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We study the behaviour of the second-order correlation function in a double cavity optomechanical
system and a degenerate optical parametric amplifier (OPA) is placed in each cavity. The first cavity
is additionally driven by a weak classical laser field. The occurrence of strong photon antibunching
effect in these two coupled cavities is observed. For suitable values of optomechanical coupling
strength as well as photon hopping process, the system can exhibit a very strong photon antibunching
effect. Our study also shows that the unconventional photon blockade occurs in both coupling, i.e.
the weak coupling as well as in the strong coupling regimes as compared to the conventional photon
blockade which occurs only in the strong coupling regime. We get a very strong photon antibunching
effect under the unconventional photon blockade mechanism than the conventional photon blockade
mechanism. Our study can be also used for the generation of single photon in coupled nonlinear
optomechanical systems.

I. INTRODUCTION

Cavity optomechanics is a rapidly developing research
area for exploring the radiation-pressure-mediated inter-
action between optical and mechanical degrees of freedom
[1, 2]. Due to the nonlinear coupling in between the
optical mode to mechanical oscillations, cavity optome-
chanical system offers a robust platform for studying
many interesting quantum phenomena such as quantum
entangled states [3–12], weak force sensing [13, 14], squeez-
ing [15–18], precision measurements [19], quantum tele-
portation [20, 21], optomechanical induced transparency
[22–25] and optomechanical induced absorption [26–28],
ground state cooling of macroscopic objects [29–32], pho-
ton and phonon blockade [33–36]. Photon blockade (PB)
is a nonlinear optical effect that suppresses completely
the multiple-photon occupancy in a quantum mode and
favours only the single photon state [37]. The photon
blockade mechanism also generate sub-Poissonian light
when the system is driven by a classical light field. So
far, the photon blockade effect is also one of the major ex-
perimental schemes to generate on demand single-photon
sources and hence plays a significant role in present day
quantum information technologies [38, 39].

Photon blockade phenomenon has been studied theoret-
ically in various nonlinear quantum optical systems, e.g.,
Kerr-type nonlinear cavity [40, 41], cavity optomechani-
cal systems [33, 42–44] whereas the experimental works
investigated the trapped atom-cavity system [45] and a
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photonic crystal cavity coupled to a single quantum dot
[46–48]. Moreover, we have two wells- known mechanisms
to realize a strong PB effect in any quantum system. The
first one is (i) unconventional photon blockade (UCPB)
[49–51] which is generated due to the destructive quantum
interference between different quantum transition paths
from the ground state to a two-excited state, and the
second one is (ii) conventional photon blockade (CPB)
[37, 52, 53] which depends on the larger nonlinearities to
change the energy-level structure of the system. Both
UCPB and CPB mechanisms have been implemented ex-
perimentally in [45, 46, 54–56] as well as theoretically
studied in [57–64].
Motivated by the above-mentioned works, in this paper,
we propose a scheme to generate a strong photon anti-
bunching effect in a double cavity optomechanical system.
Each cavity also contains a degenerate optical parametric
amplifier (OPA). These two cavities are also spatially
separated and coupled through the single photon hopping
process. We investigate photon antibunching effect in
both the weak and the strong coupling regimes through
studying the second-order correlation function in this
system. Here, the first cavity is also driven by a weak
classical laser field as shown in Fig 1. We also discuss the
occurrence of the both types of photon blockade effect, i.e.
unconventional photon blockade and conventional photon
blockade as well as impact of various physical parameters
for achieving a strong photon antibunching effect.
This paper is organised as follows. In Section 2, we have
introduced the model Hamiltonian of our proposed op-
tomechanical system. In Section 3, we have obtained the
analytical and numerical results related to the equal-time
second-order correlation function to discuss PB effect. In
this same Section, we also give the optimal parameter
values to achieve the strong photon antibunching effect
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and we discuss the CPB and the UCPB mechanisms in
both weak and strong coupling regimes. We conclude our
results in Section 4.

II. THE MODEL HAMILTONIAN

We consider an optomechanical system consisting of
two Fabry-Pérot cavities coupled via the single photon
hopping process (Fig 1). Each cavity j(j = 1, 2) has a
movable end-mirror Mj and also contain inside a degen-
erate optical parametric amplifier (OPA) [65]. In our
scheme, first cavity is also driven by a weak classical laser
field with amplitude E and frequency ωL. The mass and
the frequency of the jth movable mirror Mj(j = 1, 2) are
respectively denoted by mj and ωMj

. The mirror Mj is
coupled to the photons inside the cavity j via radiation

pressure. The coupling rate is gj =
ωaj

Lj

√
~

mjωMj
with Lj

denoting the length of the jth cavity [1]. The annihilation
and creation operators of the jth cavity mode are denoted

by âj and â†j with [âj , â
†
j ] = 1 (j = 1, 2). The laser-cavity

detuning is ∆j = ωL − ωaj where ωaj is the resonant
frequencies of the cavity mode jth cavity. The coupling
strength of the photon hopping process is denoted by
J . The total Hamiltonian describing the system in the
rotating frame approximation is given by (~ = 1)

Ĥ = Ĥ0 + ĤPH , (1)

where

ĤPH = J(â†1â2 + â†2â1) (2)

and the Free Hamiltonian Ĥ0 is the sum of three terms
given as

Ĥ0 = Ĥfree + Ĥom + Ĥdrive, (3)

where the hermitians operators Hfree, Hom and Hdrive

written as

Ĥfree =
2∑
j=1

[−∆j â
†
j âj + ωMj

b̂†j b̂j ], (4)

Ĥom = −
2∑
j=1

gj â
†
j âj(b̂

†
j + b̂j), (5)

Ĥdrive = Eeiφâ†1 + Ee−ıφâ1, (6)

where E =
√

2κ1℘
~ωL

and φ are respectively the amplitude

and the phase of the input coherent laser field. The quan-
tity ℘ denotes the drive pump power of the input field.
The cavity decay rate of the jth cavity is κj . The anni-
hilation and creation operators of the phonons mode of

the jth movable mirrors are represented as b̂j and b̂†j and

satisfy [b̂j , b̂
†
j ] = 1 (j = 1, 2). We recall that the tunable

photon statistics in parametrically amplified photonic

molecules were studied in Ref. [57] without optomechani-
cal interaction. In addition to optomechanical interaction
we take into account the degenerate optical parametric
amplifier. This coupling is described by

ĤOPA =

2∑
j=1

(
iλj(â

†
j)

2eiθ − iλj â2
je
−iθ
)
, (7)

where the nonlinear gain and the phase of the field driving
the OPA inside the jth cavity are respectively given by
λj and θ. The total Hamiltonian is now given by the sum

of the Hamiltonian Ĥ (Eq.(1)) and the interaction term
given by

Ĥtot = Ĥ + ĤOPA. (8)

The degenerate OPA is pumped by another laser field
at frequency 2ωL [66, 67]. Using the following unitary

FIG. 1. Schematic of a double cavity optomechanical system.

transformation Û = exp[Ŝ] with Ŝ =
∑2
j=1

gj
ωmj

â†j âj(b̂
†
j −

b̂j); (j = 1, 2), the Hamiltonian Ĥtot transform under

this transformation as Û†ĤtotÛ = Ĥ1 To derive this
equation, we have used the Baker-Campbell-Hausdorff
formula together with the commutation values of the

operators â†, â, b̂† and b̂. The unitary transformation

Û decouples the two mechanical and the optical modes
in the special case of weak optomechanical coupling, i.e.
gj/ωmj

� 1 (j = 1, 2) [58]. In fact, as we are interested
by the photon statistic in the system, the Hamiltonian
can be written as

Ĥ1 =

2∑
j=1

[−∆j â
†
j âj − µj(â

†
j âj)

2 + iλ(â†j)
2eiθ − iλâ2

je
−iθ]

+ Eeiφâ†1 + Ee−iφâ1 + J(â†1â2 + â†2â1), (9)

where µj = g2
j /ωmj

is the Kerr-type nonlinear strength.

III. PHOTON STATISTICS

In this section, we focus on the analytical solution
of the non-Hermitian Schrödinger equation as well as
numerical solution using Master equation. In addition,
we discuss the generation of a strong photon antibunching
effect in the weak and the strong coupling regimes. The
non-Hermitian Hamiltonian is directly written by adding
phenomenologically the imaginary decay terms as

Ĥ2 = Ĥ1 − i
κ1

2
â†1â1 − i

κ2

2
â†2â2. (10)
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The analytical expression of the correlation function can
be obtained by solving the Schrödinger equation in the

weak driving condition (E� κ1), i.e., i∂|ψ(t)〉
∂t = H2|ψ(t)〉,

where |ψ(t)〉 is the state of the system. The evolution
space can be limited in the low-excitation subspace, up
to 2, i.e., B = {|n1, n2〉/n1 + n2 ≤ 2}. The state of the
system with the bare-state bases are

|ψ(t)〉 =

n1+n2≤2∑
n1,n2

Cn1n2(t)|n1, n2〉, (11)

where Cn1n2
(t) is the probability amplitude of the bare

state |n1, n2〉 with n1 represents the photons being in
the cavity (1) and n2 represents the photons being in
the cavity (2). For two identical cavities, κ1 = κ2 =
κ, m1 = m2 = m, ωm1 = ωm2 = ωm, ωa1 = ωa2 =
ωa, L1 = L2 = L, λ1 = λ2 = λ, ∆1 = ∆2 = ∆ and
g1 = g2 = g. Under the weak driving condition, the
probabilities amplitudes satisfy the relation |C00| ' 1�
|C01|, |C10| � |C11|, |C02|, |C20|. To simplify our purpose
we consider θ = φ = 0. The schrödinger equation leads
to the following set of linear differential equations for the
probability amplitudes Cn1n2

(t)

i
∂C00

∂t
= EC10 − iλ(C02 + C20), (12)

i
∂C01

∂t
= EC00 − ΛC01 +

√
2EC02 − JC10, (13)

i
∂C10

∂t
= EC00 − ΛC10 +

√
2EC20 − JC01, (14)

i
∂C11

∂t
= −2ΛC11 + EC01 +

√
2JC02 −

√
2JC20, (15)

i
∂C02

∂t
= −2ΓC02 −

√
2JC11 + ı

√
2λC00, (16)

i
∂C20

∂t
= −2ΓC20 +

√
2EC10 −

√
2JC11 + i

√
2λC00, (17)

where Λ = ∆ + iκ2 − µ and Γ = ∆ + iκ2 − 2µ. Eqs.(12)-
(17) can be solved analytically to obtain the dynamical
state. Moreover, the steady-state result can be obtained
by solving ∂Cn1n2/∂t = 0, which can be simplified using
some appropriate approximations as for instance ignoring
those higher-order terms in the case of weak coupling
interaction. The coefficients associated with one-photon
(n1 + n2 = 1) state are given by

C01 =
JE

Λ2 − J2
, (18)

C10 =
ΛE

Λ2 − J2
, (19)

and the coefficients associated with two-photon (n1+n2 =
2) states write as

C11 =
J
(
−E2Γ− 2iJ2λ+ E2Λ + 2iλΛ2

)
2(ΓΛ− J2)(Λ2 − J2)

, (20)

C02 =
J2E2Γ + J2E2Λ− 2iJ2λΓΛ + 2iλΓΛ3

2
√

2Γ(ΓΛ− J2)(Λ2 − J2)
, (21)

C20 =
J2E2Γ− J2E2Λ− i2J2λΓΛ + 2E2ΓΛ2 + i2λΓΛ3

2
√

2Γ(ΓΛ− J2)(Λ2 − J2)
.

(22)
The equal-time second-order correlation functions defined

by g
(2)
j (0) = 〈â†j â

†
j âj âj〉/〈â

†
j âj〉2 (j = 1, 2). It describes

the probability to observe two photons in the jth cavity
at the same time. Using the results obtained here, are
gets

g
(2)
1 (0) =

2|C20|2

n2
1

, g
(2)
2 (0) =

2|C02|2

n2
2

, (23)

where n1 = |C10|2 + |C11|2 + 2|C20|2 ' |C10|2 and n2 =
|C01|2+|C11|2+2|C02|2 ' |C01|2 represent the average pho-

ton occupations. The condition g
(2)
j (0) > 1 corresponds

to the photon bunching effect whereas g
(2)
j (0) < 1 leads to

the photon antibunching effect and is characterized by the
sub-Poissonian photon statistics [33–35]. Furthermore,
the strong photon antibunching effect holds in the cavity

(1) when g
(2)
1 (0) = 0, i.e., C20 = 0. On the other hand,

the strong photon antibunching effect can be realized

in the cavity (2) when g
(2)
2 (0) = 0, i.e., C02 = 0. The

Master equation approach which allows us to numerically
calculate has the following expression

dρ

dt
= −i[Ĥ1, ρ] + L̂âj (ρ), (24)

where L̂aj (ρ) = κ
2 (2âjρâ

+
j − â

†
j âjρ−ρâ

†
j âj) and Ĥ1 is the

Hamiltonian given by Eq.(9).

A. Weak Coupling Regime

In this subsection, we investigate the evolution of the

equal-time second-order correlation function g
(2)
j (0) (j =

1; 2). We discuss the realization of the strong photon
antibunching effect in weak coupling regime (J < κ and
g � ωm). The achieved photon blockade effect belongs
to the UCPB (destructive quantum interference).

The optimal parameter pairs λ (the gain) and ∆ (the
cavity laser detuning) can be obtained together with the

other fixed parameters by solving the equation g
(2)
j (0) = 0

(j = 1; 2). Here we also employ the parameters value
considered in Ref. [58] : J = 0.95κ, ωm = 2π × 75× 106

Hz, g = 0.042ωm, E = 0.02κ and κ = 2π × 0.15× 106 Hz.
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The solution in the cavity (1) is {{∆(1)
opt = −0.73 ×

10−4ωm, λ
(1)
opt = 0.93 × 10−6ωm}, {∆(1)

opt = 0.15 ×
10−2ωm, λ

(1)
opt = −0.20 × 10−6ωm}, {∆(1)

opt = 33 ×
10−4ωm Hz, λ

(1)
opt = 1.47 × 10−6ωm}}. Moreover, the

real solution of the optimal parameter pairs value in

the cavity (2) is {{∆(2)
opt = −7.4 × 10−4ωm, λ

(2)
opt =

0.33× 10−6ωm}, {∆(2)
opt = 0.21× 10−2ωm, λ

(2)
opt = −0.80×

10−6ωm}, {∆(2)
opt = 0.47 × 10−2ωm Hz, λ

(2)
opt = 0.40 ×

10−6ωm}}.

FIG. 2. Plot of the analytical (solid line) and numerical (dot)
results in a double cavities of the equal-time second-order
correlation function g(j)

(2)(0) (j = 1, 2) versus the cavity-laser
detuning ∆/ωm (we use ∆→ −∆ in this figure) for different
values of the parameter λ with J = 0.95κ and g = 0.042ωm.
λ = 0.93×10−6ωm with ∆ = 0.73×10−4ωm in figure (a) in the
cavity (1), and λ = 0.4×10−6ωm with ∆ = −0.47×10−2ωm in
figure (b) in the cavity (2). The solid horizontal line delimits
the region under which represents the photon antibunching
effect in the cavity.

We plot in Fig 2 the equal-time second-order correlation

function g
(2)
1 (0) as a function of the cavity-laser detuning

∆ for different values of λ by using analytic and numerical
solutions. We note that the analytic and the numerical
solution is obtained by solving master equation (Eq.24)
are the same as shown in Figs 2 (a) and (b) which means
that our results are correct. We remark that a strong pho-
ton antibunching effect occurs when we use the optimal

values of parameter pairs {∆, λ} listed above, i.e., g
(2)
j (0)

(j = 1, 2) is much smaller than unity (g
(2)
j (0) � 1) at

∆
(1)
opt = −0.73×10−4ωm with λ

(1)
opt = 0.93×10−6ωm in Fig

2 (a) and ∆
(2)
opt = 0.47×10−2ωm with λ

(2)
opt = 0.4×10−6ωm

in Fig 2 (b). Moreover, when the parameter λ does
not take the optimal value λopt, the correlation function

g(2)(0) cannot vanishes or tends to zero. We can explain
the generation of a strong photon antibunching effect in
the cavity (1) by the destructive quantum interference gen-
erated by different two photon between excitation schemes.
The two-photon excited state |0, 2〉 can be completely sup-
pressed due to the ideal destructive quantum interference
between in three different ways in [57]: (i) the direct

excitation |0, 0〉 λ−→ |2, 0〉 by a degenerate optical paramet-
ric amplifier interaction with the gain λ, (ii) the direct

excitation |0, 0〉 E−→ |1, 0〉 E−→ |2, 0〉by the driving field
with the amplitude E, and (iii) the tunnelling-mediated

transition |1, 0〉 J↔ |0, 1〉 E−→ (|1, 1〉 J−→ |0, 2〉) J−→ |2, 0〉.
From Fig 2(b) the strong photon antibunching effects
in the cavity (2) can be understand by the destruc-
tive quantum interference between directs the two paths

: (i) the direct excitation |0, 0〉 λ−→ |0, 2〉 by the de-
generate optical parametric amplifier interaction with
the gain λ, and (ii) the tunnelling-mediated transition

|1, 0〉 J↔ |0, 1〉 E−→ (|1, 1〉 J−→ |2, 0〉) J−→ |0, 2〉.
According to the above analysis and discussions, we

find that the strong photon antibunching effect which
occurs in the weak coupling regime (J < κ and g � ωm)
belongs to the class of unconventional photon blockade
mechanism (the destructive quantum interference) [58].
We plot in Fig 3(a) the equal-time second-order corre-

lation function g
(2)
1 (0) versus the cavity-laser detuning

∆/ωm for various values of the optomechanical coupling

strength g. This figure shows that g
(2)
1 (0) is very small

when g = 0.042ωm, i.e, strong photon antibunching effect
occurs when g = 0.042ωm. We remark that a strong
photon antibunching effect is achieved for the exact value
of ∆ = −34304.2 Hz as it is precisely predicted by the op-
timal parameters when g = 0.042ωm with λ = 437.053 Hz.
We notice that the equal-time second-order correlation

function g
(2)
1 (0) is greater than 1 (the photon bunching

effect) when g = 0 with ∆ ∈ [−400000 Hz, 300000 Hz].
This means that the achieved photon antibunching effect
is related to the optomechanical coupling g.
We plot in Fig 3(b) the equal-time second-order corre-

lation function g
(2)
1 (0) versus the cavity-laser detuning

for different values of the coupling J . This figure ex-
hibits a strong photon antibunching effect for the value

∆
(1)
opt = 1.54229× 106 Hz. This exactly the value expected

via the parameter optimization when J = 0.95 Hz with

λ
(1)
opt = 692.709 Hz. The equal-time second-order corre-

lation function g
(2)
1 (0) is less than 1 when J = 0 (the

photon antibunching effect) for a wide range value of ∆
as reported in Fig 3(b). This can be explained by the
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FIG. 3. (a) Plot of the equal-time second-order correlation

function g
(2)
1 (0) versus the cavity-laser detuning ∆ for various

values of the optomechanical coupling strength g with λ
(1)
opt =

0.93 × 10−6ωm Hz and J = 0.95κ. (b) Plot of the equal-

time second-order correlation function g
(2)
1 (0) in the weak

coupling region versus the cavity-laser detuning ∆ for various

values of the photon hopping coupling strength J with λ
(1)
opt =

0.93× 10−6ωm and g = 0.042ωm Hz. The dashed horizontal
line delimits the region under which represents the photon
antibunching effect in the cavity (1).

two-photon excitation path of the tunnelling-mediated

transition, i.e., |1, 0〉 J↔ |0, 1〉 E−→ |1, 1〉 J↔ |2, 0〉. This
means the coupling J influences the occurrence of the
photon antibunching effect.

B. Strong Coupling Regime

In this subsection, we will discuss both conventional
and unconventional photon blockade mechanisms in the
strong coupling regime. Moreover, the conventional pho-
ton blockade phenomenon would become obvious be-
cause the energy-level splitting induced by the strong
coupling causes a large transition detuning between single-
photon and two-photon states. Hence to discuss the
conventional photon blockade in terms of the energy
spectrum of different excitations, we consider the Hamil-
tonian of the system without the laser driving term,

i.e., ĤND =
∑2
j=1[−∆j â

†
j âj − µj(â

†
j âj)

2 + iλ(â†j)
2eiθ −

iλâ2
je
−iθ] +J(â†1â2 + â†2â1). Eigenvalues of the single exci-

tation |0, 1〉 and |1, 0〉 are ε1± = J ±∆∓µ. The locations
of CPB can be obtained using the theory of conventional
blockade mechanism (resonant transition between the zero
and single excitations) [58]

∆+ = µ+ J ; ∆− = µ− J. (25)

Here, we consider the following values [58] : photon
hopping coupling J = 8κ, ωm = 2π × 75 × 106 Hz,
g = 0.2ωm, E = 0.02κ and κ = 2π × 0.15 × 106 Hz.
The parameter optimization of the pair of the parame-
ter {∆, λ} in the cavity (1) gives the following results

{{∆(1)
opt = 2.4 × 10−2ωm, λ

(1)
opt = 1.1 × 10−6ωm}, {∆(1)

opt =

4.0 × 10−2ωm, λ
(1)
opt = −0.8 × 10−6ωm}, {∆(1)

opt =

6.0 × 10−2ωm, λ
(1)
opt = 1.5 × 10−6ωm}, {∆(1)

opt = 8.0 ×
10−2ωm, λ

(1)
opt = −0.12 × 10−6ωm}, {∆(1)

opt = 8.2 ×
10−2ωm, λ

(1)
opt = −0.02 × 10−6ωm}}. Moreover, in the

cavity (2) the optimal parameter pairs are {{∆(2)
opt =

2.4 × 10−2ωm, λ
(2)
opt = 0.51 × 10−6ωm}, {∆(2)

opt = 4.0 ×
10−2ωm, λ

(2)
opt = −0.80 × 10−6ωm}, {∆(2)

opt = 5.6 ×
10−2ωm, λ

(2)
opt = 0.12 × 10−6ωm}, {∆(2)

opt = 5.9 ×
10−2ωm, λ

(2)
opt = 0.01 × 10−6ωm}}. We plot in Fig 4

the equal-time second-order correlation function g
(2)
j (0)

(j = 1, 2) versus the detuning ∆/ωm for various values
of the gain λ. We also make a remark here that the
analytical and the numerical solution is obtained by solv-
ing master equation (Eq.24) are the same as shown in
this figure. The photon blockade locations are obtained
from the Fig 4(a) for the values ∆ = 2.4× 10−2ωm and
∆ = ∆+ = µ+J . The small dips located is associated the
CPB mechanism and the others dips are associated to the
UCPB mechanism. We notice that the strong photon an-
tibunching effect obtained under the UCPB mechanism is
strong than one obtained under the CPB mechanism. We
remark that a strong antibunching effect is realized when

g
(2)
1 (0) takes small values (g

(2)
j (0) � 1) (j = 1, 2). This

can be explained by the unconventional photon blockade
mechanism (the complete destructive quantum interfer-
ence between different paths of two-photon excitation in
the cavity (1) and (2)).

We plot in Fig 5(a) the equal-time second-order cor-

relation function g
(2)
1 (0) versus the cavity-laser detuning

∆ for various values of the optomechanical coupling g.

This figure shows that g
(2)
1 (0) takes small values when

g = 0.2ωm in this case a strong photon antibunching
effect is achieved in the cavity (1). A strong photon
blockade effect occurs for ∆ = 2.4× 10−2ωm as it is pre-
dicted by the parameters optimization when g = 0.2ωm
with λ = 1.1 × 10−6ωm. We remark that when g = 0
the equal-time second-order correlation function became

greater than 1 (g
(2)
1 (0) > 1) i.e., the photon bunching

effect for large values of λ. This means that the optome-
chanical coupling influences the generation of the photon
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FIG. 4. Plot of the analytic (solid line) and numerical (dot)
results in a double cavities of the equal-time second-order

correlation function g
(2)
j (0) (j = 1, 2) in the strong coupling

regime versus the cavity-laser detuning ∆/ωm (we use ∆→
−∆ in this figure) for different values of the gain λ, (a) λ

(1)
opt =

1.1 × 10−6ωm and (b) λ
(1)
opt = 0.01 × 10−6ωm, where J = 8κ

and g = 0.2ωm. The solid horizontal line delimits the region
under which represents the photon antibunching effect in the
cavity (1) and (2).

antibunching. We plot in Fig 5(b) the equal-time second-
order correlation function g(2)(0) versus the cavity-laser
detuning for different values of a photon hopping coupling
J . We remark that a strong photon blockade effect oc-
curs for various values of J and ∆ as shown in Fig 5(b).
For example when J = 8κ a strong photon antibunching
effect is achieved for ∆ = 2.4 × 10−2ωm. In agreement
with the parameters optimization when J = 8κ with
λ = 1.1× 10−6ωm. And this shows the role of the photon
hopping coupling J in the generation of a strong photon
antibunching effect.

FIG. 5. (a) Plot of the equal-time second-order correlation

function g
(2)
1 (0) versus the gain λ for various values of the

optomechanical coupling g with J = 8κ and ∆ = ∆
(1)
opt =

2.4× 10−2ωm. (b) Plot of the equal-time second-order corre-

lation function g
(2)
1 (0) versus the cavity-laser detuning ∆ for

various values of the photon hopping coupling strength J with

λ
(1)
opt = 1.1× 10−6ωm and g = 0.2ωm. The dashed horizontal

line delimits the region under which represents the photon
antibunching effect in the cavity (1).

IV. CONCLUSION

We have discussed a strong photon blockade effect
through the analytical and numerical evaluation of the
second-order correlation function in a double-cavity op-
tomechanical system. Here the two optical cavities are
also coupled through the single photon hopping process.
A degenerate optical parametric amplifier is placed inside
each cavity. The first cavity is also driven by a weak
classical laser field. We have obtained the conditions for
strong photon antibunching effect in each optical cavity
for which the second-order correlation function satisfy
g(2)(0)� 1. We have also analysed the photon blockade
mechanisms in the weak as well as the strong coupling
regimes for the conventional and unconventional photon
blockade mechanisms. We have shown that the UCPB
is achieved even for the weak coupling regime (J < κ
and g � ωm), whereas CPB occurs only in the strong
coupling regime. We have discussed in details the effect
of the optomechanical coupling strength and the photon
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hopping coupling on the generation of strong photon anti-
bunching effects. Our present study on the single-photon
blockade and its generation in coupled optomechanical

systems can be of significant interest for the various appli-
cations in quantum information processing and quantum
communication.
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