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Abstract We investigate the coherence and non-Markovianity of a quantum
tunnelling system whose barrier is fluctuated by a telegraph noise, and its en-
ergy gap is modulated by a Gaussian noise. With the help of averaging method,
the system dynamics is analytically derived, and the analytical expression
for coherence measure and non-Markovianity for the very limited parameter
regimes for both initially coherent and non-coherent states are obtained. We
observe non-Markovian dynamics in a situation where Kubo number is high. It
is also found that there is no strong relation between coherence of the system
and non-Markovianity dynamics except a region in which these two tend to
change their behavior at the intermediate noise color for two initial states.

Keywords Quantum tunnelling, quantum coherence, random telegraph
noise, Gaussian noise, non-Markovianity

1 Introduction

One of the quasi-essential problems of quantum mechanics is the dynamics of
a particle moving in a double-well potential [1] which can be used a model sys-
tem to introduce quantum concepts such as tunneling through a barrier which
plays an important role in determining the structure of matter and is ex-
ploited to develop many nanotechnological devices [2–4] and two-level system
(TLS) approximation which is utilised widely in many fields from magnetic
resonance to quantum information theory to model foundational and practi-
cal problems. While analytical expressions for the dynamics of a closed TLS
are easy to obtain, the unavoidable interaction between the environment and
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the TLS, which is responsible for the dissipation and decoherence, compli-
cates the problem and there is still no analytical solution for the dynamics
of a TLS coupled to a quantum mechanical thermal bath [5–7]. One of the
widely used approaches to deal with this difficulty is to model the quantum
mechanical environment as a classical noise that perturbs the level energies
of the TLS [8–16]. The environmental perturbations or external driving could
also affect the tunneling rate or the potential barrier height [8, 11–16]. The
tunneling problem with time modulated parameters has been known to occur
in several physical situations, for example long-range electron transfer reac-
tions [17, 18], some problems in semiconductor physics [19], polarization of a
multilayer structure [20,21] and the scattering problem [22,23].

Quantum coherence is one of the unique features of quantum mechanics,
indicating the ability of a state to exhibit quantum interference effects and en-
abling quantum features such as quantum entanglement, non-locality, discord,
and steering. It plays an important role in quantum information and computa-
tion protocols [24], and also in emerging areas, such as quantum thermodynam-
ics [25], biology [26], and metrology [27]. Only recently has a rigorous theory for
measuring quantum coherence developed with the aim of adopting coherence
as a physical resource [28–30]. After the development, its intimate connection
to the entanglement and quantum correlations have been discussed in a num-
ber of settings [31–35]. Furthermore, coherence freezing and distillation have
been investigated in [29,30,36–38]. On the other hand, non-Markovianity is an-
other quantum mechanical effect, reflecting the back-action of the environment
on the quantum systems. Exploring non-Markovian features can be important
in the fabrication of nanoscale machines [39–44]. Specifically, in the context
of quantum thermodynamics, non-Markovianity is used as an additional fuel
to supply a quantum thermal machine [43,44]. Along similar lines, a measure
for the degree of non-Markovianity, which accounts for non-zero values for the
information flow back to the system, has recently been reported [45,46]. One of
the interesting questions is whether there exists any relation between the dy-
namics of coherence and the non-Markovianity of the system dynamics [47–56].
Addis et. al. have shown that the stationary coherence is maximized when the
dynamics is non-Markovian for pure dephasing model [54], while Bhattacharya
et. al. [55] have observed that non-Markovianity might be relevant for coher-
ence as a resource for quantum tasks. A number of authors have proposed
possible measures of non-Markovianity based on the various coherence mea-
sures [49,51,52]. Radhakrishnan et al. have observed that coherence oscillates
with a decaying envelop or decays exponentially in the non-Markovian and
Markovian regimes, respectively [48].

In the current paper, our aim is to study quantum coherence and non-
Markovianity of the dynamics of a particle undergoing quantum tunneling in
the presence of a stochastic bias and a fluctuating barrier under the two-level
approximation. We assume that the fluctuations in the barrier are induced by
dichotomous noise, whereas the transition energy of the TLS is perturbed by
delta-correlated Gaussian noise, which mimics the coupling of the TLS to a
high-temperature reservoir. Recently, tunneling dynamics between two local-
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ized energy levels has been investigated in terms of the correlation time of the
barrier fluctuations [5]. Resonant damping of the tunneling has been observed
due to noise in the system. It is well known that, depending on its proper-
ties, external noise can induce non-Markovianity [57]. One of the questions
we would like to address here is whether there exist any relations between
the non-Markovianity and the coherence. We have analyzed the dependence
of the quantum coherence dynamics on the correlation time of the barrier
fluctuations, and elucidated its non-Markovian character. We have found that
simple analytical expressions for both coherence and non-Markovianity mea-
sures could be derived for a restricted range of noise parameters, and they
display prominent features at certain system parameters.

The outline of the paper is organized as follows. In Sec. 2, we present
the model and its exact analytical solution. Sec. 3 introduces the quantum
coherence and non-Markovianity measures. In Sec. 4, the main findings of the
current paper is included and we briefly conclude the main results in Sec. 5.

2 The model and its solution

The problem under consideration is tunneling through a fluctuating barrier
in the presence of dissipation and the two-level approximation. It is isomor-
phic to the problem of a spin-1/2 under transverse (along the x axis) and
longitudinal (along the z axis) magnetic fields with noisy components [5]. The
corresponding Hamiltonian can be given as (~ = 1) [5, 58]

H =
ε

2
σz +

ε(t)

2
σz −

∆(t)

2
σx, (1)

where σi (i = x, y, z) are the standard Pauli operators. Here, ε describes the
static energy of the localized potential wells and ε(t) is its noisy component.
The noise here is considered to arise from coupling to a high temperature
thermal reservoir [59,60] which is modeled as delta-correlated Gaussian noise
(white noise) with zero mean 〈ε(t)〉 = 0 and correlation function 〈ε(t)ε(s)〉 =
2κ δ(t − s); κ is the intensity of the noise. ε(t), leading to stochastic energy
bias, introduces dissipation in the form of dephasing during the time evolution.
The last term in Eq. (1) corresponds to tunneling between two energy levels
through a fluctuating barrier. We consider the fluctuations to be modulated
by random telegraph noise (RTN) η(t). Therefore, ∆(t) is a random function
of time that has an explicit form such as ∆(t) = ∆0 + ∆1 η(t). The noise as
identified by the parameter η(t) has zero mean (〈η(t)〉 = 0) and exponentially
decaying correlation function (〈η(t)η(s)〉 = e−2ν|t−s|). RTN, also known as
dichotomic noise, describes a signal that jumps between values +1 and −1
with a rate ν.

The dynamics of the system whose Hamiltonian is given in Eq. (1) is de-
scribed by the Liouville-von Neumann equation:

d ρ

dt
= −i [H, ρ] (2)
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where ρ is the density matrix which encodes all information about the system.
In order to investigate the effect of the stochastic processes on the system
dynamics, the density matrix ρ is averaged independently over the noises ε(t)
and η(t). We first employ an averaging process over the Gaussian noise ε(t)
which results [61]

d〈ρ〉
dt

= −i [H0, 〈ρ〉] + 2κ (σz〈ρ〉σz − 〈ρ〉), (3)

where 〈. . . 〉 indicates the average over the Gaussian noise ε(t) and H0 =
ε σz/2−∆(t)σx/2 is the Hamiltonian containing free and RTN noise terms.

As a second procedure, we use averaging on the master equation (3) over
the RTN noise η(t). Using the Bloch vector representation of the density ma-
trix ρ = (I +

∑
i=x,y,z Pi(t)σi)/2 and exploiting the Loginov-Shapiro theo-

rem [62], one can obtain a set of first-order coupled differential equations as
functions of the averaged system parameters 〈〈Pi(t)〉〉 and the noise correlators
〈〈η(t)Pi(t)〉〉 as

d
−→
Y

dt
= M

−→
Y (4)

where

−→
Y =


〈〈Px(t)〉〉
〈〈Py(t)〉〉
〈〈Pz(t)〉〉
〈〈η(t)Px(t)〉〉
〈〈η(t)Py(t)〉〉
〈〈η(t)Pz(t)〉〉

 and M =


−4κ −ε 0 0 0 0
ε −4κ ∆0 0 0 ∆1

0 −∆0 0 0 −∆1 0
0 0 0 −2ν − 4κ −ε 0
0 0 ∆1 ε −2ν − 4κ ∆0

0 −∆1 0 0 −∆0 −2ν


We would like to remark here that the solution in Eq. (4) is exact and com-
pletely describes the dynamics of the system.

3 Quantum coherence and non-Markovianity

A complete theory for the quantification of quantum coherence has been given
very recently based on the conditions in analogy to the entanglement the-
ory [28–30]. The main aim in such an attempt is to adopt the quantum coher-
ence as useful resource in the protocols of quantum information and computa-
tion. The quantification of coherence is based on a valid metric ∆(ρ||σ) that
measures the distance between two quantum states ρ and σ. It can be written
as [28]:

C∆(ρ) = min
σ∈ I

∆(ρ||σ). (5)

Here σ =
∑d
i=1 σii|i〉〈i| is the density operator in the space I representing

the incoherent quantum states defined in terms of a particular fixed basis
|i〉–in our case, the eigenstates of σz are chosen as the fixed basis. For a
given metric ∆(ρ||σ), C∆(ρ) determines the minimal distance between the
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coherent state ρ and the set of all incoherent quantum states defined in
the subspace I. Refs. [28–30] set the necessary conditions to qualify C∆(ρ)
as a coherence monotone. It has been demonstrated that not all metrics
become a proper coherence measure [28–30, 63, 64]. On the other hand, l1-
matrix norm ∆l1(ρ||σ) = ||ρ − σ||l1 = Σij |ρij − σij | and the relative entropy
∆rel.ent(ρ||σ) = Tr(ρ log2 ρ − ρ log2 σ) have been shown to satisfy all the re-
quirements for qualifying C∆(ρ) as a coherence measure. Furthermore, the
minimum in Eq. (5) for both metrics can be obtained for the diagonal density
operator σ ≡ ρdiag =

∑
i ρii|i〉〈i|, where ρii = 〈i|ρ|i〉. Therefore, the quantifiers

which are called the l1-norm of coherence–Cl1(ρ)– and the relative entropy of
coherence–Crel.ent(ρ)– have the explicit forms [28]:

Cl1(ρ) =
∑
i 6=j

|ρij |, (6)

Crel.ent(ρ) = S(ρdiag)− S(ρ), (7)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy. It is worth noting
that in our calculations we have observed that Cl1(ρ) and Crel.ent.(ρ) give
qualitatively the same predictions. Therefore, we will restrict our attention
to only Cl1(ρ). Furthermore, the l1 norm of coherence serves a very intuitive
quantification of coherence, since it is directly connected to the off-diagonal
elements of ρ in a fixed basis |i〉. Recently, some established coherence mono-
tones based on different metrics, such as the (modified) trace norm and fidelity,
have been found to be increasing functions of Cl1(ρ) [64–66]. Non-zero Cl1(ρ)
is the indication of quantum interference phenomena between two localized
potential wells which are represented by the eigenstates of σz. The role of the
barrier and its fluctuations in this phenomenon will be investigated for two
initial states; one of them is the incoherent state ρ1(0) = |1〉〈1| where the
particle is localized in one of the wells and the other is the maximal coherent
one ρ2(0) = |ψ(0)〉〈ψ(0)| where |ψ(0)〉 = (|1〉+ i |0〉) /

√
2.

The quantification of the degree of non-Markovianity is also based on a met-
ric which requires to contract under all completely positive trace-preserving
maps. The trace distance might serve this aim, which is given as [24]:

∆tr(ρ1||ρ2) =
1

2
Tr |ρ1 − ρ2| , (8)

where |A| =
√
A†A. Based on the trace distance, the measure of the non-

Markovianity is defined as [45,46]:

N = maxρ1,ρ2

∫
σ>0

σ(t) dt, (9)

where σ(t) = d
dt∆tr(ρ1||ρ2). The idea on such a quantification is based on

the distinguishably of quantum states. A Markovian dynamics can always be
represented by a dynamical semigroup which is completely positive and trace
preserving. The trace distance always contracts under Markovian dynamics,
showing the reduction in the distinguishably of two arbitrary quantum states.
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The flow of information is then considered outside of the system of interest.
The rate of change of σ(t) is negative, with the result that N in Eq. (9) is
zero. On the other hand, non-Markovian dynamics can not be described by
any completely positive and trace-preserving map. Under such a map, the dis-
tinguishably of two arbitrary states can increase for some time interval which
indicates the flow of information back to the system. In this time domain,
σ(t) > 0. Please note that, the non-Markovianity measure in Eq. (9) accounts
for the whole regions where σ(t) > 0. Therefore, if N > 0, then the dynamics
is always non-Markovian. In general, a numerical discretization method is em-
ployed overall pair of initial states to determine the non-Markovianity. Instead,
in our calculations, choosing the orthogonal pair ρ1(0) and ρ3(0) = |0〉〈0| would
be sufficient to show the non-Markovian character that arises in our frame-
work [45,46].

4 Results

Since we analyze the tunneling problem, there should always be a constant
tunneling rate between two wells, that is, ∆0 = 1. The remaining parameters
are free to choose which are scaled with respect to ∆0 and presented in dimen-
sionless units (~ = kB = 1). In the following, we will investigate the barrier
and its random disturbance on the coherence dynamics and non-Markovianity
for the unbiased (ε = 0) and biased (ε = 2.0) cases. Since we neglect any quan-
tum features of the environment leading to stochastic energy bias, we consider
that it always exists but plays a secondary role, so we fixed κ = 0.1 in our
calculations.

4.1 Static barrier

In the first analyzed case, we consider that the barrier is static (that is, ∆1 =
0). The dynamical equations presented in Eq. (4) can be solved analytically.
For the unbiased case (ε = 0) and the initial states considered ρ1(0) and ρ2(0),
the l1 norm of coherence takes simple forms,

Cl1(ρ1(0)) =

∣∣∣∣e−κ t sin (Ω t)

Ω

∣∣∣∣ ,
Cl1(ρ2(0)) =

∣∣∣∣e−κ t∆0

Ω
cos (tΩ + θ)

∣∣∣∣ , (10)

where Ω =
√
∆2

0 − κ2 and θ = arctan (κ/Ω). It is obvious from Eq. (10) that l1
norm of coherence exhibits damped oscillations. However, for the biased case,
the analytical equations are too long and uninspiring. Therefore, in Fig. 1, we
plot the dynamics of coherence for the biased and unbiased cases and the initial
states ρ1(0) (Fig. 1(a)) and ρ2(0) (Fig. 1(b)). To elucidate the influence of the
barrier on the coherence dynamics, we first consider the case where there is no
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barrier (that is, ∆0 = 0). In this scenario, there is only bias and its damping
induced by its coupling to the high-temperature thermal environment. There-
fore, Cl1(ρ) simply decays exponentially in time for the initial coherent state
ρ2(0), while it always stays zero for the initial incoherent one ρ1(0) (see also
Eq. (10)). Introducing a barrier, on the other hand, substantially changes the
coherence dynamics. As shown in Fig. 1(a), coherence is induced for the initial
incoherent state ρ1(0). For both initial states, Cl1(ρ) shows damped oscillatory
behavior. The damping is raised by its coupling to the thermal environment
where the parameter κ just controls how fast the coherence decays. In Fig. 1,
unbiased (ε = 0) and biased (ε = 2) cases are also presented. It is clear from
the figure that ε decreases the amplitude of oscillations. Note that, non-zero
bias makes tunneling more difficult, since it introduces a gap between two lo-
calized potential wells [5]. On the other hand, as shown by the comparison of
Fig. 1(a) with Fig. 1(b), the coherence dynamics exhibits adverse behavior for
the two initial states. Even the induced coherence (Fig. 1(a)) is more robust
to dissipation for the biased case (green dashed line) compared to the unbi-
ased one (red solid line), the behavior is reversed for the initial coherent state
(Fig. 1(b)).

(a) Initial state: ρ1(0) (b) Initial state: ρ2(0)

Fig. 1 l1 norm of coherence Cl1 (ρ) is plotted as a function of time t for the static barrier
case (∆1 = 0) and the parameters ∆0 = 1, κ = 0.1, ε = 0 (red, solid line) and ε = 2.0
(green, dashed line). (a) is plotted for the initially non-coherent state ρ1(0), while (b) is for
the initially coherent one ρ2(0).

We should emphasis that for the static barrier case, the Gaussian noise
ε(t) modeled as the delta correlated function acts only as the source of the
environment. Such noise can mimic the interaction of a system with quantum
oscillators of a reservoir in the high temperature limit [59]. Under the approx-
imation, the environment is purely classical, and there would be no back-flow
of information from the environment to the system. After a straightforward
calculation, the non-Markovianity measure in Eq. (9) for the initially orthog-
onal pair states ρ1(0) and ρ3(0) is found to be exactly zero. The result can
also be interpreted from the master equation (3) which is obtained after aver-
aging over Gaussian noise ε(t). The master equation is in the Lindblad form
and can always be represented by a completely positive and trace preserving
map [46]. The distinguishability is therefore reduced monotonically during the
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dynamical evolution. The only effect of κ is to increase the dissipation which
may reduce the amplitude of oscillations and to speed up the decay.

4.2 Fluctuating barrier

We next investigate the role of the barrier fluctuations on the quantum co-
herence and elucidate its non-Markovian character. There are two parameters
that characterize the fluctuations in the barrier. One of them is ∆1 which
gives the amplitude of the noise. The other one is ν, which determines the
fluctuation frequency. Instead of focusing on these parameters separately, we
will consider the ratio known as Kubo number K = ∆1/ν [8]. It is a proper
measure for the color of the noise. For example, when the amplitude ∆1 is
fixed, K � 1 indicates a weakly colored noise due to the very fast barrier
fluctuations, while K � 1 dictates strongly colored (slow) noise. In the case
K � 1, the system barely feels the effect of the noise. In this scenario, the
barrier can be considered to be almost static and the results presented in the
previous sections are the same. On the other hand, for the case where K � 1
the system dynamics is governed by the superposition of two solutions with
tunneling rates ∆0 +∆1 and ∆0 −∆1.

For the fluctuating barrier case, it is not possible to obtain a simple ana-
lytical expression for the coherence measure. Therefore, we only analyze the
results numerically. In Fig. 2, we present contour plots of the l1 norm of co-
herence as a function of the Kubo number K and the dimensionless time for
the initial coherent and incoherent states. Both unbiased and biased cases are
considered. The general observation from Fig. 2 is that the Cl1(ρ) displays
a damped oscillating time dependence irrespective of the properties of the
RTN noise. This finding can be accounted for by noting that both the ther-
mal dephasing noise and RTN on the barrier height lead to the destruction
of the coherence in the long time limit. For the initial incoherent state ρ1(0)
(Fig. 2(a) and Fig. 2(b)), the maximum coherence is observed for the regions
where Kubo number K � 1 corresponding to weakly colored noise. However,
there is an exceptional region where Cl1(ρ) is independent of the value of K
in a very short time limit for the coherent initial state ρ2(0) (see Fig. 2(c)
and Fig. 2(d)). It can also be seen from Fig. 2 that the boundary K ≈ 1 di-
vides the dynamics of coherence into two different regimes with respect to the
noise color, i.e., in the limit of K → 1 (intermediate colored noise), coherence
decays exponentially, while for the weak and strong colored noise, one can
observe a strong death-rebirth cycle for coherence with the damping rate ν
for all sub-figures of Fig. 2. Regardless of the value of ε and the initial state,
the decoherence life time strongly depends on the Kubo number and has a
resonance like behavior which decreases with increasing K until the critical
value K = 1 and then tends to increase.

We finally discuss the non-Markovian feature of the random barrier fluc-
tuations and its related effect on the quantum coherence. In this sense, we
present some analytical results for the non-Markovianity measure (Eq. (9))
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(a) ε = 0 (b) ε = 2

(c) ε = 0 (d) ε = 2

Fig. 2 Contour plot of Cl1 (ρ) as a function of dimensionless time and Kubo number K =
∆1/ν for the parameters ∆0 = ∆1 = 1.0, κ = 0.1, ε = 0 ((a) and (c)) and ε = 2.0 ((b) and
(d)). While the sub-figures (a) and (b) are plotted for the initial incoherent state ρ1(0), (c)
and (d) are for the initial coherent state ρ2(0). In the plots 10 equidistant contour lines are
considered between zero and the maximum value.

when only RTN parameters are non-zero (i.e., ε = κ = ∆0 = 0). Here, we are
able to show the non-Markovian property of the barrier fluctuations. By solv-
ing the dynamical equations in Eq. (4) for the initial states ρ1(0) and ρ3(0),
one can easily obtain the distinguishability as

∆tr(ρ1, ρ3) =

∣∣∣∣e−ν tγ
(γ cos(γ t) + ν sin(γ t))

∣∣∣∣ . (11)

The trace distance exhibits damped oscillating behavior with noise frequency
ν and γ = −

√
∆1 − ν. Note that, when ν > ∆1, γ is purely imaginary,

so ∆tr(ρ1, ρ3) is a uniformly decreasing function of time, so N = 0. Using
σ(ρ1, ρ3) of Eq. (11) and the non-Markovianity in Eq. (9), N for ∆1 > ν can
be obtained analytically as

N =
1

−1 + e
π√
K2−1

. (12)
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The obtained expression N strongly depends on the square of the noise color
K. One can note that when K � 1 (almost static barrier), N = 0. For a
more general case it is not possible to give an analytical expression for the
non-Markovianity. Instead, for the general case, we display the results of nu-
merical solutions in Fig. 3 as the contour lines of N as the functions of the
Kubo number K and the thermal noise strength κ for the system includ-
ing both the thermal and external noise for the unbiased (Fig. 3(a)) and bi-
ased (Fig. 3(b)) cases. The most prominent observation from Fig. 3 is that
N increases with increasing K and with decreasing κ for unbiased and bi-
ased cases. Ref. [67] has also found that N increases with increasing Kubo
number for non-equilibrium dephasing model. It is obvious from Fig. 3 that
the system dynamics is Markovian at high κs. It can also be deduced from
Fig. 3(a) (Fig. 3(b)) that Markovian-non-Markovian transition is (not) abrupt
at K = 1 line for unbiased (biased) case. This transition is also reported for
a pure dephasing model with non-equilibrium noise by Cai and Zeng [68]. At
the limit K → 0, RTN approaches the white-noise [8], which can create only
Markovian dynamics. Therefore, as expected, we find that the dynamics is
also Markovian for this parameter regime (see Fig. 3). On the other hand, the
time dependence of coherence displays an opposite trend with the noise color.
For small K, the decoherence time is longer for both initially coherent and
incoherent states (see Fig. 2), which can be understood by examining the low
and high frequency limits of RTN.

One of general insight from above findings is that the decoherence time
does not show a monotonous trend with respect to Kubo number. That is,
it decreases with increasing K until K = 1, and then starts to increase with
increasing K for initially coherent and non-coherent states in both unbiased
and biased cases (see Fig. 2). K = 1 seems to play an important role in both
the existence of non-Markovianity and decoherence time. If one defines the de-
coherence rate is the inverse of decoherence time, then noise color dependence
of decoherence rate displays a resonance structure with a peak at K = 1.
Also, at K = 1 the coherence decays exponentially without any oscillations
(see Fig. 2(a-d)). Hence, although there is no direct relation between coher-
ence and non-Markovianity, both properties have special structures at around
K = 1.

In some studies of coherence-Markovianity relation, authors report a direct
connection between those two quantities for the model systems they investi-
gate. For example, Ref. [54] found that the stationary coherence is maximized
for non-Markovian dynamics in an Ohmic spin-boson model at low tempera-
ture. As we study the effect of classical noise which is an infinite temperature
limit, the stationary value of coherence is zero. But, Fig. 2 and Fig. 3 indicate
that one can observe the decoherence rate is higher when the dynamics is non-
Markovian, which seems to contradict the findings reported in Ref. [48,53–55].
Ref. [55] studied a global system–bath interaction in the both absence and
presence of non-Markovian noise. Also, our findings are in contrast with those
reported in Ref. [53] which studied a collisional model where both the system
and environment are composed of spin-1/2 particles and found that the higher
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non-Markovianity leads to low decoherence rate. On the other hand, Chanda
and Bhattacharya [52] who analyzed the dephasing channel, and found sim-
ilar coherence-non-Markovianity relation to our results. Hence, our findings
apparently indicates that the connection between non-Markovianity and de-
coherence is system-dependent and is not universal.

(a) ε = 0 (b) ε = 2

Fig. 3 Non-Markovianity N is plotted as functions of κ and Kubo number K = ∆1/ν for
the parameters ∆0 = ∆1 = 1.0, ε = 0 (a) and ε = 2.0 (b). 6 contour lines are chosen between
minimum and maximum values of N . Note that, N is computed for ρ1(0) and ρ3(0).

5 Conclusions

We have studied the coherence and non-Markovianity of a quantum tunnelling
system whose energy gap is subject to a delta-correlated Gaussian noise and
tunneling rate is disturbed by a random telegraph noise. The main aim of
the study was to check whether there exists any correlations between the co-
herence of the system and the non-Markovianity of the system dynamics. By
averaging over the two separate noises, a master equation for the popula-
tion, coherences and their RTN averages were obtained. It is found that, for
a restricted range of system and noise parameters, analytical expressions for
coherence measure-Cl1(ρ)- and non-Markovianity-N - derived for non-coherent
and fully coherent initial states. The dynamics of the system is found to be
non-Markovian only when the RTN barrier fluctuations satisfy K � 1, mean-
ing that the noise amplitude is larger than the noise frequency. Contrary to
the results of some similar studies on different toy models, we have found that
one could not find a direct connection between the system coherence and non-
Markovianity of the system dynamics except that both N and Cl1(ρ) change
character around K = 1. However, a consistent relation between the deco-
herence rate and non-Markovianity could be established for all the different
initial states for both biased and non-biased two-level system. Surprisingly,
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we have found that decoherence rate of non-Markovian dynamics is higher
compared to that of Markovian dynamics. As the non-Markovianity measure
we have used is based on back-flow of information from the environment to
the system, one would expect the coherence in such a scenario to decay slower
which is reported for a number of systems [48, 53–55]. Since both coherence
and non-Markovianity are considered as resources for quantum tasks, the cur-
rent findings might be relevant in elucidating the relation between coherence
of the system and non-Markovianity of the system dynamics.

Data availability Data will be made available upon reasonable request.
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