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Exact performance of the five-qubit code with coherent errors
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To well understand the behavior of quantum error correction codes (QECC) in noise processes,
we need to obtain explicit coding maps for QECC. Due to extraordinary amount of computational
labor that they entails, explicit coding maps are a little known. Indeed this is even true for one
of the most commonly considered quantum codes-the five-qubit code, also known as the smallest
perfect code that permits corrections of generic single-qubit errors. With direct but complicated
computation, we obtain explicit process matrix of the coding maps with a unital error channel for
the five-qubit code. The process matrix allows us to conduct exact analysis on the performance
of the quantum code. We prove that the code can correct a generic error in the sense that under
repeated concatenation of the coding map with itself, the code does not make any assumption about
the error model other than it being weak and thus can remove the error(it can transform/take the
error channel to the identity channel if the error is sufficiently small.). We focus on the examination
of some coherent error models (non diagonal channels) studied in recent literatures. We numerically
derive a lower bound on threshold of the convergence for the code. Furthermore, we analytically
show how the code affects the average gate infidelity and diamond distance of the error channels.
Explicit formulas of the two measurements for both pre-error channel and post-error channel are
derived, and we then analyze the logical error rates of the aforesaid quantum code. Our findings
tighten the upper bounds on diamond distance of the noise channel after error corrections obtained
in literature.

PACS numbers:

I. INTRODUCTION

Quantum error correction (QEC) is one of the most
vital components of quantum information science [1]. It
was well known from the very start of this exciting field
that the delicate coherent quantum system would be par-
ticularly fragile in the presence of noise. The fragility of
coherent quantum systems would be a major obstacle to
the development of large scale quantum computers. The
introduction of quantum error correction in the middle of
1990s [2–5] revealed that active techniques could be used
to prevent noise in the underlying systems from causing
logical errors. Our understanding has advanced signifi-
cantly since then [6–10].
A large research effort has been recently made to ex-

amine the performance of QEC at the logical level un-
der various noises, and to realize quantum codes in lab.
To quantify the error magnitude at the logical (physical)
levels, various metrics have been utilized such as thresh-
old, the average gate infidelity, or diamond distance of
the noise channel to the identity channel. [11] studied
the logical error rate of the Steane code by performing
full-density-matrix simulations of an error correction step
against some incoherent and coherent noise channels. [12]
used tensor-network simulation to study the threshold
and the subthreshold behavior of the amplitude-damping
and systematic rotation channels for the surface code.
[13] simulated quantum error correction protocols based
on the surface code and obtained the first error thresh-
old estimates for certain models of coherent noise. The
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decay rate was analyzed for the specific noise model (de-
termined by the rotation along Pauli X and a stochas-
tic bit flip) in the repetition code [14]. [15] provided a
bound of the logical error in terms of the average gate in-
fidelity for codes correcting a general noise channel. [16]
derived an inequality which relates the diamond distance
of the logical channel from the identity to the average in-
fidelity of the logical noise channel for the toric code. [17]
showed that some of the coherence of the noise channel
can be used to improve its logical fidelity by using Pauli
conjugation in quantum error correction. [18] proposed
efficient method of computing logical noise in quantum
error correcting codes. [19] experimentally realized five-
qubit code and demonstrated each key aspect of the code
(such as implementing logical Pauli operators).

Notably the coding map method introduced in [20] has
proven fruitful in the study of performance of quantum
correction codes. By encoding each physical qubit of an
error correcting code into another code, and the proce-
dure can be repeated recursively, a concatenated code
is then formed. [20] showed how to efficiently compute
threshold values for several specified concatenated codes
(the five-qubit code, the Steane’s seven-qubit code and
the Shor’s nine-qubit code) under a fixed decoder when
each qubit is afflicted by diagonal noise channel. A cou-
ple of groups of researchers have followed the coding map
methods to evaluate effective noise channels for the en-
coded qubits after error correction. [21] considered the
coding map as a discrete-time dynamical system on the
entire space of noise channels and extended the result of
[20], in the case of diagonal channels, they proved that
any code with distance at least three corrects (in the in-
finite concatenation limit) an open set of errors. In the
language of dynamical system, the identity channel is
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locally attracting. [22] continued to investigate the the
performance of the commonly considered concatenated
codes including surface-17 code, they used hard decod-
ing algorithm for optimizing thresholds (the set of cor-
rectable errors) under certain selected non-diagonal noise
channels. Using the coding map as a tool, [23] obtained
an upper bound on the diamond norm for a wide range
of codes against a specified model of coherent noise.
The coding map of a quantum code synthesizes en-

coding, noise, syndrome measurement, recovery and de-
coding to form the so-called process matrix, by which
one could obtain the effective logical channel from the
physical noise channel. The process matrix allows one to
conduct exact analysis on the performance of the quan-
tum code. For a code encoding one logical qubit into n
physical qubits, the number of syndromes grows as 2n

making it rapidly become unmanageable to keep track
of all of them for lager codes, and therefore explicit pro-
cess matrices of coding maps for quantum codes under a
generic noise model are little known (this is even true for
the smallest possible nontrivial quantum code-the five-
qubit code). To our best knowledge, no explicit process
matrix of a quantum code for a general noise channel is
available in literature. In this paper, we obtain explicit
process matrix of the coding maps under any unital error
channel for the five-qubit code. We then prove that the
concatenated code can correct an open set of errors. For
a specified coherent error model studied recently in litera-
ture, explicit formulas of the two measurements (average
gate infidelity and diamond distance) for both physical
error channel and logical error channel are derived, and
we then analyze the logical error rates of the aforesaid
quantum code. Our findings tighten the upper bounds
on diamond distance of the noise channel after error cor-
rections obtained in literature [23].
The paper is structured as follows. In Section II we re-

view the coding map method. In Section III, we present
one of our main results about the convergence of the con-
catenated five-qubit coding map with the symmetric de-
coder. The explicit process matrix for the coding map is
given in Appendix A. We also conduct technical discus-
sion on lower bounds to threshold values of the attraction
of the identity channel for a specific noise model proposed
by previous author, the numerical tests and analysis can
be found in Appendix B. In section IV, we analytically
show how the code affects the average gate infidelity and
diamond distance of the error channels. Explicit formulas
of the two measurements for both pre-error channel and
post-error channel are derived. Details of the deriving
the diamond distance is provided in Appendix C.

II. CODING MAP METHOD REVIEW

We present the basic framework laid out and review
relevant results from [20, 21], which should be refereed
to for more details. Quantum states are represented by
their density matrices.

The error correction process consists of three consecu-
tive actions: encoding E , noise N , and decoding D. Each
action is modeled as a quantum channel.
Encoding E takes an initial logical qubit state ρ0 to

the initial register state ρ(0), which is assumed to evolve
according to a discrete-time operationN taking ρ(0) into
a final register state ρ(t) = N (ρ(0)). Finally, decoding
D takes ρ(t) to the final logical qubit state ρf . The map

G = D ◦ N ◦ E : ρ0 → ρf (1)

describes the effective dynamics of the encoded informa-
tion resulting from the physical dynamics of N and is
called the effective (logical) channel.
We consider noise models N on qubits consisting of

uncorrelated noise N (1) on each single physical qubit, so

n copies

N =
︷ ︸︸ ︷

N (1) ⊗ ...⊗N (1) (2)

Given an n qubit quantum error correcting code C with
encoding operation E and decoding operation D , the
map taking the single qubit (physical) noise N (1) to the
effective channel G

ΩC : N (1) → G = D ◦ (N (1))⊗n ◦ E (3)

is called the coding map of C.
Let C be a stabilizer code given by stabilizer S =

{Sk} ⊂ ±{I,X, Y, Z}⊗n, storing one qubit in an n−qubit
register. The stabilizer S defines the codespace, and the
logical operators Ī , X̄, Ȳ , Z̄ ⊂ ±{I,X, Y, Z}⊗n determine
the particular basis of codewords |0̄〉, |1̄〉. Let Eσ denote
1
2E [σ], then the encoding operation E can be completely
characterized by Eσ operators, which can be expressed
as

Eσ =
1

2|S|
∑

k

Skσ̄

=
∑

µi∈{I,X,Y,Z}

ασ
{µi}

(
1

2
µ1)⊗ ...⊗ (

1

2
µn). (4)

The decoding operation D can be completely character-
ized by Dσ operators

Dσ = 2
∑

j

R
†
jEσRj

=
1

|S|
∑

j,k

R
†
jSkσ̄Rj

=
∑

νi∈{I,X,Y,Z}

βσ
{νi}

(ν1)⊗ ...⊗ (νn) (5)

where Rj is a recovery operator, which will be explained
later on.
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The density matrix of one qubit state can be expanded
in the standard basis P = {P1, P2, P3, P4} = {I,X, Y, Z},
and represented as a four-dimensional real vector. A
noise channel can then be represented as a 4 × 4 ma-
trix called the Pauli-Liouville representation (which has
matrix elements (N 1)ij

.
= 1

2Tr[PiN 1(Pj)]

N (1) =






1 0 0 0
NXI NXX NXY NXZ

NY I NYX NY Y NY Z

NZI NZX NZY NZZ




 (6)

Zeroes in the first row are due to trace preservation.
If a noise channel is unital ( N (1)(I2) = I2), then it is
evident that its matrix representation becomes

N (1) =






1 0 0 0
0 NXX NXY NXZ

0 NYX NY Y NY Z

0 NZX NZY NZZ




 (7)

For an arbitrary n qubit code C, the entries of the
matrix G = ΩC(N (1)) can be calculated by

Gσσ′ =
∑

{νi}

∑

{µi}

βσ
{νi}

ασ′

{µi}
Πn

i=1N
(1)
νiµi

(8)

where {µi} and {νi} run over {I,X, Y, Z}⊗n.

We point out that the decoding operation is defined
to be D = E† ◦ R where R includes the measurement
update and recovery map. To build intuition for D,
we note that for most codes considered in the litera-
ture (and the specific code called k = 1 code consid-
ered later in this paper) the recovery procedure is given
in a particular form. The n dimensional Pauli group
is Pn = {±1,±i} ⊗ {I,X, Y, Z}⊗n. Suppose we have a
stabilizer code C that encodes k qubits into n qubits. Its
stabilizer S is an Abelian subgroup of Pn with n−k gener-
ators gi. There are 2n−k orthogonal 2k-dimensional sub-
spaces of the register state space. Each of the subspaces is
the intersection of eigenspaces of the generators gi, which
can be given by projector Pβ = 1

2n−kΠ
n−k
j=1 (I + (−1)βjgj)

where β = (β1, β2, ..., βn−k) ∈ Z
n−k
2 . It is noted that

when β = (1, 1, ..., 1), the subspace projected by Pβ is
the code space denoted by CS . When the register state
evolves with a correctable error, the code space CS is then
transformed into the subspace projected by some Pβ . Af-
ter a syndrome measurement is made, the aforesaid β
would be detected, the corresponding recovery operator
Rβ acts on the register, unitarily mapping the subspace
projected by Pβ back to the code space CS . Therefore
the decoding operation can be expressed as a sum over
all syndromes, D =

∑

β E† ◦Rβ ◦ Pβ .

III. OPEN SET OF CORRECTABLE UNITAL

NON-DIAGONAL ERRORS

A. Some basics of the theory of dynamical systems

We present some basics about the theory of dynami-
cal systems which will be used to analyze concatenated
quantum codes.
A dynamical system can be described by a vector-

valued map f : S → S where S is a measurable subset of
Rk, and f is a differentiable function. The total deriva-
tive (or the Jacobi matrix ) of f at point p is given by

Df(p) = ( ∂fi
∂xj

|x=p)k×k where fi is the i-th component

function of f . A norm of Df(p) as an operator on Rk

can be defined as ||Df(p)|| = max
||v||=1

||Df(p)v||, this ver-

sion of norm is known as the matrix 2-norm, and can
be also calculated by ||A||2 =

√

ρ(A⋆A) where ρ(A⋆A)
is the largest eigenvalue of A⋆A and A⋆ is the complex
conjugate of A.
A basic question of dynamical systems is to ask: what

happens to the system in the long run? Precisely speak-
ing, where does fn(p) converge as n goes to ∞ for a
given point p (representing an initial state of the system)
? Here fn = f ◦ · · · ◦ f (n times of the composition
function of f with itself). Perhaps an interesting and
important point/state to which fn converges should be
the fixed point of f (which means f(p) = p), an even
more interesting and important point should be the so-
called locally attracting point, which means that a point
p is fixed and if there exists a neighborhood V of p such
that for every point x ∈ V , fn(x) → p as n → ∞. The
largest such set V is called the basin of attraction of the
fixed point p. A standard criterion for a fixed point to
be locally attracting is given as follows (see [21] and the
references therein.):
Lemma 1: Suppose U ⊂ Rk is open, f : U → Rk is a

C1 map. p ∈ U is a fixed point of f , and ||Df(p)|| < 1.
Then p is locally attracting.

B. A coherent error channel

We consider noise models N on qubits consisting of
uncorrelated noise N (1) on each single physical qubit, so

n copies

N =
︷ ︸︸ ︷

N (1) ⊗ ...⊗N (1) (9)

We will focus on analysis of convergence of the codes
for the single-qubit error model considered in [14], as
shown below:

N (1)[ρ] = (1− q)e−iǫX/2ρeiǫX/2 + qXe−iǫX/2ρeiǫX/2X

= Λǫ ◦ Λq[ρ] (10)
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where q is the probability of a stochastic bit-flip and ǫ
is the angle of a small rotation error that is constant in
time. Eq. (10) is considered to describe the composition
of a coherent process, Λǫ, and an incoherent process, Λq.

Since N (1) is a unital channel, its Pauli-Liouville rep-
resentation (see Eq. (7) is given below:

N (1) =






1 0 0 0
0 1 0 0
0 0 (1− 2q) cos(ǫ) (2q − 1) sin(ǫ)
0 0 (1− 2q) sin(ǫ) (1− 2q) cos(ǫ)




 (11)

We will concentrate on the coherent error channel de-
fined by Eq. (10). It turns out that the characterization
of the asymptotic properties of the coding map for a con-
catenated code is determined by examining the long-time
behavior of the dynamical system ΩC : ∆ → ∆ where ∆
is a subset of Rk.

C. The five-bit code with the symmetric decoder

According to the process matrix of coding map for 5-
qubit code we obtained (see Appendix A), for an input
M , the output through the coding map ΩFive is given as
follows:

ΩFive(M) =






1 0 0 0
0 g(x, y, z) 0 0
0 0 g(y, z, x) h(v)
0 0 h(u) g(z, x, y)




 (12)

with

M =






1 0 0 0
0 x 0 0
0 0 y v
0 0 u z




 , (13)

g(x, y, z) = −x
4 (x

4−5y2−5z2+5y2z2) and h(w) = −w5

4 .
As shown above, the five-bit coding map takes noise

model given by Eq. (13) to an effective channel G with
the same pattern, thus we can treat the coding map ΩFive

as a vector-valued map expressed below:

(x, y, z, u, v) 7→ (g(x, y, z), g(y, z, x), g(z, x, y), h(u), h(v))(14)

It is noted that (1, 1, 1, 0, 0) is a fixed point (as ex-
pected) because ΩFive(1, 1, 1, 0, 0) = (1, 1, 1, 0, 0). Using
the partial derivatives of functions g and h with respect
to variables x, y, z, u, and v, we can find that the to-
tal derivative DΩFive(1, 1, 1, 0, 0) = 0, which immediately
implies the norm ||DΩFive(1, 1, 1, 0, 0)|| = 0. By Lemma
1, (1, 1, 1, 0, 0) is a locally attracting point of the cod-
ing map ΩFive, therefore we conclude that the concate-
nated five-bit code can take a noise channel to the iden-
tity channel when the noise channel is sufficiently close
to the identity channel.

Now we consider the noise channel in particular given
by Eq.(11), denoted by (x0, y0, z0, u0, v0), as the initial
state of the dynamical system ΩFive, and expressed be-
low:






x0 = 1
y0 = (1− 2q) cos(ǫ)
z0 = (1− 2q) cos(ǫ)
u0 = (1− 2q) sin(ǫ)
v0 = (2q − 1) sin(ǫ)

It can be seen that (x0, y0, z0, u0, v0) → (1, 1, 1, 0, 0) as
q, ǫ → 0. Therefore, when both q and ǫ are sufficiently
small, the noise channel (x0, y0, z0, u0, v0) falls in the
basin of attraction of the identity channel (1, 1, 1, 0, 0),
then the dynamical system ΩFive will take the noise chan-
nel to the identity channel.

Technical discussion on lower bounds to thresh-

old values of the attraction of the identity chan-

nel We will figure out how small both q and ǫ needed
to be so that the error channel falls into the basin of
attraction of the identity channel, and thus can be cor-
rected. According to the five-bit coding map given by
Eq.(14), each of the last two components of the map

h(w) = −w5

4 is solely dependent on a single variable (in-
put) w , and hn(w) → 0 as long as |w| < 1. On the
other hand, when y = z, the first component of ΩFive is
g(x, y, z) = −x

4 (x
4+5y4−10y2), and the second and third

components of ΩFive become identical, in other words,
g(y, z, x) = g(z, x, y) = − y

4 (y
4 + 5x2y2 − 5x2 − 5y2).

Therefore, the convergence of the concatenated five-bit
code actually amounts to the convergence of the dy-
namical system defined by f = (f1, f2) : (x, y) 7→
(f1(x, y), f2(x, y)) where f1(x, y) = −x

4 (x
4+5y4− 10y2),

f2(x, y) = − y
4 (y

4 +5x2y2 − 5x2 − 5y2), and (x, y) ∈ ∆ ⊂
R2. In this present scenario, the point (state) (1, 1) is a
locally attracting point of f as Df(1, 1) = 0. By Lemma
1, ||Df(x, y|| allows us to determine a neighborhood of
(1, 1) that is entirely contained in the basin of (1, 1).
Since the computation involved becomes unmanageable,
we may have to use numerical approach to do the job, we
here report the outcome we can achieve: via massive nu-
merical tests and analysis (see Appendix B), we conclude
that ||Df(x, y)|| < .995 when (x, y) ∈ B((1, 1), 0.072)
where B(z, r) denotes the open ball of radius r centered
at z. This implies that when 1− (1− 2q) cos(ǫ) < 0.072,
the error channel given by Eq. (11) falls into the basin of
the identity channel, and thus the concatenated five-bit
code map takes the error channel to the identity chan-
nel and the error is corrected. It is noteworthy that when
q = 0, the purely coherent error channel can be corrected
if the angle of rotation error ǫ <

√
0.144 ≈ 0.379. Re-

markably, some recent studies such as [22, 23] provided
similar results for different error models.

Finally, we conclude our discussion of the convergence
of the concatenated five-qubit coding map by showing a
general result on an arbitrary unital channel.
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Theorem If C is the five-qubit code with the sym-
metric decoder and the error channel N (1) is unital (i.e.
N (1)(I2) = I2 ), then the identity channel I4 is a locally
attracting point of the coding map ΩC .
Proof For clarity the submatrix obtained by delet-

ing the first row and first column of N (1) given by Eq.
(7) is represented by (NXX , NY Y , NZZ , · · · , NZY ), then
(1, 1, 1, 0, · · · , 0) represents the 3× 3 identity matrix. By
Lemma 1, it suffices to show that DΩC(1, 1, 1, 0, · · · , 0) =
0. We will here only show the entry in the first row and
first column of the 9 × 9 matrix DΩC(1, 1, 1, 0, · · · , 0) is
zero, the proof of rest entries being zero can be given in a
similar way. Based on the coding map formulas obtained
in Appendix A, ∂GXX

∂NXX
|(1,1,1,0,··· ,0) = ∂hx

∂x1

|(1,1,1,0,··· ,0) =

− 1
4 (x

4
1 + 5x22x

2
3 + 5y21z

2
1 + 5y22z

2
3) − x1

4 (4x31) +
5
4 (y

2
2 +

z23)|(1,1,1,0,··· ,0) = 0.

It is noted that this theorem implies that the five-qubit
code does not make any other assumption about the noise
model other than that it should be weak and thus can
be removed by applying the concatenated coding map
repeatedly. It should be pointed out that [21] proved a
similar result for a special case where the error channel
is diagonal, and the proof used a different approach.

IV. HOW THE QUANTUM CODE AFFECTS

THE NOISE STRENGTH

One usually wants to quantify the strength of errors E
in quantum operations. There are two commonly used
measures. One measure is the average gate infidelity r(E)
( to the identity, the perfect gate),

r(E) = 1−
∫

dψ〈ψ|E(|ψ〉〈ψ|)|ψ〉 (15)

which is considered to capture average-case behavior for
a single use of the gate. This quantity can be estimated
efficiently in randomized benchmarking experiments [24,
25], or can be precisely calculated by the formula below
[26–28].
Proposition 1. Let E be a completely positive (but not

necessarily trace preserving) map with Pauli-Liouville
representation L(E). Then,

Favg(E) =
Tr[L(E)] + Tr[E(I)]

d(d + 1)
, (16)

where Favg(E) = 1− r(E) is the average fidelity and d is
the system size.
The other measure is called the diamond distance

D⋄(E) ( to the identity),

D⋄(E) =
1

2
||E − I||⋄ =

1

2
sup
ρ
||(E ⊗ I)(ρ) − ρ||1 (17)

where ||A||1 =
√

Tr(A†A) and the supremum is over all
pure states [29]. This measure describes the worst-case
error for quantum processes. Though there is no simple
way to calculate the diamond distance in general, it can
be efficiently evaluated by the methods of semidefinite
programming [30–32].
We shall analyze how the quantum code affects two

measures of the coherent error channels given by Eq.
(11). In this case, both pre-error channel (given by Eq.
(11)) and post-error channel (given by Eq. (12)) can be
described below in terms of Pauli-Liouville representa-
tion.

E =






1 0 0 0
0 x 0 0
0 0 y −u
0 0 u y




 (18)

Using the formula given in Eq. (16), we immediately
obtain the average gate infidelity

r(E) = 1

6
(3− x− 2y). (19)

Enlightened by the method of semidefinite program-
ming employed in [30–33], we can derive the diamond
distance formula shown below

D⋄(E) =
1

4
(1− x) +

1

2

√

(1 − y)2 + u2. (20)

The detailed deriving of this formula is deferred to Ap-
pendix C.
The two measurements of the pre-error channel N (1)

are shown below:

r(N (1)) =
1

3
[1− (1− 2q) cos(ǫ)] ≈ 2

3
q +

1

6
ǫ2 (21)

D⋄(N (1)) =
1

2

√

1 + (1− 2q)2 − 2(1− 2q) cos(ǫ) (22)

≈
√

q2 +
ǫ2

4
(23)

It is noted that when the rotation error dominates,

|ǫ| ≫ q, we have D⋄(N (1)) ≈
√

3
2r(N (1)), this finding is

similar to a result given in [28].
The two measurements of the post-error channel

ΩFive(N (1)) are shown below:

r(ΩFive(N (1))) =
1

24
(13− 10y − 10y2 + 5y4 + 2y5)

D⋄(Ω
Five(N (1))) =

5

16
(1− 2y2 + y4) (24)

+
1

8

√

(4− 5y + y5)2 + u10 (25)

where y = (1− 2q) cos(ǫ) and u = (1− 2q) sin(ǫ).
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It is noted that when the rotation error dominates,
|ǫ| ≫ q, the error channel becomes coherent, we have
r(ΩFive(N (1))) ≈ 5

12ǫ
4 and D⋄(Ω

Five(N (1))) ≈ 5
8ǫ

4. Re-

markably, D⋄(Ω
Five(N (1))) ≈ 10[D⋄(N (1))]4, our result

sharpens a general conclusion about the upper bound
on the diamond distance after error correction for uni-
tary channels and stabilizer codes obtained by [23], in
which the upper bound is considered to be the third
power of the diamond distance of a error channel at the
physical level. For the opposite extreme case when the
stochastic bit-flip probability dominates, q ≫ |ǫ|, the
error channel becomes a pure Pauli channel, we have
r(ΩFive(N (1))) ≈ 20

3 q
2 and D⋄(Ω

Five(N (1))) ≈ 10q2. In
each of the two cases mentioned above, we can find that
the quantum error correction code can greatly reduce the
strength of error.

V. APPENDIX

A. Coding map of the five-qubit code with the

symmetric decoder

For the five-qubit code with the symmet-
ric decoder, the stabilizer, S = {Sk} =

〈XZZXI, IXZZX,XIXZZ,ZXIXZ〉, the logical
Pauli operators are Ī = IIIII, X̄ = XXXXX ,
Z̄ = ZZZZZ, and Ȳ = iX̄Z̄ = Y Y Y Y Y , the recovery
operator R = {IIIII,Xj, Yj , Zj : j = 1, ..., 5} where
σj stands for the tensor product of five Pauli matrices
or the identity matrix with the jth component being σ
and the rest components are all identity matrix I. It is
noted that this recovery operator is called the symmetric
decoder for the code, which associates each syndrome
to a unique weight-one Pauli operator. Therefore, all
weight-one Pauli operators are corrected.

The encoding operation E and the decoding operation
D are described as follows:

EI = 1
2|S|

∑

Sk∈S Sk = 1
32 (IIIII + XZZXI) ×

(IIIII + IXZZX) × (IIIII + XIXZZ) × (IIIII +
ZXIXZ)

Eσ = EI σ̄ where σ ∈ {X,Y, Z}

Since Dσ = 1
|S|

∑

k,j R
†
jSkσ̄Rj =

1
|S|

∑

k fkσSkσ̄ where

fkσ =
∑

j η(Sk, Rj)η(Rj , σ̄), we show explicit expressions
for each Dσ:

DI = IIIII

DX = −1

4
(XXXXX + IY Y IX +XIY Y I + IXIY Y + Y IXIY + IZXZI +XY ZZY + ZZYXY + IIZXZ

+ Y XY ZZ + ZIIZX +XZIIZ + ZYXY Z + Y ZZYX + ZXZII + Y Y IXI)

DY = −1

4
(Y Y Y Y Y + ZXXZY + Y ZXXZ + ZY ZXX +XZY ZX + ZIY IZ + Y XIIX + IIXYX + ZZIY I

+ XYXII + IZZIY + Y IZZI + IXYXI +XIIXY + IY IZZ +XXZY Z)

DZ = −1

4
(ZZZZZ + Y IIY Z + ZY IIY + Y ZY II + IY ZY I + Y XZXY + ZIXXI +XXIZI + Y Y XZX

+ IZIXX +XY Y XZ + ZXY Y X +XIZIX + IXXIZ +XZXY Y + IIY ZY ) (26)

By the formulas given in Eqs. (7) and (8), we can obtain
the entries of the process matrix of the coding map as
shown below:

GII = 1, GIX = GIY = GIZ = 0

GXI = GY I = GZI = 0

GXX = hx(NXX , NXY , NXZ , NYX , NY Y , NY Z , NZX , NZY , NZZ) = −NXX

4 (N4
XX + 5N2

XYN
2
XZ − 5N2

Y Y − 5N2
ZZ +

5N2
YXN

2
ZX + 5N2

Y YN
2
ZZ)− 5

2 (NXYNYXNY ZNZYNZZ +NXZNY YNY ZNZXNZY )

GXY = hy(NXX , NXY , NXZ , NYX , NY Y , NY Z , NZX , NZY , NZZ) = −NXY

4 (N4
XY + 5N2

XXN
2
XZ − 5N2

Y Z − 5N2
ZX +

5N2
Y YN

2
ZY + 5N2

Y ZN
2
ZX)− 5

2 (+NXXNYXNY ZNZYNZZ +NXZNYXNY YNZXNZZ)

GXZ = hz(NXX , NXY , NXZ , NYX , NY Y , NY Z , NZX , NZY , NZZ) = −NXZ

4 (N4
XZ + 5N2

XXN
2
XY − 5N2

YX +

5N2
YXN

2
ZY + 5N2

Y ZN
2
ZZ − 5N2

ZY )− 5
2 (NXXNY YNY ZNZXNZY +NXYNYXNY YNZXNZZ)

GY X = hx(NYX , NY Z , NY Y , NXX , NXZ , NXY , NZX , NZZ , NZY ) = −NY X

4 (N4
YX + 5N2

XXN
2
ZX − 5N2

XZ +

5N2
XZN

2
ZY + 5N2

Y YN
2
Y Z − 5N2

ZY )− 5
2 (NXXNXYNY ZNZYNZZ +NXYNXZNY YNZXNZZ)

GY Y = hy(NY Z , NY Y , NYX , NXZ , NXY , NXX , NZZ , NZY , NZX) = −NY Y

4 (N4
Y Y + 5N2

XXN
2
ZZ − 5N2

XX +

5N2
XYN

2
ZY + 5N2

YXN
2
Y Z − 5N2

ZZ)− 5
2 (+NXXNXZNY ZNZXNZY +NXYNXZNYXNZXNZZ)
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GY Z = hz(NY Y , NYX , NY Z , NXY , NXX , NXZ , NZY , NZX , NZZ) = −NYZ

4 (N4
Y Z + 5N2

XYN
2
ZX − 5N2

XY +

5N2
XZN

2
ZZ + 5N2

YXN
2
Y Y − 5N2

ZX)− 5
2 (NXXNXZNY YNZXNZY +NXXNXYNYXNZYNZZ)

GZX = hx(NZX , NZZ , NZY , NYX , NY Z , NY Y , NXX , NXZ , NXY ) = −NZX

4 (N4
ZX + 5N2

XXN
2
YX − 5N2

XY +

5N2
XYN

2
Y Z − 5N2

Y Z + 5N2
ZYN

2
ZZ)− 5

2 (NXXNXZNY YNY ZNZY +NXYNXZNYXNY YNZZ)

GZY = hy(NZZ , NZY , NZX , NY Z , NY Y , NYX , NXZ , NXY , NXX) = −NZY

4 (N4
ZY + 5N2

XYN
2
Y Y − 5N2

XZ +

5N2
XZN

2
YX − 5N2

YX + 5N2
ZXN

2
ZZ)− 5

2 (+NXXNXYNYXNY ZNZZ +NXXNXZNY YNY ZNZX)

GZZ = hz(NZY , NZX , NZZ , NY Y , NYX , NY Z , NXY , NXX , NXZ) = −NZZ

4 (N4
ZZ + 5N2

XXN
2
Y Y − 5N2

XX +

5N2
XZN

2
Y Z − 5N2

Y Y + 5N2
ZXN

2
ZY )− 5

2 (NXXNXYNYXNY ZNZY +NXYNXZNYXNY YNZX)

hx(x1, x2, x3, y1, y2, y3, z1, z2, z3) = −x1

4 (x41 + 5x22x
2
3 + 5y21z

2
1 + 5y22z

2
3)− 5

2y3z2(x2y1z3 + x3y2z1) +
5x1

4 (y22 + z23)

hy(x1, x2, x3, y1, y2, y3, z1, z2, z3) = −x2

4 (x42 + 5x21x
2
3 + 5y22z

2
2 + 5y23z

2
1)− 5

2y1z3(x1y3z2 + x3y2z1) +
5x2

4 (y23 + z21)

hz(x1, x2, x3, y1, y2, y3, z1, z2, z3) = −x3

4 (x43 + 5x21x
2
2 + 5y21z

2
2 + 5y23z

2
3)− 5

2y2z1(x1y3z2 + x2y1z3) +
5x3

4 (y21 + z22)

B. The convergence of the concatenated five-qubit

code

By the aforesaid analysis presented in III C, it suffices
to study the dynamical system given by f = (f1, f2) :
(x, y) 7→ (f1(x, y), f2(x, y)) where f1(x, y) = −x

4 (x
4 +

5y4 − 10y2), f2(x, y) = − y
4 (y

4 + 5x2y2 − 5x2 − 5y2), and

(x, y) ∈ ∆ ⊂ R2. The total derivative

Df(x, y) =

[
∂f1(x,y)

∂x
∂f1(x,y)

∂y
∂f2(x,y)

∂x
∂f2(x,y)

∂y

]

, (27)

where







∂f1(x,y)
∂x = − 5

4 (x
4 + y4) + 5

2y
2

∂f1(x,y)
∂y = 5xy(1− y2)

∂f2(x,y)
∂x = 5

2xy(1− y2)
∂f2(x,y)

∂y = − 5
4y

2(−3 + 3x2 + y2) + 5
4x

2

Using the formula of matrix 2-norm, given by ||A||2 =
√

ρ(A⋆A) where ρ(A⋆A) is the largest eigenvalue of A⋆A,

we can derive the norm ||Df(x, y)|| = 5
8

√

a+ 2
√
b where

a and b are given below:

a = 2(x4 + y4 − 2y2)2 + 2(−3y2 + 3x2y2 + y4 − x2)2 + 32(xy − xy3)2 + 8(xy − xy3)2

b = (x8 − x4 − 7x4y4 − 18x2y6 + 2x4y2 + 44x2y4 + 2y6 − 5y4 − 18x2y2)2

+ 16(3xy7 − 10xy5 + 2x5y3 + 3x3y5 − 2x5y − 4x3y3 + x3y + 7xy3)2 (28)

TABLE I: The approximate extreme values of ||Df || on the circle of radius r centered at the point (1, 1)

r .02 .04 .06 .07 .072 .073 .08

max||Df(x, y)|| .245 .520 .812 .964 .995 1.010 1.118
min||Df(x, y)|| .101 .202 .283 .332 .346 .361 .387

C. Diamond distance of the related channels

We will use the semidefinite programming to evaluate
the Diamond distance of the related channels. For ∆ =
I − E , according to [30], the following pair of primal and
dual semidefinite programming has an optimal value of
D⋄(E) = 1

2 ||∆||⋄:
Primal problem: Maximize 〈J(∆),W 〉 subject to W ≤

Id ⊗ ρ, W ∈ Pos(L(Cd ⊗ Cd)), and ρ ∈ D(L(Cd)).

Dual problem: Minimize ||Tr2(Z)||∞ subject to Z ≥
J(∆), z ∈ Pos(L(Cd ⊗ Cd)),

where J(∆) :=
∑d

i,j=1 |i〉〈j| ⊗ ∆(|i〉〈j|) is the Choi

matrix of ∆ [28, 33, 34], 〈X,Y 〉 = Tr(X†Y ) is the
Hilbert-Schmidt inner product of the matrices X and Y ,
Pos(L(Cd⊗Cd)) denotes the cone of positive semidefinite
operators acting on the system Cd ⊗ Cd, and Tr2(X) is
the partial trace of X over the second subsystem. Fi-
nally, ||X ||∞ denotes the operator norm of X , which is
the maximum eigenvalue of X(if X ≥ 0).

Let Π+ be the projector onto the eigenspace of J(∆)
with positive eigenvalues, then ρ = 1

dI W = 1
dΠ+ are

valid primal feasible values and Z = Π+J(∆)Π+ is a
dual feasible value. It is noteworthy that [33] introduced
these feasible points to evaluate the diamond distance of
the noise channels. We will adopt these feasible points
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or similar values to calculate diamond distances of the
channels in question.
The diamond distance of the coherent error

Supposed that the Pauli-Liouville representation of an
operator E is given below (this will always be the case for
us), we first compute the Choi matrix J(∆) for ∆ = I−E .

E =






1 0 0 0
0 x 0 0
0 0 y −u
0 0 u y




 , J(∆) =







1
2 − 1

2y −i 12u −i 12u 1− 1
2x− 1

2y

i 12u − 1
2 + 1

2y − 1
2x+ 1

2y i 12u

i 12u − 1
2x+ 1

2y − 1
2 + 1

2y i 12u

1− 1
2x− 1

2y −i 12u −i 12u 1
2 − 1

2y







(29)

With direct calculation, we obtain four eigenvalues of
J(∆) and a unital eigenvector of J(∆) corresponding to
positive eigenvalue λ1 as follows:

λ1,2 =
1

2
(1− x) ±

√

(1− y)2 + u2, λ3,4 = −1

2
+

1

2
x

u1 = [
b

a
,
c

a
,
c

a
,
b

a
]T (30)

where a =
√

2u2 + 2[λ1 − (32 − 1
2x− y)]2, b = −iu, and

c = λ1 − (32 − 1
2x− y).

According to the spectral theorem for Hermitian ma-
trices, there exists a unitay matrix U and a diagonal ma-
trix D such that J(∆) = UDU † where D has the above
four (real valued ) eigenvalues as its diagonal elements.
Suppose that U = [u1, u2, u3, u4], then u1, u2, u3 and u4
are orthonormal. It is noted that {|ψ1〉 := U |00〉, |ψ2〉 :=
U |01〉, |ψ3〉 := U |10〉, |ψ4〉 := U |11〉} form an orthonor-
mal basis for the space C2 ⊗ C2, we have that J(∆) is
the diagonal matrix D when written in the aforesaid or-
thonormal basis, then Π+ would be the projector onto
the eigenspace with the positive eigenvalue given in Eq

(30).
|ψ1〉 := U |00〉 = uT1 [|00〉, |01〉, |10〉, |11〉]T
For the primal problem let W = 1

2Π+ and ρ = 1
2 I2,

then 〈J(∆),W 〉 = 1
2λ1.

For the dual problem take Z = Π+J(∆)Π+ which
is just λ1|ψ1〉〈ψ1| and note that Z ≥ J(∆). Moreover
Tr2Z = 1

2λ1I2 and so ||Tr2Z||∞ = 1
2λ1

Therefore we obtain

D⋄(E) =
1

4
(1− x) +

1

2

√

(1 − y)2 + u2. (31)

D⋄(N (1)) =
1

2

√

1 + (1− 2q)2 − 2(1− 2q) cos(ǫ). (32)
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