq. (5.3), the CF for the input state is,

χin (γ, κ) = N−1
m

m∑
l=0

m!2(−γ∗γ)m−l

l!((m− l)!)2A2m−l+1
e−( 1

A
−κ+1

2 )|γ|2 . (5.4)

From Eqs. (5.4) and (5.2),

Pκ (α) =
N−1
m

π

m∑
l=0

m!2(−1)m−l

l!((m− l)!)2A2m−l+1

∫
d2γ

π
(γ∗γ)m−l exp

[
−
(

1

A
− κ+ 1

2

)
|γ|2 + γ∗α− γα∗

]
.

Again using Eq. (4.3), we get the following quasi-probability function for the input state,

Pin (κ, α) =
N−1
m

π

m∑
l=0

[
m!2 (−1)m−l

l!A2m−l+1

m−l∑
h=0

[
(−1)m−l−h|α|2(m−l−h)

h!((m− l − h)!)2
(

1
A
− κ+1

2

)2m−2l−h+1
exp

(
−|α|2(

1
A
− κ+1

2

))]].
(5.5)

5.1.2 Output State

Similarly, for noisy PATS at the output, we have,

Tr
[
eγâ
†
φs(ρ̂PATS)e−γ

∗â
]

= N−1
m

m∑
l=0

m!2sl

l! (As+ 1)2m−l+1

m∑
b=0

(−γ∗γ)m−l−b

b! ((m− l − b)!)2
(

A
As+1

)2m−l+1
exp

[
−As+ 1

A
|γ|2
]
.
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Figure 2: Quasi-Probability Distribution functions, viz., Husimi Q-function (1st row), Wigner W -
function (2nd row) and Sudarshan-Glauber P -function (3rd row) for thermal state (1st column),
one photon added-thermal state (2nd column) and two photon-added thermal state (3rd column).
Here input PATS are represented by green colour and output PATS are represented by yellow (noise
parameter s = 0.3) and red (noise parameter s = 1).
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Using the above expression for the trace in Eq. (5.3), we get the following CF for the output state,

χout (γ, κ) = N−1
m

m∑
l=0

m!2sl

l! (As+ 1)2m−l+1

m∑
b=0

(−γ∗γ)m−l−b

b!((m− l − b)!)2
(

A
As+1

)2m−l+1
exp

[
−
(
As+ 1

A
− κ+ 1

2

)
|γ|2
]
.

(5.6)

From Eqs. (5.6) and (5.2),

Pout (γ, κ) = N−1
m

m∑
l=0

m!2sl

l! (As+ 1)2m−l+1

m∑
b=0

(−1)m−l−h

b!((m− l − b)!)2
(

A
As+1

)2m−l+1

×
∫

(−γ∗γ)
m−l−b

exp

[
−
(
As+ 1

A
− κ+ 1

2

)
|γ|2 + γα∗ − γ∗α

]
d2γ

π2
.

Using Eq. (4.3), the quasi-probability distribution for the output state is obtained as,

Pout (α, κ) =
N−1
m

π

m∑
l=0

m!2sl

l! (As+ 1)2m−l+1

m−l∑
b=0

(−1)m−l−b

b!
(

A
As+1

)2m−2l−b+1

×
m−l−b∑
h=0

[
(−1)m−l−b−h|α|2(m−l−b−h)

h!((m− l − b− h)!)2
(
As+1
A
− κ+1

2

)2m−2l−2b−h+1

]
exp

[
−|α|2(

As+1
A
− κ+1

2

)] . (5.7)

In Figure (2) we have plotted quasi-probability distribution functions for several values of nth (characterizing
temperature T of the photon), m (number of photon added), and noise parameter s. For κ = −1, 0 or 1 we
get the Husimi Q, Wigner W and Sudarshan-Glauber P functions, respectively. The contrast between the
input and output, after passing through the Gaussian channel, is brought out in each sub-figure. At m = 0
all quasi-probability distributions are seen to be Gaussian. As photons are added to the thermal state, the
quasi-probability distribution dips at the center, indicative of non-Gaussian behavior. For higher value of m
the Q-function tends to zero at the center and width also increases. The W - function and P -function have
negative regions for (m > 0), indicative of quantumness. The distributions become wider as we increase
average photon number and noise. For output PATS it can be seen that peak value decreases and the
negative region shifts to the positive (for the W and P -function) region and zeros of Q also tend to shift
peak values. These are signatures of decoherence, heralding the onset of classicality.

B. Photon Subtracted Thermal State

5.1.3 Input State

We begin, as before, with the characteristic function,

χ (γ, κ) = Tr
[
e−γ

∗âρ̂PSTSe
γâ†
]
e
κ−1
2 |γ|2, (5.8)

where,

Tr
[
e−γ

∗âρ̂PSTSe
γâ†
]

= N−1
m−

m∑
l=0

m!2(−γ∗γ)m−l

l!((m− l)!)2( 1
nth

)2m−l+1
e−nth|γ|

2

.

Using this in Eq. (5.8), the characteristic function comes out to be,

χin (γ, κ) = N−1
m−

m∑
l=0

m!2(−γ∗γ)m−l

l!((m− l)!)2( 1
nth

)2m−l+1
e
−
(
nth−

(κ−1)
2

)
|γ|2

. (5.9)
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From Eqs. (5.9) and (5.2),

Pin (κ, α) =
N−1
m−

π

m∑
l=0

[
m!2 (−1)m−l

l! ( 1
nth

)2m−l+1

m−l∑
h=0

[
(−1)m−l−h |α|2(m−l−h)

h! ((m− l − h)!)2
(
nth − κ−1

2

)2m−2l−h+1
exp

(
−|α|2(

nth − κ−1
2

))] ].
(5.10)

5.1.4 Output State

For the noisy PSTS at the output, we have

Tr
[
e−γ

∗âΦs (ρ̂PSTS) eγâ
†]

= N−1
m−

∫ ∫
d2α

π

d2z

π
(α∗α)m exp

[
− |α|

2

nth
− |z|

2

s
+ γ(α∗ + z∗)− γ∗(α+ z)

]
= N−1

m−

m∑
l=0

m!2(−γ∗γ)m−l

l!((m− l)!)2( 1
nth

)2m−l+1
e−(nth+s)|γ|2 (5.11)

Using the trace in Eq. (5.8), we get the following expression for the characteristic function,

χout (γ, κ) = N−1
m−

m∑
l=0

m!2(−γ∗γ)m−l

l!((m− l)!)2( 1
nth

)2m−l+1
e
−
(
nth+s−

(κ−1)
2

)
|γ|2

. (5.12)

From Eqs. (5.12) and (5.2), we can get the quasi-probability distribution function for the output state
as:

Pout (κ, α) =
N−1
m−

π

m∑
n=0

[
m!2 (−1)m−l

l!( 1
nth

)2m−l+1

m−l∑
n=0

[
(−1)m−l−h|α|2(m−l−h)

h!((m− l − h)!)2
(
nth + s− κ+1

2

)2m−2l−h+1
exp

[
−|α|2(

nth + s− κ+1
2

)]]].
(5.13)

In figure (3) we have plotted quasi-probability distribution functions for several values of nth (characterizing
temperature T of the photon), m (number of photon subtracted), and noise parameter s. For κ = −1, κ = 0
and κ = 1 we get Husimi Q, Wigner W and Sudarshan-Glauber P -functions, respectively. At m = 0 all
quasi-probability distribution functions are Gaussian but as we subtract photons from the thermal state we
get very small dip at the center. For higher values ( m > 40, not shown here) of m the Q-function can be
observed to tend to zero at the center, with a corresponding increase in width. The W and P functions also
dip at the center but do not attain negative values. The dip becomes wider as we increase the average photon
number and for higher values of m, one can have regions which exhibit negative values. For output PSTS
it can be seen that peak values decrease and the dip (negative for higher m) region shifts upward, quicker
than that for the PATS, exhibiting signs of decoherence. With increase in noise, the states again attain
their Gaussian behavior. Hence, increase in noise facilitates the transition from non-Gaussian to Gaussian
behavior.

C. PAKFTS

5.1.5 Input State

Now, from Eq. (2.8), we have,

Tr
[
eγâ
†
ρe−γ

∗ â
]

= N−1
km Tr

[
eγâ
†

: â†me−Aâ
†ââ

m

: e−γ
∗ â
]
− N−1

km

e−β~ωk

k!
Tr

[
eγâ
†

: â†(m+k)e
−â†â

â(m+k) : e−γ
∗ â

]
.
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Figure 3: Quasi-Probability Distribution functions e.g Husimi Q-function (1st row), Wigner W -
function (2nd row) and Sudarshan-Glauber P -function (3rd row) for thermal state (1st column),
various photon subtracted-thermal state (2nd and 3rd columns). Input PSTS are represented by
green colour and output PSTS are represented by red (noise parameter s = 0.2) and blue (noise
parameter s = 0.8).
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Using Eq. (5.3) and the above, we get the following CF,

χin(γ, κ) = N−1
km

[
exp

{
−
(

1

A
− κ+ 1

2

)
|γ|2
} m∑
l=0

m!2(−γ∗γ) m−lsl

l! ((m− l)!)2A2m−l+1

− e−β~ωk

k!
exp

{
−
(

1− κ+ 1

2

)
|γ|2
}m+k∑

l=0

(m+ k)!2(−γ∗γ) m+k−lsl

l! ((m+ k − l)!)2

]
. (5.14)

From Eqs. (5.14), (5.2) and (4.4), the corresponding probability distribution is obtained as,

Pin (κ, α) =
N−1

km

π

[ m∑
l=0

m!2 (−1)m−l

l!A2m−l+1

m−l∑
h=0

(−1)m−l−h|α|2(m−l−h) exp

(
− |α|2

( 1
A
−κ+1

2 )

)
h! ((m− l − h)!)2

(
1
A
− κ+1

2

)2m−2l−h+1

− e−β~ωk

k!

m+k∑
l=0

(m+ k)!2(−1)m+k−l

l!(s+ 1)2(m+k)−l+1

m+k−l∑
h=0

(−1)m+k−l−h|α|2(m+k−l−h) exp

(
− |α|2

(1−κ+1
2 )

)
h! ((m+ k − l − h)!)2

(
1− κ+1

2

)2m+2k−2l−h+1

]
.

(5.15)

5.1.6 Output State

Similarly, for noisy PAKFTS at the output, we have,

Tr
[
eγâ
†
φs(ρPAKFTS)e−γ

∗ â
]

= N−1
km

[ m∑
l=0

m!2 Tr
[
eγâ
†

: â†m−l exp
(
−Aâ

†â
As+1

)
âm−l : e−γ

∗ â
]
sl

l! ((m− l)!)2(As+ 1)2m−l+1

− e−βk

k!

m+k∑
l=0

(m+ k)!2 Tr
[
eγâ
†

: â†m+k−l exp
(
− â†â
s+1

)
âm+k−l : e−γ

∗ â
]
sl

l! ((m+ k − l)!)2(s+ 1)2(m+k)−l+1

]
.

Using the above equation with Eq. (5.3), we get the following CF,

χout(γ, κ) = N−1
km

[ m∑
l=0

m!2 sl

l! (As+ 1)2m−l+1

m−l∑
h=0

(−γ∗γ) m−l−h exp
{
−
(
As+1
A
− κ+1

2

)
|γ|2
}

h! ((m− l − h)!)2
(
As+1
A

)2m−2l−h+1

− e−βk

k!

m+k∑
l=0

(m+ k)!2sl

l! (s+ 1)2(m+k)−l+1

m+k−l∑
h=0

(−γ∗γ) m+k−l−h exp
{
−
(
(s+ 1)− κ+1

2

)
|γ|2
}

h! ((m+ k − l − h)!)2 (s+ 1)2m+2k−2l−h+1

]
. (5.16)

From Eqs. (5.16), (5.2) and (4.4),

Pout =
N−1

km

π

[ m∑
l=0

m!2 sl

l!(As+ 1)2m−l+1

m−l∑
h=0

I

h! ((m− l − h)!)2
(
As+1
A

)2m−2l−h+1

− e−βk

k!

m+k∑
l=0

(m+ k)!2sl

l! (s+ 1)2(m+k)−l+1

m+k−l∑
h=0

I ‘

h! ((m+ k − l − h)!)2 (s+ 1)2m+2k−2l−h+1

]
,

where,

I =

m−l−h∑
b=0

(m− l − h)!2(−1)m−l−h−b|α|2(m−l−h−b)

b!(m− l − h− b)!2
(
As+1
A
− κ+1

2

)2m−2l−h+1
exp

[
− |α|2(

As+1
A
− κ+1

2

)], (5.17)
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Figure 4: Quasi-Probability Distribution functions, HusimiQ-function (1st row), WignerW -function
(2nd row) and Sudarshan-Glauber P -function (3rd row). The input PAKFTS are represented by
green colour, while the output PAKFTS are depicted by yellow (noise parameter s = 0.2) and red
(noise parameter s = 0.5). Here 1st column (m = 0, k = 1), 2nd column (m = 1, k = 0) and 3rd
column (m = 1, k = l) are PAKFTS (corresponding to input and output states).
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and

I ‘ =

m+k−l−h∑
b=0

(m+ k − l − h)!2(−1)m+k−l−h−b|α|2(m+k−l−h−b)

b!(m+ k − l − h− b)!2
(
s+ 1− κ+1

2

)2m+2k−2l−h+1
exp

[
− |α|2(

s+ 1− κ+1
2

)]. (5.18)

In the figure (4) quasi-probability distribution functions are depicted for several values of nth, m, and noise
parameter s. For κ = −1, κ = 0 and κ = 1 we get Husimi Q, Wigner W and Sudarshan-Glauber P -functions,
respectively. At m = 0, k = 1 all quasi-probability distributions are Gaussian but as we add photons to the
KFTS we get a dip at the center for the Q-function and negative regions for W and P functions. It was
observed that for small values of k, the nonclassicality achieved, indicated by the negative values of the W
and P functions, was higher as compared to the larger k scenario. This suggests that hole burning around
the n = 0 state impacts the nature of the thermal state, Gaussian in nature, more than for larger n, where
the tail regions of the Gaussian are targetted. For output states, as we increase noise parameter s, there is
a decrease in the centered dip and the states tend to their original Gaussian form. Further increase in the
noise s would eventually revert the states to their Gaussian form.

5.2 Squeezed Thermal States

A. PASTS

5.2.1 Input State

From Eq. (2.10), we have,

Tr
[
eγâ
†
ρ̂PASTSe

−γ∗â
]

=
N−1
a,m√
A

∫
〈α| : exp

(
γâ†
)
â†m exp

[
C

2
(â†2 + â2) + (B − 1)â†â

]
âm exp (−γ∗â) : |α〉d

2α

π

=
N−1
a,m√
A
∂mX

∫
exp

[
C

2
(α∗2 + α2) +Xα∗α+ γα∗ − γ∗α

]
d2α

π
.

Using the Eq. (4.4),

Tr
[
eγâ
†
ρ̂PASTSe

−γ∗â
]

=
N−1
a,m√
A
∂mX (X2 − C2)

−1/2
exp

[
C
2

(γ∗2 + γ2)−X|γ|2

(X2 − C2)

]
,

where, X = (1 − B). Using this in Eq. (5.3), the following expression for the characteristic function is
obtained,

χin (γ, κ) =
N−1
a,m√
A
∂mX (X2 − C2)

−1/2
exp

[
C
2

(γ∗2 + γ2)−X|γ|2

(X2 − C2)
+
κ+ 1

2
|γ|2
]
. (5.19)

From Eqs. (5.19) and (5.2), the quasi-probability distribution is seen to be

Pin (α, κ) =
N−1
a,m√
A
∂mX

[
(X2 − C2)

−1/2
(X2
∗ − C2

∗)
−1/2

exp

(
(C∗/2)(α∗2 + α2)−X∗|α|2

(X2
∗ − C2

∗)

)]
, (5.20)

where, C∗ = C
(X2−C2)

and X∗ = X
(X2−C2)

− κ+1
2

.

5.2.2 Output State

Similarly, for noisy PASTS at the output, we get the following expression for the characteristic function,

χout (γ, κ) =
N−1
a,m

s
√
A
∂mY
(
Y 2 − C2)−1/2 (

(Y0 + 1/s)2 − C0
2)−1/2

exp

[
C1

2

(
γ∗

2
+ γ2

)
− Y1γ

∗γ

]
. (5.21)

16



Figure 5: Quasi-Probability Distribution functions, HusimiQ-function (1st row), WignerW -function
(2nd row) and Sudarshan-Glauber P -function (3rd row) for input PASTS are represented by green
and output PASTS are represented by yellow and red colors, respectively. Here the 1st column
represents STS, the 2nd column one photon added-STS and the 3rd column two photon added STS,
depicting both input and output PASTS for various values of the noise parameter s, nth and the
squeezing parameter λ.
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The calculations are detailed in Appendix [B].
From Eqs. (5.21) and (5.2),

Pout (α, κ) =
1

π

N−1
a,m

s
√
A
∂mY
(
Y 2 − C2)−1/2 (

(Y0 + 1/s)2 − C0
2)−1/2

×
∫

exp

[
C1

2

(
γ∗

2
+ γ2

)
− Y1γ

∗γ + γ∗α− γα∗
]
d2α

π
.

Using Eq. (4.4), we get following expression for quasi-probability distribution for output PASTS,

Pout (α, κ) =
1

π

N−1
a,m

s
√
A
∂mY
(
Y 2 − C2)−1/2 (

(Y0 + 1/s)2 − C0
2)−1/2 (

Y 2
1 − C2

1

)−1/2

× exp

[
C1
2

(
α∗2 + α2

)
− Y1α

∗α(
Y1

2 − C1
2
) ]

. (5.22)

Figure (5) depicts quasi-probability distribution functions as a function of nth, number of photons added
m, squeezing parameter λ, and noise parameterized by s. Even though the PASTS are seen to have qual-
itatively similar phase space distributions as PATS, they exhibit comparatively more negative regions for
the W and P functions for m > 0 and for smaller values of {nth, λ}. This brings out the role of squeezing
in highlighting the quantum features of the states. Furthermore, the quantum signatures in the PASTS
quasi-probability distributions are seen up to a (small) threshold value of the squeezing parameter λ. For
the output states, the cutoff value of squeezing parameter (for exhibiting quantumness) decreases as we
increase the noise parameter s.

B. PSSTS

5.2.3 Input State

From Eqs. (2.12) and (5.1),

χin (γ, κ) =
N−1
a,m−√
A

∂mu

[ (
(1−Bu)2 − C2u2)−1/2

exp
(
A1γ

∗2 +A2γ
2 −A3|γ|2

)]∣∣∣∣
u=1

, (5.23)

which is calculated in appendix [B].
From Eqs. (5.23) and (5.2), we get following expression for quasi-probability distribution for input PSSTS,

Pin (α, κ) =
N−1
a,m−

π
√
A
∂mu

[ (
(1−Bu)2 − C2u2)−1/2

∫
d2γ

π
exp

(
A1γ

∗2 +A2γ
2 −A3|γ|2 + γ∗α− γα∗

)]∣∣∣∣
u=1

=
N−1
a,m−

π
√
A
∂mu

[ (
(1−Bu)2 − C2u2)−1/2

(A2
3 − 4A1A2)−1/2 exp

(
A1α

2 +A2α
∗2 −A3|α|2

(A2
3 − 4A1A2)

)]∣∣∣∣
u=1

.

(5.24)

5.2.4 Output State

Similarly, For noisy PSSTS at the output, we have following characteristic function,

χout (γ, κ) =
N−1
a,m−√
A

∂mu

[ (
(1−Bu)2 − C2u2)−1/2

exp

(
−
(
N1 −

(κ− 1)

2

)
|γ|2 +N2γ

2 +N3γ
∗2
)]∣∣∣∣

u=1

,

(5.25)
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Figure 6: Quasi-Probability Distribution functions, HusimiQ-function (1st row), WignerW -function
(2nd row) and Sudarshan-Glauber P -function (3rd row) for input PSSTS are represented by green
color while output PSSTS are in red and blue. The 1st column represents the STS, while the 2nd and
3rd columns depict, one photon subtracted-STS and two photon subtracted-STS, respectively, for
both input and output states, for various values of parameters, such as, average number of thermal
photons, noise parameter s and squeezing parameter λ.
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which is calculated in Appendix [B].
From Eqs. (5.25) and (5.2), we get following expression for quasi probability distribution,

Pout (α, κ) =
N−1
a,m−√
A

∂mu
(
(1−Bu)2 − C2u2)−1/2

((
N1 −

(κ− 1)

2

)2

− 4N2N3

)−1/2

× exp

−
(
N1 − (κ−1)

2

)
|α|2 +N2α

∗2 +N3α
2((

N1 − (κ−1)
2

)2
− 4N2N3

)
∣∣∣∣

u=1

. (5.26)

In figure (6), we have plotted the quasi-probability distribution functions for average number of thermal
photon nth, subtracted photons m, squeezing parameter λ, and noise parameter s for PSSTS (input and
output states). It can be seen that the PSSTS Q-function is similar to its non-squeezed counterpart, i.e.,
PSTS. However, in contrast to the PSTS scenario, figure (3), the W and P functions exhibit negative
regions for small values of m. This once again brings out the positive role of squeezing in highlighting the
quantumness. Furthermore, we have seen that W and P functions exhibit more negative regions when odd
number of photons are subtracted from the squeezed thermal state.

6 Photon Statistics

The intrinsic statistical properties of photons in a light source can be ascertained by the experimental
and theoretical study of photon statistics. Broadly, three types of statistics can be obtained: Poissonian,
super-Poissonian, and sub-Poissonian. These are arrived at by an analysis of the variance and average
number of photon counts of the distribution. A semi-classical theory of light can be used to describe both
Poissonian and super-Poissonian light, in which an electromagnetic wave models the light source and atoms
are modeled according to quantum mechanics. In contrast, sub-Poissonian light requires the quantization
of the electromagnetic field for a proper description [76]. Here, we will highlight three facets of photon
statistics, viz., photon number distribution (PND), second-order correlation and Mandel’s QM parameter.

6.1 Photon Number Distribution

The photon-number distribution (PND) is a key characteristic of every optical field [77]. The PND, i.e., the
probability of finding n photons in a quantum state described by the density operator ρ is

P (n) = Tr[ρ|n〉〈n|] = 〈n|ρ|n〉. (6.1)

The photon number distribution function sums up to one for all input and output states.

6.1.1 PND for Thermal States

A. PATS
From Eqs. (2.2) and (6.1),

〈n|ρ|n〉 = N−1
m 〈n| : â†me−Aâ

†ââm : |n〉 = N−1
m

n!

(n−m!)
〈n−m| : e−Aâ

†â : |n−m〉

= N−1
m

n!

(n−m!)

∑
k=0

〈n−m| : (−A)k
â†kâk

k!
: |n−m〉

= N−1
m

n!

(n−m)!

∑
k=0

(−A)k
(n−m)!

k!(n−m− k)!
. (6.2)
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Figure 7: Photon number distributions for (a) PATS at the input with average thermal photon
nth = 0.2, and (b) noisy PATS at the output with average thermal photon nth = 0.2 and noise
parameter s = 0.4.

From the binomial series,

(1− x)n =
∑
k=0

n!

k!(n− k)!
(−x)k. (6.3)

Now, from Eqs. (6.1) and (6.3), we will get following expression of the the photon number distribution for
photon added thermal state Pin (n), used as input to the Gaussian channel, is seen to be,

Pin (n) = N−1 n!

(n−m)!
(1−A)n−m . (6.4)

Similarly, we can get following Pout (n) of photon number distribution for noisy-PATS at the output of
the Gaussian channel as

Pout(n) = N−1
m

m∑
l=0

m!2sl

l! (m− l)!2 (As+ 1)2m−l+1

n!

(n−m+ l)!

(
1− A

As+ 1

)n−m+l

. (6.5)

B. PSTS
From Eqs. (2.4) and (6.1),

Pin (n) = 〈n|ρPSTS |n〉 = N−1
m−

∫
d2α

π
(α∗α)me

− |α|
2

nth 〈n|α〉〈α|n〉

= N−1
m−

∫
d2α

π

(α∗α)m+n

n!
exp

[
− nth + 1

nth
|α|2

]
= N−1

m−
(m+ n)!

n!

(
nth

nth + 1

)m+n+1

. (6.6)

Similarly, PND for noisy PSTS at the outout Pout(n) can be shown to be,

Pout (n) = N−1
m−∂

n
u

 1

n! s
(
1
s
− u
) m!(

1
nth
− u− u2

1
s
−u

)m+1

 ∣∣∣∣
u=−1

. (6.7)
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Figure 8: Photon number distributions for (a) PSTS at the input with average thermal photon
nth = 0.2, and (b) noisy PSTS at the output with average thermal photon nth = 0.2 and noise
parameter s = 0.5.

C. PAKFTS
From Eqs. (2.4), (6.1) and (6.4), we can get the following expression of photon number distribution for

PAKFTS,

Pin(n) = N−1
km

[
n!

(n−m)!
(1−A)n−m − e−β~ωk

k!

n!

(n−m− k)!
|〈n−m− k|0〉|2

]
. (6.8)

Likewise, the photon number distribution for the output state of PAKFTS, comes out to be

Pout(n) = N−1
km

[ m∑
l=0

m!2n!sl

l! ((m− l)!)2(n−m− l)! (As + 1)2m−l+1

(
As +A− 1

As + 1

)n−m−l

− e−β~ωk

k!

m+k∑
l=0

(m+ k)!2n!sl

l! ((m+ k − l)!)2 (n−m− k + l)! (s+ 1)2(m+k)−l+1

(
s

s+ 1

)n−m−k+l]
. (6.9)

6.1.2 PND for Squeezed Thermal States

A. Photon Added Squeezed Thermal States
For photon added squeezed thermal state, the PND, using Eq. (6.1), is

Pin(n) = 〈n| ρPASTS |n〉 (6.10)

To facilitate the computations, we write Eq. (2.10) in terms of the coherent states basis as:

ρPASTS =
N−1
a,m√
A

∫ ∫
d2α

π

d2β

π
(α∗β)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2

2
− |β|

2

2

]
|α〉〈β|. (6.11)

From Eqs. (6.10) and (6.11),

〈n| ρPASTS |n〉 =
N−1
a,m√
A

∫ ∫
d2α

π

d2β

π
(α∗β)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2

2
− |β|

2

2

]
〈n|α〉〈β|n〉

=
N−1
a,m

n!
√
A
∂mx ∂

n
u

∫ ∫
d2α

π

d2β

π
exp

[
C

2
(α∗2 + β2) + xα∗β + uαβ∗ − |α|2 − |β|2

]∣∣∣∣
u=1,x=B

=
N−1
a,m

n!
√
A
∂mx ∂

n
u

∫
d2α

π
exp

[
C

2
(α∗2 + u2α2)− |α|2(1− xu)

]∣∣∣∣
u=1,x=B

.

22



0123456

m=0,k=0

0123456

m=1,k=0

0123456

m=0,k=1

0123456

m=1,k=1

0123456

m=2,k=1

n0.0

0.2

0.4

0.6

0.8

1.0

P(n)

0123456

m=0,k=0

0123456

m=1,k=0

0123456

m=0,k=1

0123456

m=1,k=1

0123456

m=2,k=1

n0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(n)

Noise parameter s = .4

(a) (b)

Figure 9: Photon number distributions for (a) PAKFTS at the input with average thermal photon
nth = 0.2, and (b) noisy PAKFTS at the output with average thermal photon nth = 0.2 and noise
parameter s = 0.4.
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Figure 10: Photon number distributions for (a) PASTS at the input with average thermal photon
nth = 0.2, squeezing parameter λ = 0.2, and (b) noisy PASTS at the output with average thermal
photon nth = 0.2, squeezing parameter λ = 0.2 and noise parameter s = 0.4.
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Figure 11: Photon number distributions for (a) PSSTS at the input with average thermal photon
nth = 0.2, squeezing parameter λ = 0.3, and (b) noisy PSSTS at the output with average thermal
photon nth = 0.2, squeezing parameter λ = 0.3 and noise parameter s = 0.5.

From the above and Eq. (6.10), we get the following PND for PASTS,

Pin(n) =
N−1
a,m

n!
√
A
∂mx ∂

n
u

[
(1− xu)2 − C2u2]−1/2

∣∣∣∣
u=1,x=B

. (6.12)

Similarly, the photon number distribution Pout(n) for the output of PASTS can be shown to be

Pout(n) =
N−1
a,m

s
√
A
∂mY ∂

n
u

(Y 2 − C2)
−1/2

((
u

(
Y0 − 1 +

1

s

)
+ 1

)2

− (C0u)2
)−1/2

 ∣∣∣∣
u=0

. (6.13)

B. PSSTS
From Eqs. (2.12) and (6.1),

〈n|ρPSSTS |n〉 =
N−1
a,m−√
A

∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2 + |β|2

2

]
〈n|α〉〈β|n〉

=
N−1
a,m−

n!
√
A
∂m+n
v

∫
d2α

π

d2β

π
exp

[
C

2
(α∗2 + β2) +Bα∗β + vαβ∗ − |α|2 − |β|2

]∣∣∣∣
v=0

=
N−1
a,m−

n!
√
A
∂m+n
v

∫
d2α

π
exp

[
C

2
(α∗2 + v2α2)− (1−Bv)|α|2

]∣∣∣∣
v=0

=
N−1
a,m−

n!
√
A
∂m+n
v

(
(1−Bv)2 − C2v2

)−1/2
∣∣∣∣
v=0

.

From the above and Eq. (6.1), we get the following PND for PSSTS,

Pin (n) =
N−1
a,m−

n!
√
A
∂m+n
v

[
(1−Bv)2 − C2v2

]−1/2
∣∣∣∣
v=0

. (6.14)

Similarly, the photon number distribution Pout(n) for the output of PSSTS is,

Pout (n) =
N−1
a,m−

n!
√
A
∂nv ∂

m
u

[
1

s
(
1 + 1

s
− v
) ((1−Bu)2 − C2u2)−1/2

]
, (6.15)
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where, u = (1−v)2

(1+ 1
s
−v)

+ v and v = 0.

It can be seen for the thermal and squeezed thermal states that the peak for the photon number
distribution is at zero photon number n = 0. With the addition (or subtraction) of photons to (from) the
thermal and squeezed thermal states, the peak shifts from zero to non-zero photons n 6= 0 (see figs. [7-11]).
The position of the peak value of PND depends on the number of photons m, added (subtracted), to (from)
the states. For the case of photon addition, the peak of the PND is located at m = n exactly while this
is not so for the photon subtraction case. Furthermore, we have seen that in the photon addition scenario
(see Figs. 7 and 10) there is a condition for the distribution of photons, viz. m ≤ n. Additionally, for the
PAKFTS it is observed that at n = m+ k there is no photon distribution (see Fig. 9). It can also be seen
that as we increase the noise parameter nth and squeezing parameter λ, a flatter and wider distribution is
obtained.
At the output, we can see that the above restrictions to the photon number distribution do not apply. This
is an artifact of the randomization caused due to the interaction with the Gaussian channel. Further increase
in the noise s would eventually revert the states to their initial (Poissonian) form, albeit with a wider spread.

6.2 Second Order Correlation and Mandel QM Parameter

To study the statistical properties of the photon added and subtracted states, we will now examine the
second order correlation function g2(s) as well as the Mandel QM -parameter. The second order correlation
is defined as,

g2 (s) =

〈
â†2â2

〉
〈â†â〉2

. (6.16)

In the classical regime, the second order correlation function lies in the range 1 ≤ g2(s) ≤ 2 for thermal light
where s is the coherence time. For a coherent state, it can be shown that g2(s) = 1. Evidently g2(s) < 1 is
outside the allowed range of its classical counterpart and may be interpreted as an indication of the quantum
regime. When g2(0) < g2(s), it characterizes photon anti-bunching; its opposite is photon bunching.

The Mandel’s QM -parameter is defined as follows

QM =

〈
â†2â2

〉
−
〈
â†â
〉2

〈â†â〉 , (6.17)

which implies the deviation of the variance of the photon number distribution of the field state under consid-
eration from the Poissonian distribution of the coherent state. If QM = 0 the field is said to have Poissonian
photon statistics while for QM > 0, its super-Poissonian and QM < 0 implies sub-Poissonian statistics. It is
well known that the negativity of the QM -Parameter refers to sub-Poissonian statistics of the state. But a
state can be nonclassical even though QM is positive.

6.2.1 For Thermal States

A. PATS
For rth moment,〈

â†râr
〉

= Tr
[
ρ̂â†râr

]
=

∞∑
n=0

〈
n|ârρâ†r|n

〉
= N−1

m

∞∑
n=0

(n+ r)!2

n! (n+ r −m)!
(1−A)n+r−m. (6.18)

For the output PATS

〈â†râr〉 = Tr
[
φs(ρ)â†râr

]
= N−1

m

m∑
l=0

m!2sl

l!(m− l)!)2 (As+ 1)2m−l+1

∑
n=0

(n+ r)!2

n! (n+ r −m+ l)!

(
1− A

As+ 1

)n+r−m+l

.

(6.19)
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Figure 12: (a) Second ordered correlation function for output PATS with average thermal photon
nth = 0.3, (b) Mandel’s QM function for PATS at the input, and (c) Mandel’s QM function for noisy
PATS at the output with noise parameter s = 0.3.
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Figure 13: (a) Second ordered correlation function for output PSTS with average thermal photon
nth = 0.4, (b) Mandel’s QM function for PSTS at the input, and (c) Mandel’s QM function for noisy
PSTS at the output with noise parameter s = 0.2.

B. PSTS
For rth moment, 〈

â†râr
〉

= N−1
m−

∫
d2α

π
(α∗α)m+re

−α
∗α
nth = N−1

m−(m+ r)!(nth)m+r+1. (6.20)

Similarly, for the output PSTS

〈
â†râr

〉
= N−1

m−∂
r
u

 1

s
(
1
s
− u
) m!(

1
nth
− u− u2

1
s
−u

)m+1

 ∣∣∣∣
u=0

. (6.21)

C. PAKFTS
For rth moment,〈
â†râ

r
〉

= N−1
km

∑
n=0

[
((n+ r)!)2

n!(n+ r −m)!
(1−A)n+r−m − e−β~ωk

k!

((n+ r)!)2

n! (n+ r −m− k)!
|〈n+ r −m− k|0〉|2

]
.

(6.22)
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Figure 14: (a) Second ordered correlation function for output PAKFTS with average thermal photon
nth = 0.2, (b) Mandel’s QM function for PAKFTS at the input, and (c) Mandel’s QM function for
noisy PAKFTS at the output with noise parameter s = 0.4.
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Figure 15: (a) Second ordered correlation function g2(s) for noisy PASTS at the output with average
thermal photon nth = 0.2 and squeezing parameter λ = 0.2, (b) QM for PASTS at the input with
average thermal photon nth = 0.2, and (c) QM for noisy PASTS at the output with average thermal
photon nth = 0.1a nd noise parameter s = 0.2.

For the output PAKFTS
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(6.23)

6.2.2 For Squeezed Thermal States

A. PASTS
For rth moment, 〈

â†râr
〉

=
N−1
a,m√
A
∂mx ∂

r
u

[
(1− xu)2 − C2u2]−1/2

∣∣∣∣
u=1

. (6.24)

The corresponding output PASTS is

〈
â†râr

〉
=
N−1
a,m

s
√
A
∂mY ∂

r
u

(Y 2 − C2)
−1/2

((
u

(
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1

s

)
+ 1

)2

− (C0u)2
)−1/2

 ∣∣∣∣
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. (6.25)
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Figure 16: (a) Second ordered correlation function g2(s) for noisy PSSTS at the output with average
thermal photon nth = 0.01, squeezing parameter λ = 0.2, (b) QM for PSSTS at the input with
average thermal photon nth = 0.01, and (c) QM for noisy PSSTS at the output with average
thermal photon=0.01 and noise parameter s = 0.1.

B. PSSTS
For rth moment,

〈
â†râr

〉
= tr[â†rârρPSSTS ] =

N−1
a,m−√
A

∂m+r
v

[
(1−Bv)2 − C2v2

]−1/2
∣∣∣∣
v=1

. (6.26)

The corresponding output PSSTS is

〈
â†râr

〉
=
N−1
a,m−√
A

∂rv∂
m
u

[
1

s
(
1 + 1

s
− v
) ((1−Bu)2 − C2u2)−1/2

]
, (6.27)

where, u = (1−v)2

(1+ 1
s
−v)

+ v and v = 1.

The rth moment for all input and output states are calculated in Appendix C. After putting the values
of rth moment in Eqs. (6.16) and (6.17) one can get the second order correlation function g2(s) and Man-
del’s QM -parameter, respectively.

From the Figs. (12-16) we observe that with the addition of photons to the initial thermal Gaussian
state, the g2 function’s value becomes less than one, an indicator of quantum regime. With increase in
noise however, the output state’s g2 tends to two, corresponding to the thermal state. This reduction of
g2 to a value less than one is not observed for the case of photon subtraction (see Fig. 13). However, for
the photon subtracted squeezed thermal state (Fig. 16), the reduction to less than one is observed for very
small temperatures. This suggest that the quantum features of the photon added states are more robust, as
compared to their photon subtracted counterparts.
Negative values of QM , indicative of sub-Poissonian behavior, is observed for various parameters for input
and output states, for cut-off values of nth and squeezing parameter λ. It’s observed that the cut-off values
can be increased (decreased) by adding (subtracting) photons to the thermal or the squeezed thermal states.
For PSTS we see that QM is only a function of nth and not effected by the subtraction of photons (see Fig.
13(b)). For PSSTS case the negative QM function is observed only for odd subtracted photons (see Figs.
16(b) and 16(c)). A similar pattern was observed for the corresponding W and P functions. However, here
some negative regions were observed for even subtracted photons (Fig. 6). As we increase the value of the
noise parameter in the output states, the negative QM shifts towards positive values and cut-off values for
{nth, λ}, the thermal and squeezed parameters, also decrease. For PSTS at the input and output, negative
value of Mandel’s QM parameter was not observed (see Fig. 13(b) and 13(c)).
For thermal and squeezed thermal states, photon bunching is observed. Apart form this, some states
belonging to the PAKFTS and PSSTS exhibit bunching at {m = 0, k = 1} and m = 2, respectively (see
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Figs. 14(a) and 16(a)). Anti-bunching is observed in other photon added and subtracted states. The states
exhibiting photon bunching do not show negative values of QM , which is not so for the anti-bunching cases.

7 Conclusion

In this work, we have systematically studied the impact of noise, modelled by a noisy Gaussian channel,
on a wide range of non-Gaussian input states, covering both photon added, subtracted and hole burning
scenarios. The impact of noise is presented as an input-output problem. Making use of the IWOP tech-
nique allows for the derivation of analytical expressions for the various output states. The quantum nature
of the states, both input and output, is developed by studying the corresponding photon statistics and
quasi-probability distributions. This further allows for gauging the impact of noise (decoherence) on the
non-Gaussian input states. It’s found that photon addition has more robust quantum mechanical properties
as compared to the case of photon subtraction. It’s also seen that with increase in noise, there is a tendency
to lesser non-classicality as well as non-Gaussianity. The input states considered (except PSTS) have highly
non-classical properties. This is depicted by the negative region at the center of the phase space. It was
seen that the threshold value of the noise parameter corresponding to the transition of quasi-probability
distribution functions from partial negative (W and P ) and zero (Q) to completely positive definite, at the
center of phase space, is dependent not only on the noise parameter, but also on the average number of
thermal photons in the state and the squeezing parameter.

For photon-added (thermal and squeezed thermal states) and photon-subtracted squeezed states, by an
odd number of photons, the negativity of the Mandel QM parameter is noticeable. However, for non-classical
states, Mandel’s QM parameter do not always indicate a negative value. In fact, for the case where an even
number of photons were subtracted from the squeezed states, it was observed to be positive. It follows that
the negativity of the QM parameter is sufficient to distinguish the classical state from the nonclassical state.
The non-classicality of quantum states, could be also explored via measures such as those based on the
volume of the negative part of the Wigner function [78], on the nonclassical depth [79]. Both the features
of photon bunching and antibunching were observed in the non-Gaussian states. For the case of photon
addition and filtration, we obtained conditions indicative of hole burning in the input states. However, in
the output these holes get filled up due to the influence of noise generated due to the passage through the
Gaussian channel.

It was observed that photon addition was more robust than photon subtraction in withstanding the im-
pact of noise. This could be ascribed to the non-Gaussianity (visualized by the phase space distributions) for
photon added states being greater than for the subtracted photon states. In addition, for KFTS nonclassical
behaviour was observed due to filtration on the thermal state that could be further enhanced by adding
photon(s). PAKFTS came out to be most robust against noise that other states considered.
It would be of interest to evaluate the impact of more general quantum channels on the non-Gaussian input
states.
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A Appendix: Normalization Constant

For any density, we have the following,
Tr[ρ] = 1.

For PATS

Nm = Tr
[
: â†me−Aâ

†ââm :
]

=

∫
〈α| : â†me−Aâ

†ââm : |α〉 d
2α

π
=

∫
(αα∗)me−A|α|

2 d2α

π
,

let α = x+ ιy, αα∗ = x2 + y2 = r2 and d2α = rdrdθ,
now we have,

Nm =

∫
r2m+1e−Ar

2

drdθ = m!/A(m+1).

Where we used the Integration formula
∫∞
0
x2m+1 exp (−ax2)dx = m!

2am+1 .

For PSTS

Nm− = Tr

[ ∫
d2α

π
(α∗α)me

− |α|
2

nth |α〉 〈α|
]

=

∫
d2α

π
(α∗α)me

− |α|
2

nth = m!(nth)(m+1).

For PAKFTS

Nkm = Tr

[
: â†me−Aâ

†ââ
m

: −e
−β~ωk

k!
: â†(m+k)e

−â†â
â(m+k) :

]
=

∫
d2α

π
〈α| : â†me−Aâ

†ââ
m

: −e
−β~ωk

k!
: â†(m+k)e

−â†â
â(m+k) : |α〉

=

∫
d2α

π
〈α| : â†me−Aâ

†ââ
m

: |α〉 − e−β~ωk

k!

∫
d2α

π
〈α| : â†(m+k)e

−â†â
â(m+k) : |α〉.

We have, ∫
d2α

π
〈α| : â†me−Aâ

†ââ
m

: |α〉 =

∫
d2α

π
(αα∗)

m
e−A|α|

2

=
m!

Am+1
,

using the above equation we can get following expression of normalization constant For PAKFTS-

Nkm =
m!

Am+1
− e−β~ωk

k!
(m+ k)!. (A.1)

For PASTS
we have tr(ρPASTS) = 1.

Na,m =
1√
A

∫
〈α| : â†m exp

[
C

2
(â†2 + â2) + (B − 1)â†â

]
âm : |α〉 d

2α

π

=
1√
A

∫
(α∗α)m exp

[
C

2
(α∗2 + α2) + (B − 1)α∗α

]
d2α

π

=
1√
A
∂mv

∫
exp

[
C

2
(α∗2 + α2) + vα∗α

]
d2α

π

∣∣∣∣
v=B

.

Now using the Eq. (4.4)

Na,m =
1√
A
∂mv

[
(v2 − C2)−1/2

] ∣∣∣∣
v=B

. (A.2)
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For PSSTS
we have Tr(ρPSSTS) = 1.

Na,m− = Tr

[
1√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2 + |β|2

2

]
|α〉〈β|

]
=

1√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2 + |β|2

2

]
〈β|α〉

=
1√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β + αβ∗ − |α|2 − |β|2

]
=

1√
A
∂mu

∫ ∫
d2α

π

d2β

π
exp

[
C

2
(α∗2 + β2) +Bα∗β + uαβ∗ − |α|2 − |β|2

]∣∣∣∣
u=1

=
1√
A
∂mu

∫
d2α

π
exp

[
C

2
(α∗2 + u2α2)− (1−Bu)|α|2

]∣∣∣∣
u=1

=
1√
A
∂mu
[
(1−Bu)2 − C2u2]−1/2

∣∣∣∣
u=1

.

B Appendix: Characteristic Function (CF)

CF For PASTS

Tr
[
eγâ
†
ρ̂e−γ

∗â
]

=
N−1
a,m√
A

∫
〈α| : exp

(
γâ†
)
â†m exp

[
C

2
(â†2 + â2) + (B − 1)â†â

]
âm exp (−γ∗â) : |α〉d

2α

π

=
N−1
a,m√
A

∫
(α∗α)

m
exp

[
C

2
(α∗2 + α2) + (B − 1)α∗α+ γα∗ − γ∗α

]
d2α

π

=
N−1
a,m√
A
∂mX

∫
exp

[
C

2
(α∗2 + α2) +Xα∗α+ γα∗ − γ∗α

]
d2α

π
.

Using the Eq. (4.4)

Tr
[
eγâ
†
ρ̂e−γ

∗â
]

=
N−1
a,m√
A
∂mX

[
(X2 − C2)

−1/2
exp

[ C
2

(γ∗2 + γ2)−X|γ|2

(X2 − C2)

]]
,

where X = (1−B).
Thus the characteristic function for PASTS will be-

χin (γ, κ) =
N−1
a,m√
A
∂mX

[
(X2 − C2)

−1/2
exp

[ C
2

(γ∗2 + γ2)−X|γ|2

(X2 − C2)
+
κ+ 1

2
|γ|2
]]

Similarly, for noisy PASTS at the output,

Tr
[
eγâ
†
ρe−γ

∗â
]

=
N−1
a,m

s
√
A
∂mY

[∫
d2α

π

〈
α

∣∣∣∣∣eγâ† : e−
â†â
s
(
Y 2 − C2)−1/2

exp

[
C
2

(
â†2 + â2

)
− Y â†â

s2 (Y 2 − C2)

]
: e−γ

∗â

∣∣∣∣∣α
〉]

=
N−1
a,m

s
√
A
∂mY

[ (
Y 2 − C2)−1/2

∫
d2z

π
exp

[
− (Y0 + 1/s)α∗α+ (C0/2)

(
α∗

2
+ α2

)
+ γα∗ − γ∗α

] ]
,

where, Y0 = Y

(Y 2−C2)
and C0 = C

(Y 2−C2)
.

Using the Eq. (4.4)
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Tr
[
eγâ
†
ρe−γ

∗â
]

=
N−1
a,m

s
√
A
∂mY

[ (
Y 2 − C2)−1/2 (

(Y0 + 1/s)2 − C0
2)−1/2

exp

[ C0
2

(
γ∗2 + γ2

)
− (Y0 + 1/s) γ∗γ(

(Y0 + 1/s)2 − C0
2
) ]]

.

After putting the value of trace in Eq. (5.3), we get the following expression for characteristic function
for the output state of PASTS -

χout (γ.κ) =
N−1
a,m

s
√
A
∂mY
(
Y 2 − C2)−1/2 (

(Y0 + 1/s)2 − C0
2)−1/2

× exp

{
C0
2

(
γ∗2 + γ2

)(
(Y0 + 1/s)2 − C0

2
) −( (Y0 + 1/s)(

(Y0 + 1/s)2 − C0
2
) − β + 1

2

)
|γ|2
}
,

let we denote Y1 = (Y0+1/s)

((Y0+1/s)2−C0
2)
− κ+1

2
, C1 = C0

((Y0+1/s)2−C0
2)
.

χout (γ, κ) =
N−1
a,m

s
√
A
∂mY

[ (
Y 2 − C2)−1/2 (

(Y0 + 1/s)2 − C0
2)−1/2

exp

[
C1

2

(
γ∗

2
+ γ2

)
− Y1γ

∗γ

]]
. (B.1)

CF For PSSTS

Tr
[
e−γ

∗âρ̂eγâ
†]

= Tr

[N−1
a,m−√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − |α|

2 + |β|2

2

]
e−γ

∗â|α〉〈β|eγâ
†
]

=
N−1
a,m−√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β − γ∗α+ γβ∗ − |α|

2 + |β|2

2

]
〈β|α〉

=
N−1
a,m−√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β + β∗α− γ∗α+ γβ∗ − |α|2 − |β|2

]
=
N−1
a,m−√
A

∂mu

∫ ∫
d2α

π

d2β

π
exp

[
C

2
(α∗2 + β2) +Bα∗β + uβ∗α− γ∗α+ γβ∗ − |α|2 − |β|2

]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

∫
d2α

π
exp

[
C

2
(α∗2)− γ∗α− |α|2

]
exp

[
Bα∗(uα+ γ) +

C

2
(uα+ γ)2

]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

∫
d2α

π
exp

[
C

2
(α∗2 + u2α2)− (1−Bu)|α|2 − α(γ∗ − γCu) +Bγα∗ +

C

2
γ2

]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

[ (
(1−Bu)2 − C2u2)−1/2

exp

[−(1−Bu)(γ∗ − γCu)Bγ + C
2

((γ∗ − γCu)2 + u2B2γ2)

((1−Bu)2 − C2u2)
+
C

2
γ2

]]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

[ (
(1−Bu)2 − C2u2)−1/2

× exp

[ C
2
γ∗2 + γ2(C(u2B2+C2u2)

2
+ CuB(1−Bu))− |γ|2(B(1−Bu) + C2u)

((1−Bu)2 − C2u2)
+
C

2
γ2

]]∣∣∣∣
u=1

.

After putting the value of trace in Eq. (5.8), we get the following expression for characteristic function,

χPSSTS (γ, κ) =
N−1
a,m−√
A

∂mu
[ (

(1−Bu)2 − C2u2)−1/2
exp

(
A1γ

∗2 +A2γ
2 −A3|γ|2

)]∣∣∣∣
u=1

, (B.2)
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where A1 = (C/2)

((1−Bu)2−C2u2)
, A2 =

(
C(u2B2+C2u2)

2
+BCu(1−Bu))

((1−Bu)2−C2u2)
+ C

2
, A3 = (B(1−Bu)+C2u)

(1−Bu)2−C2u2)
− κ−1

2
.

Similarly, for noisy PSSTS at the output

Tr
[
e−γ

∗âφs(ρ̂)eγâ
†]

= Tr

[N−1
a,m−√
A

∫
d2z

sπ

d2α

π

d2β

π
(β∗α)m exp (−γ∗â) | α+ z 〉 〈 β + z | exp

(
γâ†
)

× exp

[
C

2
(α∗2 + β2) +Bα∗β +

1

2
{z(α∗ − β∗)− z∗(α− β)} − |α|

2 + |β|2

2
− |z|

2

s

]]
=
N−1
a,m−√
A

∫
d2z

sπ

d2α

π

d2β

π
(β∗α)m 〈 β + z | α+ z 〉

× exp

[
C

2
(α∗2 + β2) +Bα∗β +

1

2
{(z(α∗ − β∗)− z∗(α− β))}+ γ(z∗ + β∗)− γ∗(z + α)− |α|

2 + |β|2

2
− |z|

2

s

]
,

one can have,

〈 β + z | α+ z 〉 = exp

[
− |α+ z|2

2
− |β + z|2

2
+ (β∗ + z∗)(α+ z)

]
= exp

[
− |α|

2 + |z|2 + αz∗ + zα∗

2
− |β|

2 + |z|2 + βz∗ + zβ∗

2
+ (β∗α+ β∗z + z∗α+ |z|2)

]
= exp

[
− |α|

2

2
− |β|

2

2
− 1

2
{z(α∗ − β∗)− z∗(α− β)}+ β∗α

]
.
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Tr
[
e−γ

∗âφs(ρ̂)eγâ
†]

=
N−1
a,m−√
A

∫
d2z

sπ

d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β + β∗α− zγ∗ + z∗γ + γβ∗ − γ∗α− |α|2 − |β|2 − |z|

2

s

]
=
N−1
a,m−√
A

∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β + β∗α+ γβ∗ − γ∗α− |α|2 − |β|2 − |γ|2s

]
=
N−1
a,m−√
A

∫ ∫
d2α

π

d2β

π
(β∗α)m exp

[
C

2
(α∗2 + β2) +Bα∗β + β∗α− γ∗α+ γβ∗ − |α|2 − |β|2

]
=
N−1
a,m−√
A

∂mu

∫ ∫
d2α

π

d2β

π
exp

[
C

2
(α∗2 + β2) +Bα∗β + uβ∗α− γ∗α+ γβ∗ − |α|2 − |β|2 − |γ|2s

]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

∫
d2α

π
exp

[
C

2
(α∗2)− γ∗α− |α|2

]
exp

[
Bα∗(uα+ γ) +

C

2
(uα+ γ)2 − |γ|2s

]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

[ ∫
d2α

π
exp

[
C

2
(α∗2 + u2α2)− (1−Bu)|α|2 − α(γ∗ − γCu) +Bγα∗ +

C

2
γ2 − |γ|2s

]]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu
(
(1−Bu)2 − C2u2)− 1

2 exp

[−(1−Bu)(γ∗ − γCu)Bγ + C
2

((γ∗ − γCu)2 + u2B2γ2)

((1−Bu)2 − C2u2)
+
C

2
γ2 − |γ|2s

]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

[ (
(1−Bu)2 − C2u2)−1/2

× exp

[ C
2
γ∗2 + γ2(C(u2B2+C2u2)

2
+ CuB(1−Bu))− |γ|2(B(1−Bu) + C2u)

((1−Bu)2 − C2u2)
+
C

2
γ2 − |γ|2s

]]∣∣∣∣
u=1

=
N−1
a,m−√
A

∂mu

[ (
(1−Bu)2 − C2u2)−1/2

exp
(
N1γ

∗2 +N2γ
2 −N3|γ|2

)]∣∣∣∣
u=1

,

where N1 = (C/2)

((1−Bu)2−C2u2)
, N2 =

(
C(u2B2+C2u2)

2
+BCu(1−Bu))

((1−Bu)2−C2u2)
+ C

2
, N3 = (B(1−Bu)+C2u)

((1−Bu)2−C2u2)
+ s.

After putting the value of trace in Eq. (5.8). we get following expression for characteristic function

χ (γ, κ) =
N−1
a,m−√
A

∂mu

[ (
(1−Bu)2 − C2u2)−1/2

exp

[
−
(
N1 −

(κ− 1)

2

)
|γ|2 +N2γ

2 +N3γ
∗2
]]∣∣∣∣

u=1

. (B.3)

C Appendix: rth Moment For Input And Output States

For the derivation of rth moment for input and output states, we consider the following〈
â†râr

〉
= Tr

[
ρ̂â†râr

]
. (C.1)
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For PATS
rth-moment of PATS can be find using above Eq. (C.1),

〈n|ârρâ†r|n〉 = N−1
m 〈n|âr : â†me−Aâ

†ââm : â†r|n〉 = N−1
m

(n+ r)!

n!
〈n+ r| : â†me−Aâ

†ââm : |n+ r〉

= N−1
m

(n+ r)!

n!

∑
l=0

(n+ r)!

(n+ r −m)!
〈n+ r −m| : (−A)l

â†kâl

l!
: |n+ r −m〉

= N−1
m

(n+ r)!

n!

∑
l=0

(n+ r)!

(n+ r −m)!

(−A)l(n+ r −m)

l! (n+ r −m− l)

= N−1
m

(n+ r)!

n!

(n+ r)!

(n+ r −m)!
(1−A)n+r−m.

Thus one can see,

〈â†râr〉 = Tr
[
ρ̂â†râr

]
=

∞∑
n=0

〈n|ârρâ†r|n〉 = N−1
m

∞∑
n=0

(n+ r)!2

n! (n+ r −m)!
(1−A)n+r−m. (C.2)

Similarly, for noisy PATS at the output,

〈â†râr〉 = Tr
[

ˆΦs (ρPATS)â†râr
]

=
∑
n=0

〈n|ârΦs (ρPATS) â†r|n〉

= N−1
m :

m∑
l=0

m!2(n+ r)! 〈n+ r|
(
â†
)m−l

exp
(
−Aâ†â
As+1

)
(â)m−l |n+ r〉 sl

n! l! (m− l)!)2 (As+ 1)2m−l+1
:,

we get the following (making use of the Eq. (6.3)),

〈â†râr〉 = Tr
[
φs(ρ)â†râr

]
= N−1

m

m∑
l=0

m!2sl

l!(m− l)!)2 (As+ 1)2m−l+1

∑
n=0

(n+ r)!2

n! (n+ r −m+ l)!

(
1− A

As+ 1

)n+r−m+l

.

(C.3)

For PSTS
For rth moment

〈â†râr〉 = Tr[â†rârρPSTS ] = N−1
m−Tr

[ ∫
d2α

π
(α∗α)me

− |α|
2

nth â†râr |α〉 〈α|
]

= N−1
m−

∫
d2α

π
(α∗α)m+re

− |α|
2

nth = N−1
m−(m+ r)!(nth)m+r+1. (C.4)

Similarly for noisy PSTS at the output,
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for rth moment〈
â†râr

〉
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For PAKFTS
We have density operator for PAKFTS

ρPAKFT = N−1
km

[
: â†me−Aâ

†ââ
m

: −e
−β~ωk

k!
: â†(m+k)e

−â†â
â(m+k) :

]
,

using the above and Eq. (C.1), rth moment-〈
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r
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= N−1
km Tr

[
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†ââ
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−â†â
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†r]
(C.6)

= N−1
km

∑
n=0

[
((n+ r)!)2

n!(n+ r −m)!
(1−A)n+r−m − e−β~ωk

k!

((n+ r)!)2
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]
.

(C.7)

Similarly, for noisy PAKFTS the output,
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(C.8)
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For PASTS
For rth moment,〈
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where u = 1 and x = B.
Similarly, for noisy PASTS at the output,〈
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â†kârφs(ρ)

]
=
N−1
a,m

s
√
A
Tr

[ ∫ ∫
d2α

π

d2β

π
∂mY

[
(Y 2 − C2)

−1/2
exp

[
C0

2
(α∗2 + β2)− (Y0 − 1 + 1/s)α∗β − |α|

2 + |β|2

2

]]
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where u = 1.
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For PSSTS
For rth moment,〈
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Similarly, for noisy PSSTS at the output, for rth moment,〈
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using above, one can see,
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